Advertisement

Antidiabetic Activity of Indian Medicinal Plants

  • Vibha RaniEmail author
  • Anubhuti Gupta
  • Megha
  • Sakshi Awasthi
  • Tanya Suneja
  • Mohini Yadav
  • Shanya Verma
Chapter

Abstract

Humans have been using plants as a rich source of drugs since ancient times for the management of chronic diseases such as diabetes. Plants and their products are being used as a traditional medicine for treating diabetes by up to 90% of the population in developing countries, according to the World Health Organization (WHO). Low blood insulin level or insensitivity of target organs to insulin linked to abnormality of carbohydrate metabolism causes diabetes mellitus (DM). There is growing interest in herbal remedies due to the greater which are the major drugs in the management of diabetes. Here, in this chapter we provide an in-depth study on several plant species and their bioactive compounds that have been investigated to exhibit anti-diabetic properties.

Keywords

Plants Diabetes ROS Oxidative stress Secondary metabolites 

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62.PubMedCentralGoogle Scholar
  2. Arunkumar S, Muthuselvam M. Analysis of phytochemical constituents and antimicrobial activities of Aloe vera L. against clinical pathogens. World J Agri Sci. 2009;5(5):572–6.Google Scholar
  3. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.PubMedGoogle Scholar
  4. Baby J, Jini D. Antidiabetic effects of Momordicacharantia (bitter melon) and its medicinal potency. Asian Pac J Trop Dis. 2013;3(2):93–102.Google Scholar
  5. Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm. 2003;60(4):356–9.PubMedGoogle Scholar
  6. Benítez V, Mollá E, Martín-Cabrejas MA, Aguilera Y, López-Andréu FJ, Cools K, et al. Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum Nutr. 2011;66(1):48–57.PubMedGoogle Scholar
  7. Blackman SC, Rey JAG. Hematologic emergencies: acute anemia. Clin Pediatr Emerg Med. 2005;6(3):124–37.Google Scholar
  8. Bösenberg LH, van Zyl DG. The mechanism of action of oral antidiabetic drugs: a review of recent literature. J Endocrinol Metab Diabetes S Afr. 2008;13:80–8.Google Scholar
  9. Capasso A. Antioxidant action and therapeutic efficacy of Allium sativum L. Molecules. 2013;18(1):690–700.PubMedPubMedCentralGoogle Scholar
  10. Chaturvedi A, Kumar MM, Bhawani G, Chaturvedi H, Kumar M, Goel RK. Effect of ethanolic extract of Eugenia jambolana seeds on gastric ulceration and secretion in rats. Indian J Physiol Pharmacol. 2007;51(2):131.PubMedGoogle Scholar
  11. Chauhan A, Sharma PK, Srivastava P, Kumar N, Dudhe R. Plants having potential antidiabetic activity: a review. Der Pharm Lett. 2010;2:369–87.Google Scholar
  12. Elujoba AA, Odeleye OM, Ogunyemi CM. Traditional medicine development for medical and dental primary health care delivery system in Africa. Afr J Tradit Complement Altern Med. 2006;2(1):46–61.Google Scholar
  13. Faria AF, Marcella MC, Mercadante AZ. Identification of bioactive compounds from jambolão (Syzygiumcumini) and antioxidant capacity evaluation in different pH conditions. Food Chem. 2011;126(4):1571–8.PubMedGoogle Scholar
  14. Gautam S, Meshram A, Bhagyawant SS, Srivastava N. Ficus religiosa-potential role in pharmaceuticals. Int J Pharm Sci Res. 2014;5(5):1616–23.Google Scholar
