Advertisement

Phytochemical Analysis of Herbal Teas and Their Potential Health, and Food Safety Benefits: A Review

  • Patricia L. Mathivha
  • Titus A. M. Msagati
  • Vuyisile S. Thibane
  • Fhatuwani N. MudauEmail author
Chapter
  • 468 Downloads

Abstract

The interest in natural plant remedies in assisting with reducing health problems around the world is growing. This directly causes an increase in the consumption of herbal teas. Studies show that the preferentially high antioxidant activities of the flavonoids in herbal teas are due to their chemical structure. The hydroxyl groups on the B ring and the C ring of flavonoids and O-methylation of flavonoids have a greater influence on their antioxidant activity. In respect of phenolic acids, hydroxycinnamic acids and hydroxybenzoic acid are influencing factors. Methods used in the quantification and identification of polyphenols include liquid chromatography, gas chromatography and capillary electrophoresis. Both these chromatography methods are more popular compared to capillary electrophoresis. Phenolic compounds are significant in the prevention and management of chronic diseases such as cancer, diabetes, cardio-specific diseases and obesity. Researchers have also illustrated the use of phenolic extracts in enhancing both food quality and food safety.

Keywords

Herbal teas Antioxidant Disease Health benefit 

References

  1. Adom KK, Lui RH. Antioxidant activity of grains. J Agric Food Chem. 2002;50:6182–7.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Dalain SYA, Abu-Darwish SM, Al-Fraihat AH, Al-Dabbas FM, Al-Dalin HK, Al-Hamaidah KD. Comparative studies of the trace elements content of some herbal tea consumed in Jordan. Pak J Nutr. 2012;11:916–8.CrossRefGoogle Scholar
  3. An BJ, Kwak JH, Son JH, Park JM, Lee JY, Jo C, Byun M-W. Biological and antimicrobial activity of irradiated green tea polyphenols. Food Chem. 2004;88:447–51.CrossRefGoogle Scholar
  4. Arora A, Nair MG, Strasburg GM. Structure–activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic Biol Med. 1998;24:1355–63.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem Anal Nutri Clin Methods. 2006;99:191–203.Google Scholar
  6. Barry-Ryan C, Martin-Diana A, Rico D. Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce. Innov Food Sci Emerg Technol. 2008;9:593–603.CrossRefGoogle Scholar
  7. Baumann D, Adler S, Hamburger MA. A simple isolation method for the major catechins in green tea using high-speed countercurrent chromatography. J Nat Prod. 2001;64:353–5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 2001;90:157–77.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bloodsworth A, O’Donnell VB, Freeman BA. Nitric oxide regulation of free radical-and enzyme-mediated lipid and lipoprotein oxidation. Arterioscler Thromb Vasc Biol. 2000;20:1707–15.Google Scholar
  10. Bonomini F, Tengattini IS, Fabiano A, Bianchi R, Rezzani R. Atherosclerosis and oxidative stress. Histol Histopathol. 2008;23:381–90.PubMedPubMedCentralGoogle Scholar
  11. Boulekbache-Makhlouf L, Medouni L, Medouni-Adrar S, Arkoub L, Madini K. Effects of solvents extraction on phenolic content and antioxidant activity of the by product of eggplant. Ind Crop Prod. 2013;49:668–74.CrossRefGoogle Scholar
  12. Bramati L, Minoggio M, Gardana C, Simonetti P, Mauri P, Pietta P. Quantitative characterization of flavonoid compounds in rooibos tea (Aspalathus linearis) by LC-UV/DAD. J Agric Food Chem. 2002;50:5513–9.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brul S, Coote P. Preservative agents in foods. Mode of action and microbial resistance mechanisms: a review. Int J Food Microbiol. 1999;50:1–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Burda S, Oleszek W. Antioxidant and antiradical activities of flavonoids. J Agric Food Chem. 2001;49:2774–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Burt S. Essential oils: their antibacterial properties and potential application in foods –a review. Int J Food Microbiol. 2004;94:223–339.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74:2157–84.CrossRefGoogle Scholar
