Advertisement

Diversity of Antimutagenic Phytocompounds from Indian Medicinal Plants

  • Mohammad Shavez Khan
  • Iqbal Ahmad
Chapter

Abstract

An array of diverse bioactive secondary metabolites synthesized by plants is known for their pharmacological and therapeutic properties. Considerable progress has been made in the last several years on understanding on mutation-related health problems and the potential role of plant extracts and phytocompounds as antimutagenic agent. Various in vitro assays have been developed to scrutinize the antimutagenic efficacy of antimutagenic agents derived from natural products. This chapter presents review of literature pertaining to diversity of antimutagenic phytocompounds from food and traditionally used Indian medicinal plants and their mode of action.

Keywords

Herbs Medicinal plants Phytocompounds Phytoantimutagens Antimutagenic activity Protective mechanisms 

References

  1. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1/A):363–98.PubMedPubMedCentralGoogle Scholar
  2. Aqil F, Vadhanam MV, Gupta RC. Enhanced activity of punicalagin delivered via polymeric implants against benzo [a] pyrene-induced DNA adducts. Mutat Res. 2012;743(1):59–66.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bacanli M, Aydin S, Başaran AA, Başaran N. Are all phytochemicals useful in the preventing of DNA damage? Food Chem Toxicol. 2017;109(Pt 1):210–7.PubMedCrossRefPubMedCentralGoogle Scholar
  4. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med. 2017;17(1):47.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bhandari P, Kumar N, Gupta AP, Singh B, Kaul VK. A rapid RP-HPTLC densitometry method for simultaneous determination of major flavonoids in important medicinal plants. J Sep Sci. 2007;30(13):2092–6.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bhattacharya S. Natural antimutagens: a review. Res J Med Plant. 2011;5(2):116–26.CrossRefGoogle Scholar
  7. Chakraborty P. Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie Open. 2018;6:9–16.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chen L, Teng H, Xie Z, Cao H, Cheang WS, Skalicka-Woniak K, Georgiev MI, Xiao J. Modifications of dietary flavonoids towards improved bioactivity: an update on structure–activity relationship. Crit Rev Food Sci Nutr. 2018;58(4):513–27.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cushnie TT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343–56.PubMedPubMedCentralCrossRefGoogle Scholar
  10. De Flora S, Bronzetti G, Sobels FH. Assessment of antimutagenicity and anticarcinogenicity. Mutat Res. 1992;267:153–5.PubMedCrossRefPubMedCentralGoogle Scholar
  11. De Oliveira AP, De Sousa JF, Da Silva MA, Hilário F, Resende FA, De Camargo MS, Vilegas W, dos Santos LC, Varanda EA. Estrogenic and chemopreventive activities of xanthones and flavones of Syngonanthus (Eriocaulaceae). Steroids. 2013;78(11):1053–63.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Devi HP, Mazumder PB, Devi LP. Antioxidant and antimutagenic activity of Curcuma caesia Roxb. rhizome extracts. Toxicol Rep. 2015;2:423–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. El-Sayed WM, Hussin WA, Al-Faiyz YS, Ismail MA. The position of imidazopyridine and metabolic activation are pivotal factors in the antimutagenic activity of novel imidazo [1, 2-a] pyridine derivatives. Eur J Pharmacol. 2013;715(1–3):212–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Frassinetti S, Della Croce CM, Caltavuturo L, Longo V. Antimutagenic and antioxidant activity of Lisosan G in Saccharomyces cerevisiae. Food Chem. 2012;135(3):2029–34.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 2002;3(7):415–24.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Gautam S, Saxena S, Kumar S. Fruits and vegetables as dietary sources of antimutagens. J Food Chem Nanotechnol. 2016;2(3):97–114.Google Scholar
  17. Geetha T, Malhotra V, Chopra K, Kaur IP. Antimutagenic and antioxidant/prooxidant activity of quercetin. Indian J Exp Biol. 2005;43(1):61–67.Google Scholar
  18. González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñón MJ. Anti-inflammatory and immunomodulatory properties of dietary flavonoids. In: Polyphenols in human health and disease; 2014. p. 435–52.CrossRefGoogle Scholar
  19. Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: an in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016;32(2):246–50.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gupta C, Vikram A, Tripathi DN, Ramarao P, Jena GB. Antioxidant and antimutagenic effect of quercetin against DEN induced hepatotoxicity in rat. Phytother Res. 2010;24(1):119–28.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hamilton SM, Teel RW. Effects of isothiocyanates on cytochrome P-450 1A1 and 1A2 activity and on the mutagenicity of heterocyclic amines. Anticancer Res. 1996;16(6B):3597–602.PubMedPubMedCentralGoogle Scholar
  22. Harborne JB. Nature, distribution and function of plant flavonoids. Prog Clin Biol Res. 1986;213:15–24.PubMedPubMedCentralGoogle Scholar
  23. Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Dis. 2015;14(2):111.CrossRefGoogle Scholar
  24. Hong CE, Cho MC, Jang HA, Lyu SY. Mutagenicity and anti-mutagenicity of Acanthopanax divaricatus var. albeofructus. J Toxicol Sci. 2011;36(5):661–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hour TC, Liang YC, Chu IS, Lin JK. Inhibition of eleven mutagens by various tea extracts (−) epigallocatechin-3-gallate, gallic acid and caffeine. Food Chem Toxicol. 1999;37(6):569–79.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kamiński K, Obniska J, Chlebek I, Liana P, Pękala E. Synthesis and biological properties of new N-Mannich bases derived from 3-methyl-3-phenyl-and 3, 3-dimethyl-succinimides. Eur J Med Chem. 2013;66:12–21.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol. 2014;20(2):322–30.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Kaur IP. Antimutagenicity of curcumin and related compounds against genotoxic heterocyclic amines from cooked food: the structural requirement. Food Chem. 2008;111(3):573–9.CrossRefGoogle Scholar
  29. Kaur S, Kumar S, Kaur P, Chandel M. Study of antimutagenic potential of phytoconstituents isolated from Terminalia arjuna in the Salmonella/Microsome Assay. Am J Biomed Sci. 2010;2(2):164–77.CrossRefGoogle Scholar
  30. Kaur A, Kaur D, Arora S. Evaluation of antioxidant and antimutagenic potential of Justicia adhatoda leaves extract. African J Biotech. 2015;14(21):1807–19.CrossRefGoogle Scholar
  31. Khan MS, Qais FA, Ahmad I, Hussain A, Alajmi MF. Genotoxicity inhibition by Syzygium cumini (L.) seed fraction and rutin: understanding the underlying mechanism of DNA protection. Toxicol Res. 2018;7(2):156–71.CrossRefGoogle Scholar
  32. Khare CP. Indian medicinal plants: an illustrated dictionary. Berlin: Springer; 2008.Google Scholar
  33. Korkina LG, Afanas' Ev IB. Antioxidant and chelating properties of flavonoids. In: Advances in pharmacology, vol. 38. Cambridge: Academic Press; 1996. p. 151–63.Google Scholar
  34. Luc Rochette, Stéliana Ghibu, Carole Richard, Marianne Zeller, Yves Cottin, Catherine Vergely. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res. 2013;57(1):114–25.Google Scholar
  35. Marnewick JL, Gelderblom WC, Joubert E. An investigation on the antimutagenic properties of South African herbal teas. Mutat Res. 2000;471(1):157–66.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res. 1983;113(3–4):173–215.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Martinez R, Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem. 2005;12(2):127–51.PubMedCrossRefPubMedCentralGoogle Scholar
  38. Masuoka N, Matsuda M, Kubo I. Characterisation of the antioxidant activity of flavonoids. Food Chem. 2012;131(2):541–5.CrossRefGoogle Scholar
  39. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. In: The molecular targets and therapeutic uses of curcumin in health and disease. Boston, MA: Springer; 2007. p. 105–25.Google Scholar
  40. Mladenović M, Matić S, Stanić S, Solujić S, Mihailović V, Stanković N, Katanić J. Combining molecular docking and 3-D pharmacophore generation to enclose the in vivo antigenotoxic activity of naturally occurring aromatic compounds: Myricetin, quercetin, rutin, and rosmarinic acid. Biochem Pharmacol. 2013;86(9):1376–96.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Mortelmans K, Riccio ES. The bacterial tryptophan reverse mutation assay with Escherichia coli WP2. Mutat Res. 2000;455(1):61–9.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res. 2000;455(1):29–60.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Nag D, Ghosh M, Mukherjee A. Antimutagenic and genoprotective effects of Saraca asoca bark extract. Toxicol Ind Health. 2015;31(8):696–703.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Nagabhushan M, Amonkar AJ, Bhide SV. In vitro antimutagenicity of curcumin against environmental mutagens. Food Chem Toxicol. 1987;25(7):545–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Nair CJ, Ahamad S, Khan W, Anjum V, Mathur R. Development and validation of high-performance thin-layer chromatography method for simultaneous determination of polyphenolic compounds in medicinal plants. Pharm Res. 2017;9(Suppl 1):S67.Google Scholar
  46. Nardemir G, Yanmis D, Alpsoy L, Gulluce M, Agar G, Aslan A. Genotoxic, antigenotoxic and antioxidant properties of methanol extracts obtained from Peltigera horizontalis and Peltigera praetextata. Toxicol Ind Health. 2015;31(7):602–13.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Novick A, Szilard L. Anti-mutagens. Nature. 1952;170:926–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Orhan F, Gulluce M, Ozkan H, Alpsoy L. Determination of the antigenotoxic potencies of some luteolin derivatives by using a eukaryotic cell system, Saccharomyces cerevisiae. Food Chem. 2013;141(1):366–72.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Pandey A, Sekar KC, Tamta S, Rawal RS. Assessment of phytochemicals, antioxidant and antimutagenic activity in micropropagated plants of Quercus serrata, a high value tree species of Himalaya. Plant Biosystems. 2017;15:1–8.Google Scholar
  50. Parvathy KS, Negi PS, Srinivas P. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chem. 2009;115(1):265–71.CrossRefGoogle Scholar
  51. Parvathy KS, Negi PS, Srinivas P. Curcumin–amino acid conjugates: synthesis, antioxidant and antimutagenic attributes. Food Chem. 2010;120(2):523–30.CrossRefGoogle Scholar
  52. Podgórska B, Chec E, Ulanowska K, Wêgrzyn G. Optimisation of the microbiological mutagenicity assay based on genetically modified Vibrio harveyi strains. J Appl Genet. 2005;46(2):241–6.PubMedPubMedCentralGoogle Scholar
  53. Puliyappadamba VT, Thulasidasan AK, Vijayakurup V, Antony J, Bava SV, Anwar S, Sundaram S, Anto RJ. Curcumin inhibits B [a] PDE-induced procarcinogenic signals in lung cancer cells, and curbs B [a] P-induced mutagenesis and lung carcinogenesis. Biofactors. 2015;41(6):431–42.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Quillardet P, Hofnung M. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat Res. 1985;147(3):65–78.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Quillardet P, de Bellecombe C, Hofnung M. The SOS Chromotest, a colorimetric bacterial assay for genotoxins: validation study with 83 compounds. Mutat Res. 1985;147(3):79–95.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem. 2017;142:213–28.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ragunathan I, Panneerselvam N. Antimutagenic potential of curcumin on chromosomal aberrations in Allium cepa. J Zhejiang Univ Sci B. 2007;8(7):470–5.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Ralhan R, Kaur J. Alkylating agents and cancer therapy. Exp Opin Ther Pat. 2007;17(9):1061–75.CrossRefGoogle Scholar
  59. Rauf A, Imran M, Orhan IE, Bawazeer S. Health perspectives of a bioactive compound curcumin: a review. Trends Food Sci Technol. 2018:7.Google Scholar
  60. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20(7):933–56.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rodrigues T, Reker D, Schneider P, Schneider G. Counting on natural products for drug design. Nat Chem. 2016;8(6):531.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Sanderson BJ, Shield AJ. Mutagenic damage to mammalian cells by therapeutic alkylating agents. Mutat Res. 1996;355(1):41–57.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Sangwan NS, Shanker S, Sangwan RS, Kumar S. Plant-derived products as antimutagens. Phytother Res. 1998;12(6):389–99.CrossRefGoogle Scholar
  64. Satish A, Kumar RP, Rakshith D, Satish S, Ahmed F. Antimutagenic and antioxidant activity of Ficus benghalensis stem bark and Moringa oleifera root extract. Int J Chem Analyt Sci. 2013;4(2):45–8.CrossRefGoogle Scholar
  65. Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, Heber D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem. 2005;16(6):360–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Sharma N, Sharma UK, Gupta AP, Sinha AK. Simultaneous determination of epicatechin, syringic acid, quercetin-3-O-galactoside and quercitrin in the leaves of Rhododendron species by using a validated HPTLC method. J food Com Ana. 2010;23(3):214–9.CrossRefGoogle Scholar