  15. Ghannam N, Kingston M, Al-Meshaal IA, Tariq M, Parman NS, Woodhouse N. The antidiabetic activity of aloes: preliminary clinical and experimental observations. Horm Res. 1986;24(4):288–94.PubMedGoogle Scholar
  16. Guo X, Mei N. Aloe vera: a review of toxicity and adverse clinical effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2016;34(2):77–96.PubMedPubMedCentralGoogle Scholar
  17. Hussain HEMA. Hypoglycemic, hypolipidemic and antioxidant properties of combination of curcumin from Curcuma longa Linn, and partially purified product from Abromaaugusta Linn. instreptozotocin induced diabetes. Indian J Clin Biochem. 2002;17(2):33–43.Google Scholar
  18. Ignacimuthu S, Ayyanar M. Ethnobotanical investigations among tribes in Madurai district of Tamil Nadu (India). J Ethnobiol Ethnomed. 2006;2:25.PubMedPubMedCentralGoogle Scholar
  19. Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine. 2000;7(1):7–13.PubMedGoogle Scholar
  20. Khadem S, Marles RJ. Monocyclic phenolic acids; hydroxy-and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules. 2010;15(11):7985–8005.PubMedPubMedCentralGoogle Scholar
  21. Khan BA, Abraham A, Leelamma S. Hypoglycemic action of Murrayakoenigii (curry leaf) and Brassica juncea (mustard): mechanism of action. Indian J Biochem Biophys. 1995;32(2):106–8.PubMedGoogle Scholar
  22. Kumar SKP, Debjit D, Pankaj T. Allium cepa: a traditional medicinal herb and its health benefits. J Chem Pharm Res. 2010a;2(1):283–91.Google Scholar
  23. Kumar DS, Sharathnath KV, Yogeswaran P, Harani A, Sudhakar K, Sudha P, Banji D. A medicinal potency of Momordica charantia. Int J Pharm Sci Rev Res. 2010b;1:95–100.Google Scholar
  24. López-Pantoja Y, Angulo-Escalante M, Martínez-Rodríguez C, Soto-Beltrán J, Chaidez-Quiroz C. Antimicrobial effect of crude extracts of neem (Azadirachtaindica A. Juss) and venadillo (Swieteniahumilis Zucc) against E. coli, S. aureus and the bacteriophage P22. Bioquimia. 2007;32(4):117–25.Google Scholar
  25. Manorenjitha MS, Norita AK, Norhisham S, Asmawi MZ. GC-MS analysis of bioactive components of Ficusreligiosa (Linn.) stem. Int J Pharm Bio Sci. 2013;4(2):99–103.Google Scholar
  26. Martins N, Petropoulos S, Ferreira IC. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: a review. Food Chem. 2016;211:41–50.PubMedGoogle Scholar
  27. Mishra SB, Rao CV, Ojha SK, Vijayakumar M, Verma A, Alok S. An analytical review of plants for antidiabetic activity with their phytoconstituent and mechanism of action. Int J Pharm Sci Res. 2010;1(1):1647–52.Google Scholar
  28. Olaokun OO, McGaw LJ, Eloff JN, Naidoo V. Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. BMC Complement Altern Med. 2013;13(1):94.PubMedPubMedCentralGoogle Scholar
  29. Oubre AY, Carlson TJ, King SR, Reaven GM. From plant to patient: an ethnomedical approach to the identification of new drugs for the treatment of NIDDM. Diabetologia. 1997;40(5):614–7.PubMedGoogle Scholar
  30. Oyewusi JA, Oridupa OA, Saba AB, Oni O, Oyewusi IK, Mshelbwala MF. Assessment of cardiotoxic potential of methanol extract of red cultivar Allium cepa. Sokoto J Vet Sci. 2017;15(3):69–77.Google Scholar
  31. Pandey M, Chikara SK, Vyas MK, Sharma R, Thakur GS, Bisen PS. Tinosporacordifolia: a climbing shrub in health care management. Int J Pharm Bio Sci. 2012;3(4):612–28.Google Scholar