  17. Cao G, Sofic E, Prior RL. Antioxidant and pro-oxidant behavior of flavonoids: structure–activity relationships. Free Radic Biol Med. 1997;22:749–60.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Carvalho RN, Moura LS, Rosa PTV, Meireles MAA. Supercritical fluid extraction from rosemary (Rosmarinus officinalis): kinetic data, extract’s global yield, composition, and antioxidant activity. J Supercrit Fluids. 2005;35:197–204.CrossRefGoogle Scholar
  19. Chen G, Zhang H, Ye J. Determination of rutin and quercetin in plants by capillary electrophoresis with electrochemical detection. Anal Chim Acta. 2000;423:69–76.CrossRefGoogle Scholar
  20. Chiu AE, Chan JL, Kern DG, Kohler S, Rehmus WE, Kimball AB. Double-blinded, placebo-controlled trial of green tea extractsin the clinical and histologic appearance of photoaging skin. Dermatol Surg. 2005;31:855–9.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cotelle N, Bernier JL, Catteau JP, Pommery J, Wallet JC, Gaydou EM. Antioxidant properties of hydroxy-flavones. Free Radic Biol Med. 1996;20:35–43.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cuvelier M-E, Richard H, Berset C. Comparison of the antioxidative activity of some acid-phenols: structure–activity relationship. Biosci Biotechnol Biochem. 1992;56:324–5.CrossRefGoogle Scholar
  24. De Rijke E, Zafra-Gómez A, Ariese F, Brinkman UAT, Gooijer C. Determination of isoflavone glucoside malonates in Trifolium pratense L. (red clover) extracts: quantification and stability studies. J Chromatogr A. 2001;932:55–64.CrossRefPubMedPubMedCentralGoogle Scholar
  25. De Rijke E, Out P, Niessen WMA, Ariese F, Gooijer C, Brinkman UAT. Analytical separation and detection methods for flavonoids. J Chromatogr A. 2006;1112:31–63.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dewi RT, Maryani F. Antioxidant and α-glucosidase inhibitory compounds of Centella asiatica. Procedia Chem. 2015;17:147–52.CrossRefGoogle Scholar
  27. Dillon VM, Board RG, editors. Natural antimicrobial systems and food preservation. Wallingford: CAB International; 1994. p. 167–79.Google Scholar
  28. Dobrovolskaia MA, Kozlov SV. Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership. Curr Cancer Drug Targets. 2005;5:325–544.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dugas AJ Jr, Castañeda-Acosta J, Bonin GC, Price KL, Fischer NH, Winston GW. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: structure–activity relationships. J Nat Prod. 2000;63:327–31.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Dvorakova M, Moreira MM, Dostalek P, Skulilova Z, Guido LF, Barros AA. Characterization of monomeric and oligomeric flavan-3-ols from barley and malt by liquid chromatography-ultraviolet detection-electrospray ionization mass spectrometry. J Chromatogr A. 2008;1189:398–405.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fiamegos YC, Konidari CN, Stalikas CD. Cyanuric acid trace analysis by extractive methylation via phase-transfer catalysis and capillary gas chromatography coupled with flame thermoionic and mass-selective detection. Process parameter studies and kinetics. Anal Chem. 2003;75:4034–42.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fiamegos YC, Nanos CG, Vervoort J, Stalikas CD. Analytical procedure for the in-vial derivatization–extraction of phenolic acids and flavonoids in methanolic and aqueous plant extracts followed by gas chromatography with mass-selective detection. J Chromatogr A. 2004;1041:11–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Franke AA, Custer LJ. High-performance liquid chromatography assay of isoflavonoids and coumestrol from human urine. J Chromatogr B. 1994;662:47–60.CrossRefGoogle Scholar
  34. Frankel EN. Recent advances in lipid oxidation. J Agric Food Chem. 1991;54:495–511.CrossRefGoogle Scholar
  35. Frankel EN, Huang S-W, Prior E, Aeschbach R. Evaluation of antioxidant activity of rosemary extracts, carnosol and carnosic acid in bulk vegetable oils and fish oil and their emulsions. J Sci Food Agric. 1996;72:201–8.CrossRefGoogle Scholar
  36. Fresco P, Borges F, Diniz C, Marques MPM. New insights on the anticancer properties of dietary polyphenols. Med Res Rev. 2006;26:747–66.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Glazer AN. Phycoerythrin fluorescence-based assay for reactive oxygen species. Methods Enzymol. 1990;186:161–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Grisham MB. Reactive metabolites of oxygen and nitrogen in biology and medicine. Austin, TX: R. G. Landes Company; 1992.Google Scholar
  39. Halliwell B, Gutteridge JM. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med. 1995;18:125–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hanahan D, Weinberg RA. The hallmarks of cancer: the next generation. Cell. 2000;100:57–70.CrossRefGoogle Scholar
  41. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure–activity relationships. J Nutr Biochem. 2002;13:572–84.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hicks A. Current status and future development of global tea production and tea products. AU JT. 2009;12:251–64.Google Scholar
  43. Hillis W, Inoue T. The polyphenols of Nothofagus species-II: the heartwood of Nothofagus fusca. Phytochemistry. 1967;6:59–67.CrossRefGoogle Scholar
  44. Hofnagel O, Luechtenborg B, Weissen-Plenz G, Robenek H. Statins and foam cell formation: impact on LDL oxidation and uptake of oxidized lipoproteins via scavenger receptors. Biochim Biophys Acta. 2007;1771:1117–24.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hoult JRS, Moroney MA, Payá M. Action of flavonoids and coumarins on lipoxygenase and cyclooxygenase. Methods Enzymol. 1994;234:443–54.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Indrianingsih AW, Tachibana S, Itoh K. In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants. Procedia Environ Sci. 2015;25:639–48.CrossRefGoogle Scholar
  47. Iwatsuki M, Niki E, Stone D, Darley-Usmar VM. Alpha-tocopherol mediated peroxidation in the copper (II) and metmyoglobin induced oxidation of human low density lipoprotein: the influence of lipid hydroperoxides. FEBS Lett. 1995;360:271–6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Janjua R, Munoz C, Gorell E, Rehmus W, Egbert B, Kern D, Chang ALS. A two-year, double-blind, randomized placebo-controlled trial of oral green tea polyphenols on the long-term clinical and histologic appearance of photoaging skin. Dermatol Surg. 2009;35:1057–65.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jeon HY, Kim JK, Kim WG, Lee SJ. Effects of oral epigallocatechin gallate supplementation on the minimal erythema dose and UV-induced skin damage. Skin Pharmacol Physiol. 2009;22:137–41.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kang HJ, Jo C, Kwon JH, Kim JH, Chung HJ, Byun MW. Effect of a pectin-based edible coating containing green tea powder on the quality of irradiated pork patty. Food Control. 2007;18:430–5.CrossRefGoogle Scholar
  51. Khan N, Mukhtar H. Tea and health: studies in humans. Curr Pharm Design. 2013;19:6141–7.CrossRefGoogle Scholar
  52. Kim H-S, Quon MJ, Kim J. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol. 2014;2:187–95.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Laughton MJ, Evans PJ, Moroney MA, Hoult JRS, Halliwell B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: relationship to antioxidant activity and to iron ion-reducing ability. Biochem Pharmacol. 1991;42:1673–81.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Lawless H, Heymann H. Sensory evaluation of food: principles and practices. Gaithersburg: Aspen Publishers; 1999.CrossRefGoogle Scholar
  55. Lee MJ, Lambert JD, Prabhu S, Meng XF, Lu H, Maliakal P, Ho CT, Yang CS. Delivery of tea polyphenols to the oral cavity by green tea levels and black tea extract. Cancer Epidemiol Biomark Prev. 2004;13:132–7.CrossRefGoogle Scholar
  56. Lien EJ, Ren S, Bui HH, Wang R. Quantitative structure–activity relationship analysis of phenolic antioxidants. Free Radic Biol Med. 1999;26:285–94.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mabry TJ, Markham KR, Thomas MB, editors. The systematic identification of flavonoids. New York, NY: Springer-Verlag; 1970.Google Scholar
  58. Mamphiswana ND, Mashela PW, Mdee LK. Accumulative capabilities of essential nutrient elements in organs of Monsonia burkeana. A J Biotechnol. 2011;10:16849–53.Google Scholar
  59. Mander M, Steytler N, Lewis F, Rivers-Moore N. The economics of medicinal plant cultivation. Investigational report no. 206. Pietermaritzburg: Institute of Natural Resources; 1999.Google Scholar
  60. Martínez MADP, Pelotto JP, Basualdo N. Distribution of flavonoid aglycones in Ilex species (Aquifoliaceae). Biochem Syst Ecol. 1997;25:619–22.CrossRefGoogle Scholar
  61. Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci. 2010;58:58–90.CrossRefGoogle Scholar
  62. Matthiesen L, Malterud KE, Sund RB. Hydrogen bond formation as basis for radical scavenging activity: a structure–activity study of C-methylated dihydrochalcones from Myrica gale and structurally related acetophenones. Free Radic Biol Med. 1997;22:307–11.CrossRefGoogle Scholar
  63. McCarthy TL, Kerry JP, Kerry JF, Lynch PB, Buckley DJ. Evaluation of the antioxidant potential of natural food/plant extracts as compared with synthetic antioxidants and vitamin E in raw and cooked pork patties. Meat Sci. 2001;58:45–52.CrossRefGoogle Scholar
  64. Metrouh-Amir H, Duarte CMM, Maiza F. Solvent effect on total phenol contents, antioxidant, and antibacterial activities of Matricaria pubescens. Ind Crop Prod. 2015;67:249–56.CrossRefGoogle Scholar
  65. Middleton E Jr, Kandaswami C. Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol. 1992;43:1167–79.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mitsumoto M, O’Grady MN, Kerry JP, Buckley DJ. Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties. Meat Sci. 2005;69:773–9.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Miyazawa T. Absorption, metabolism and antioxidative effects of tea catechin in humans. Bio Factors. 2000;13:55–9.Google Scholar
  68. Moawad RK, Abozeid WM, Nadir AS. Effects of nitrite level and tea catechins on residual nitrite and quality indices of raw-cured sausages. J Applied Sci Res. 2012;8:815–22.Google Scholar
  69. Mokrani A, Madani K. Effects of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep Purfi Technol. 2016;162:68–76.CrossRefGoogle Scholar
  70. Montero P, Martínez-Álvarez O, Zamorano JP, Alique R, Gómez-Guillén MC. Melanosis inhibition and 4-hexylresorcinol residual levels in Deepwater pink shrimp (Parapenaeus longirostris) following various treatments. Eur Food Res Technol. 2006;223:1621.CrossRefGoogle Scholar
  71. Moore J, Hao Z, Zhou K, Luther M, Costa J, Yu LL. Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat. J Agric Food Chem. 2005;53:6649–57.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Mora A, Payá M, Ríos JL, Alcaraz MJ. Structure–activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem Pharmacol. 1990;40:793–7.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Morton M, Arisaka O, Miyake A, Evans B. Analysis of phyto-oestrogens by gas chromatography-mass spectrometry. Environ Toxicol Pharmacol. 1999;7:221–5.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Suadi J Biol Sci. 2018;25:361–6.CrossRefGoogle Scholar
  75. Mudau F, Mariga IK. Bush tea as a herbal beverage and medicinal plant. In: Preedy VR, editor. Tea in health and disease prevention. 1st ed. Oxford, UK: Elsevier; 2012. p. 182–92.Google Scholar
  76. Nakatani N. Biologically functional constituents of species and herbs. J Jpn Soc Nut Food Sci. 2003;56:389–95.CrossRefGoogle Scholar
  77. Namal Senanayake SPJ. Green tea extract: chemistry, antioxidant properties and food application–a review. J Funct Foods. 2013;5:1529–41.CrossRefGoogle Scholar
  78. Narasimhachari N, von Rudloff E. Gas–liquid chromatography of some flavonoid compounds and hydroxy diphenyls. Canadian J Chem. 1962;40:1123–9.CrossRefGoogle Scholar
  79. Nirmal NP, Benjakul S. Effect of green tea extract in combination with ascorbic acid on the retardation of melanosis and quality changes of Pacific white shrimp during iced storage. Food Bioprocess Tech. 2012;5:2941–51.CrossRefGoogle Scholar
  80. O’Sullivan CM, Lynch A, Lynch PB, Buckley DJ, Kerry JP. Assessment of the antioxidant potential of food ingredients in fresh, previously frozen and cooked chicken patties. Int J Poultry Sci. 2004;3:337–44.CrossRefGoogle Scholar
  81. Oh J, Jo H, Cho AR, Kim S-J, Han J. Antioxidant and antimicrobial activities of leafy herbal teas. Food Control. 2013;31:403–9.CrossRefGoogle Scholar
  82. Pereira ADS, Padilha MC, Neto FRDA. Two decades of high temperature gas chromatography (1983–2003): what’s next? Microchem J. 2004;77:141–9.CrossRefGoogle Scholar
  83. Perumalla AS, Hettiarachchy NS. Green tea and grape seed extracts – potential applications in food safety and quality. Food Res Int. 2011;44:827–39.CrossRefGoogle Scholar
  84. Peterson J, Dwyer J, Bhagwat S, Haytowitz D, Holden J, Eldridge AL, Beecher G, Aladesanmi J. Major flavonoids in dry tea. J Food Comp Anal. 2005;18:487–501.CrossRefGoogle Scholar
  85. Pieri C, Marra M, Moroni F, Recchioni R, Marcheselli F. Melatonin: a peroxyl radical scavenger more effective than vitamin E. Life Sci. 1994;55:271–6.CrossRefGoogle Scholar
  86. Reddy V, Urooj A, Kumar A. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food Chem Anal Nutri Clinical Methods. 2005;90:317–21.Google Scholar
  87. Rice-Evans CA, Miller NJ, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci Rev. 1997a;2:152–9.CrossRefGoogle Scholar
  88. Rice-Evans CA, Miller NJ, Paganga G. Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1997b;20:933–56.CrossRefGoogle Scholar
  89. Richheimer SL, Bernart MW, King GA, Kent MC, Bailey DT. Antioxidant activity of lipid-soluble phenolic diterpenes from rosemary. J Am Oil Chem Soc. 1996;73:507–14.CrossRefGoogle Scholar
  90. Rodríguez-Delgado MA, Malovaná S, Pérez JP, Borges T, García Montelongo FJ. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J Chromatogr A. 2001;912:249–57.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Sahu SC, Gray GC. Interactions of flavonoids, trace metals, and oxygen: nuclear DNA damage and lipid peroxidation induced by myricetin. Cancer Lett. 1993;70:73–9.CrossRefPubMedPubMedCentralGoogle Scholar
  92. Sato K, Akaike T, Kohno M, Ando M, Maeda H. Hydroxyl radical production by H2O2 plus cu,Zn-superoxide dismutase reflects the activity of free copper released from the oxidatively damaged enzyme. J Biol Chem. 1992;267:25371–7.PubMedPubMedCentralGoogle Scholar
  93. Scharbert S, Hofmann T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J Agric Food Chem. 2005;53:5337–84.CrossRefGoogle Scholar
  94. Shiu-Ming K. Dietary flavonoids and cancer prevention: evidence and potential mechanism. Crit Rev Oncog. 1997;8:47–69.CrossRefGoogle Scholar
  95. Siess MH, Leclerc J, Canivenc-Lavier MC, Rat P, Suschetet M. Heterogenous effects of natural flavonoids on monooxygenase activities in human and rat liver microsomes. Toxicol Appl Pharmacol. 1995;130:73–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. Sivarooban Y, Hettiarachchy NS, Johnson MG. Transmission electron microscopy study of Listeria monocytogenes treated with nisin in combination with either grape seed or green tea extract. J Food Prot. 2008;71:2105–9.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Spies R. Application of rheology in the bread industry. In: Faridi H, Faubion JM, editors. Dough rheology and baked product texture. New York: Van Nostrand Reinhold; 1990. p. 343–61.CrossRefGoogle Scholar
  98. Sunilson JAJ, Suraj R, Rejitha G, Anandarajagopal K, Kumari AVAG, Promwichit P. In vitro antimicrobial evaluation of Zingiber officinale, Curcuma longa and Alpinia galangal extracts as natural food preservatives. Am J Food Technol. 2009;4:192–200.CrossRefGoogle Scholar
  99. Tanigawa T, Kanazawa S, Ichibori R, Fujiwara T, Magome T, Shingaki K, Miyata S, Hata Y, Tomita K, Matsuda K, Kubo T, Tohyama M, Yano K, Hosokawa K. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement Altern Med. 2014;14:133–9.Google Scholar
  100. Tang SZ, Kerry JP, Sheehan D, Buckley DJ, Morrisey PA. Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Res Int. 2001;34:651–7.CrossRefGoogle Scholar
  101. Tarling CA, Woods K, Zhang S, Brastianos HC, Brayer GD, Andersen RJ, et al. The search for novel human pancreatic α-amylase inhibitors: high-throughput screening of terrestrial and marine natural product extracts. Chembiochem. 2008;9:433–8.CrossRefPubMedPubMedCentralGoogle Scholar
  102. Thorsen MA, Hildebrandt KS. Quantitative determination of phenolic diterpenes in rosemary extracts: aspects of accurate identification. J Chromatogr. 2003;9:119–25.CrossRefGoogle Scholar
  103. Turkmen N, Sari F, Velioglu S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chem. 2006;99:835–41.CrossRefGoogle Scholar
  104. Udompataikul M, Sripiroj P, Palungwachira P. An oral nutraceutical containing antioxidants, minerals and glycosaminoglycans improves skin roughness and fine wrinkles. Int J Cosmetic Sci. 2009;31:427–35.CrossRefGoogle Scholar
  105. Wanasundara UN, Shahidi F. Antioxidant and pro-oxidant activity of green tea extracts in marine oils. Food Chem. 1998;63:335–42.CrossRefGoogle Scholar
  106. Wang H, Helliwell K. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Res Int. 2001;34:223–7.CrossRefGoogle Scholar
  107. Wang YF, Huang SR, Shao SH. Studies on bioactivities of tea (Camellia sinensis L.) fruit peel extracts: antioxidant activity and inhibitory potential against α-glucosidase and α-amylase in vitro. Ind Crop Prod. 2012;37:520–6.Google Scholar
  108. Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease. Crit Rev Food Sci Nutr. 2004;44:275–95.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Yoshida Y, Tsuchiya J, Niki E. Interaction of alpha-tocopherol with copper and its effect on lipid peroxidation. Biochem Biophys Acta. 1994;1200:85–92.CrossRefPubMedPubMedCentralGoogle Scholar
  110. Yu L, Haley S, Perret J, Harris M, Wilson J, Qian M. Free radical scavenging properties of wheat extracts. J Agric Food Chem. 2002;50:1619–24.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Yu Z-L, Gao H-X, Zhang Z, He Z, He Q, Jia L-R, Zeng W-C. Inhibitory effects of Ligustrum robustum (Rxob.) Blume extracts on α-amylase and α-glucosidase. J Funct Foods. 2015;19:204–13.CrossRefGoogle Scholar
  112. Zhao J, Deng JW, Chen YW, Li SP. Advanced phytochemical analysis of herbal tea in China. J Chromatogr A. 2013;1313:2–23.CrossRefPubMedPubMedCentralGoogle Scholar
  113. Zhong DF, Yang DF, Chen XY, Li K, Xu JH. Determination of scutellarin in rat plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;796:439–44.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zhou K, Yu L. Effects of extraction solvent on wheat bran antioxidant activity estimation. LWT Food Sci Techn. 2004;37:717–21.CrossRefGoogle Scholar
  115. Zhou K, Su L, Yu L. Phytochemicals and antioxidant properties in wheat bran. J Agric Food Chem. 2004;52:6108–14.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zieliński H, Kozlowska H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J Agric Food Chem. 2000;48:2008–16.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zou Y, Chen H, Deng Y. Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta. 2002;57:307–16.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Patricia L. Mathivha
    • 1
  • Titus A. M. Msagati
    • 2
  • Vuyisile S. Thibane
    • 1
  • Fhatuwani N. Mudau
    • 1
    Email author
  1. 1.Department of Agriculture and Animal Health, Florida Science Campus Florida Science CampusUniversity of South AfricaRoodepoortSouth Africa
  2. 2.Nanotechnology and Water Sustainability Research Unit, Florida Science CampusUniversity of South AfricaRoodepoortSouth Africa

Personalised recommendations