  67. Sharma S, Sharma S, Vig AP. Evaluation of antimutagenic and protective effects of Parkinsonia aculeata L. leaves against H2 O2 induced damage in pBR322 DNA. Physiol Mol Biol Plants. 2016;22(1):17–31.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Shon MY, Choi SD, Kahng GG, Nam SH, Sung NJ. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem Toxicol. 2004;42(4):659–66.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Shukla Y, Arora A, Taneja P. Antimutagenic potential of curcumin on chromosomal aberrations in Wistar rats. Mutat Res. 2002;515(1):197–202.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Simic MG. Mechanisms of inhibition of free-radical processes in mutagenesis and carcinogenesis. Mutat Res. 1988;202(2):377–86.PubMedCrossRefPubMedCentralGoogle Scholar
  71. Singh B, Singh JP, Kaur A, Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: a review. Food Chem. 2018;261:75–86.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Słoczyńska K, Pękala E, Wajda A, Węgrzyn G, Marona H. Evaluation of mutagenic and antimutagenic properties of some bioactive xanthone derivatives using Vibrio harveyi test. Lett Appl Microbiol. 2010;50(3):252–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Słoczyńska K, Powroźnik B, Pękala E, Waszkielewicz AM. Antimutagenic compounds and their possible mechanisms of action. J App Genet. 2014;55(2):273–85.CrossRefGoogle Scholar
  74. Snijman PW, Swanevelder S, Joubert E, Green IR, Gelderblom WC. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): Some dose–response effects on mutagen activation–flavonoid interactions. Mutat Res. 2007;631(2):111–23.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Ulanowska K, Węgrzyn G. Mutagenic activity of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. J Appl Genet. 2006;47(1):85–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ulanowska K, Piosik J, Gwizdek-Wiśniewska A, Węgrzyn G. Impaired mutagenic activities of MPDP+ (1-methyl-4-phenyl-2, 3-dihydropyridinium) and MPP+ (1-methyl-4-phenylpyridinium) due to their interactions with methylxanthines. J Geriatr Psychiatry Neurol. 2007;15(15):5150–7.Google Scholar
  77. Varshney M, Vijayan V, Meshram GP. Chemopreventive effects of ellagic acid against genotoxicity induced by benzo (a) pyrene. Toxicol Environ Chem. 2015;97(6):786–98.CrossRefGoogle Scholar
  78. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab (Lond). 2015;12(1):60.CrossRefGoogle Scholar
  79. Watanabe M, Kobayashi H, Ohta T. Rapid inactivation of 3-chloro-4-(dichloromethyl)-5-hydroxy-2 (5H)-furanone (MX), a potent mutagen in chlorinated drinking water, by sulfhydryl compounds. Mutat Res. 1994;312(2):131–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Weakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Brunicardi FC, Gibbs RA, Chen C. Role of somatic mutations in vascular disease formation. Exp Rev Mol Diag. 2010;10(2):173–85.CrossRefGoogle Scholar
  81. Zahin M, Aqil F, Ahmad I. Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutat Res. 2010;703(2):99–107.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Zahin M, Ahmad I, Gupta RC, Aqil F. Punicalagin and ellagic acid demonstrate antimutagenic activity and inhibition of benzo [a] pyrene induced DNA adducts. Biomed Res Int. 2014;2014:467465.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Zahin M, Ahmad I, Aqil F. Antioxidant and antimutagenic potential of Psidium guajava leaf extracts. Drug Chem Toxicol. 2017;40(2):146–53.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Zahin M, Khan MS, AbulQais F, Abulreesh HH, Ahmad I. Antioxidant properties and anti-mutagenic potential of Piper Cubeba fruit extract and molecular docking of certain bioactive compounds. Drug ChemToxicol. 2018;41(3):358–67.Google Scholar
  85. Zimmermann FK, Kern R, Rasenberger H. A yeast strain for simultaneous detection of induced mitotic crossing over, mitotic gene conversion and reverse mutation. Mutat Res. 1975;28(3):381–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Mohammad Shavez Khan
    • 1
  • Iqbal Ahmad
    • 1
  1. 1.Faculty of Agricultural Sciences, Department of Agricultural MicrobiologyAligarh Muslim UniversityAligarhIndia

Personalised recommendations