  32. Pandit R, Phadke A, Jagtap A. Antidiabetic effect of Ficusreligiosa extract in streptozotocin-induced diabetic rats. J Ethnopharmacol. 2010;128(2):462–6.PubMedGoogle Scholar
  33. Perumal V, Khoo WC, Abdul-Hamid A, et al. Evaluation of antidiabetic properties of Momordica charantia in streptozotocin induced diabetic rats using metabolomics approach. Int Food Res J. 2015;22(3):1298–306.Google Scholar
  34. Pradeep AR, Agarwal E, Bajaj P, Naik SB, Shanbhag N, Uma SR. Clinical and microbiologic effects of commercially available gel and powder containing Acacia arabica on gingivitis. Aust Dent J. 2012;57(3):312–8.PubMedGoogle Scholar
  35. Prakash O, Kumar R, Srivastava R, Tripathi P, Ajeet MS. Plants explored with anti-diabetic properties: a review. Am J Pharmacol Sci. 2015;3(3):55–66.Google Scholar
  36. Ravi K, Sivagnanam K, Subramanian S. Anti-diabetic activity of Eugenia jambolana seed kernels on streptozotocin-induced diabetic rats. J Med Food. 2004;7(2):187–91.PubMedGoogle Scholar
  37. Rawat M, Namita P. Medicinal plants with antidiabetic potential: a review. Am Eurasian J Agric Environ Sci. 2013;13(1):81–94.Google Scholar
  38. Ribnicky DM, Poulev A, Watford M, Cefalu WT, Raskin I. Antihyperglycemic activity of Tarralin, an ethanolic extract of Artemisia dracunculus L. Phytomedicine. 2006;13(8):550–7.PubMedGoogle Scholar
  39. Ried K, Fakler P. Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Integr Blood Press Control. 2014;7:71–82.PubMedPubMedCentralGoogle Scholar
  40. Roqaiya M, Begum W, Jahufer R. Acacia arabica (Babool): a review on ethnobotanical and Unani traditional uses as well as phytochemical and pharmacological properties. Int J Pharm Phytopharmacol Res. 2017;4(6):315–21.Google Scholar
  41. Saminathan K, Kavimani S. Current trends of plants having antidiabetic activity: a review. J Bioanalysis Biomed. 2015;7:55.Google Scholar
  42. Samy RR, Pushparaj PN, Gopalakrishnakone P. A compilation of bioactive compounds from Ayurveda. Bioinformation. 2008;3(3):100–10.PubMedPubMedCentralGoogle Scholar
  43. Sen P, Sahu K, Prasad P, Chandrakar D, Sahu RK, Roy A. Approach to phytochemistry and mechanism of action of plants having antidiabetic activity. UK J Pharma Biosci. 2016;4:82–120.Google Scholar
  44. Sharma S, Gupta A, Batra SSA. Tinospora cordifolia (Willd.) Hook. F. & Thomson-a plant with immense economic potential. J Chem Pharm Res. 2010;2(5):327–33.Google Scholar
  45. Shori AB. Screening of antidiabetic and antioxidant activities of medicinal plants. J Integr Med. 2015;13(5):297–305.PubMedGoogle Scholar
  46. Singh E, Sharma S, Dwivedi J, Sharma S. Diversified potentials of Ocimum sanctum Linn (Tulsi): an exhaustive survey. J Nat Prod Plant Resour. 2012;2(1):39–48.Google Scholar
  47. Solanki JD, Makwana AH, Mehta HB, Kamdar P, Desai C, Gandhi P. Comparison of regional variation of body composition in Type 2 Diabetics and matched controls of an urban area of Gujarat, India using bio-electrical impedance method. Int J Basic Appl Physiol. 2013;2(1):94–8.Google Scholar
  48. Tattelman E. Health effects of garlic. Am Fam Physician. 2005;72(1):103–6.PubMedGoogle Scholar
  49. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vibha Rani
    • 1
    Email author
  • Anubhuti Gupta
    • 1
  • Megha
    • 1
  • Sakshi Awasthi
    • 1
  • Tanya Suneja
    • 1
  • Mohini Yadav
    • 1
  • Shanya Verma
    • 1
  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations