Advertisement

Tear Off the Disease

  • Anjali Prashar
Chapter

Abstract

Shedding tears for a good cause would indeed be worthwhile! Truly so, tears offer a non-invasive source of sample for disease prognosis, detection, assessment, classification, onset, progression, management and treatment. Several diseases either tend to develop on account of altered functionality and stability of the tear film, or the disorders themselves cause alterations in the tear quality and (or) quantity. This chapter discusses tear biomarkers for ocular as well as non-ocular diseases of the likes of diabetes, cancer, Parkinson’s etc.

Author’s tears: References

  1. Abe T, Nakajima A, Matsunaga M, Sakuragi S, Komatsu M (1999) Decreased tear lactoferrin concentration in patients with chronic hepatitis C. Br J Ophthalmol 83:684–687PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abelson MB, Baird RS, Allansmith MR (1980) Tear histamine levels in vernal conjunctivitis and other ocular inflammations. Ophthalmology 87:812–814PubMedCrossRefGoogle Scholar
  3. Ablashi DV, Sturzenegger S, Hunter EA, Palestine AG et al (1987) Presence of HTLV-III in tears and cells from the eyes of AIDS patients. J Exp Pathol 3:693–703PubMedGoogle Scholar
  4. Abreu CM, Soares-Dos-Reis R, Melo PN, Relvas JB et al (2018) Emerging biosensing technologies for neuroinflammatory and neurodegenerative disease diagnostics. Front Mol Neurosci 11:164PubMedPubMedCentralCrossRefGoogle Scholar
  5. Acera A, Rocha G, Vecino E, Lema I, Duran JA (2008) Inflammatory markers in the tears of patients with ocular surface disease. Ophthalmic Res 40:315–321PubMedCrossRefPubMedCentralGoogle Scholar
  6. Acera A, Vecino E, Rodriguez-Agirretxe I, Aloria K et al (2011a) Changes in tear protein profile in keratoconus disease. Eye (Lond) 25:1225–1233CrossRefGoogle Scholar
  7. Acera A, Suarez T, Rodriguez-Agirretxe I, Vecino E, Duran JA (2011b) Changes in tear protein profile in patients with conjunctivochalasis. Cornea 30:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  8. Acera A, Vecino E, Duran JA (2013) Tear MMP-9 levels as a marker of ocular surface inflammation in conjunctivochalasis. Invest Ophthalmol Vis Sci 54:8285–8291PubMedCrossRefGoogle Scholar
  9. Agrawal R, Balne PK, Veerappan A, Au VB et al (2016) A distinct cytokines profile in tear film of dry eye disease (DED) patients with HIV infection. Cytokine 88:77–84PubMedCrossRefPubMedCentralGoogle Scholar
  10. Aho VV, Nevalainen TJ, Saari KM (2002b) Group IIA phospholipase A2 content of tears in patients with keratoconjunctivitis sicca. Graefes Arch Clin Exp Ophthalmol 240:521–523PubMedCrossRefGoogle Scholar
  11. Alizadeh H, Apte S, El-Agha MS, Li L et al (2001) Tear IgA and serum IgG antibodies against Acanthamoeba in patients with Acanthamoeba keratitis. Cornea 20:622–627PubMedCrossRefGoogle Scholar
  12. Aluru SV, Agarwal S, Srinivasan B, Iyer GK et al (2012) Lacrimal proline rich 4 (LPRR4) protein in the tear fluid is a potential biomarker of dry eye syndrome. PLoS One 7:e51979PubMedPubMedCentralCrossRefGoogle Scholar
  13. American Diabetes A (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69CrossRefGoogle Scholar
  14. Argueso P, Balaram M, Spurr-Michaud S, Keutmann HT et al (2002) Decreased levels of the goblet cell mucin MUC5AC in tears of patients with Sjogren syndrome. Invest Ophthalmol Vis Sci 43:1004–1011PubMedGoogle Scholar
  15. Baca JT, Taormina CR, Feingold E, Finegold DN et al (2007b) Mass spectral determination of fasting tear glucose concentrations in nondiabetic volunteers. Clin Chem 53:1370–1372CrossRefGoogle Scholar
  16. Bacon AS, Ahluwalia P, Irani AM, Schwartz LB et al (2000) Tear and conjunctival changes during the allergen-induced early- and late-phase responses. J Allergy Clin Immunol 106:948–954PubMedCrossRefGoogle Scholar
  17. Badugu R, Jeng BH, Reece EA, Lakowicz JR (2018) Contact lens to measure individual ion concentrations in tears and applications to dry eye disease. Anal Biochem 542:84–94PubMedCrossRefGoogle Scholar
  18. Bagheri H, Berlan M, Senard JM, Rascol O, Montastruc JL (1994) Lacrimation in Parkinson’s disease. Clin Neuropharmacol 17:89–91PubMedCrossRefGoogle Scholar
  19. Balasubramanian SA, Pye DC, Willcox MD (2012a) Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus. Exp Eye Res 96:132–137PubMedCrossRefGoogle Scholar
  20. Balasubramanian SA, Mohan S, Pye DC, Willcox MD (2012b) Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol 90:e303–e309PubMedCrossRefGoogle Scholar
  21. Balasubramanian SA, Wasinger VC, Pye DC, Willcox MD (2013b) Preliminary identification of differentially expressed tear proteins in keratoconus. Mol Vis 19:2124–2134PubMedPubMedCentralGoogle Scholar
  22. Balci O (2014) Clinical characteristics of patients with conjunctivochalasis. Clin Ophthalmol 8:1655–1660PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ballow M, Donshik PC, Mendelson L (1985) Complement proteins and C3 anaphylatoxin in the tears of patients with conjunctivitis. J Allergy Clin Immunol 76:473–476PubMedCrossRefGoogle Scholar
  24. Bausch DG, Towner JS, Dowell SF, Kaducu F et al (2007) Assessment of the risk of Ebola virus transmission from bodily fluids and fomites. J Infect Dis 196(Suppl 2):S142–S147PubMedCrossRefGoogle Scholar
  25. Bernardes TF, Bonfioli AA (2010) Blepharitis. Semin Ophthalmol 25:79–83PubMedCrossRefGoogle Scholar
  26. Boehm N, Riechardt AI, Wiegand M, Pfeiffer N, Grus FH (2011) Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Invest Ophthalmol Vis Sci 52:7725–7730PubMedCrossRefGoogle Scholar
  27. Boehm N, Funke S, Wiegand M, Wehrwein N et al (2013) Alterations in the tear proteome of dry eye patients – a matter of the clinical phenotype. Invest Ophthalmol Vis Sci 54:2385–2392PubMedCrossRefGoogle Scholar
  28. Bohm D, Keller K, Pieter J, Boehm N et al (2012) Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol Rep 28:429–438PubMedPubMedCentralCrossRefGoogle Scholar
  29. Borderie VM, Gineys R, Goldschmidt P, Batellier L et al (2012) Association of anti-herpes simplex virus IgG in tears and serum with clinical presentation in patients with presumed herpetic simplex keratitis. Cornea 31:1251–1256PubMedCrossRefGoogle Scholar
  30. Bore M (2016) Managing ocular allergy in resource-poor settings. Community Eye Health 29:47–49PubMedPubMedCentralGoogle Scholar
  31. Börger M, Funke S, Bähr M, Grus F, Lingor P (2015) Biomarker sources for Parkinson’s disease: time to shed tears? Basal Ganglia 5:63–69CrossRefGoogle Scholar
  32. Borst SE (2004) The role of TNF-alpha in insulin resistance. Endocrine 23:177–182PubMedCrossRefGoogle Scholar
  33. Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol 13:790–801PubMedCrossRefGoogle Scholar
  34. Butrus SI, Ochsner KI, Abelson MB, Schwartz LB (1990) The level of tryptase in human tears. An indicator of activation of conjunctival mast cells. Ophthalmology 97:1678–1683PubMedCrossRefGoogle Scholar
  35. Byun YS, Lee HJ, Shin S, Chung SH (2017) Elevation of autophagy markers in Sjogren syndrome dry eye. Sci Rep 7:17280PubMedPubMedCentralCrossRefGoogle Scholar
  36. Caffery B, Joyce E, Heynen ML, Jones L et al (2008a) MUC16 expression in Sjogren’s syndrome, KCS, and control subjects. Mol Vis 14:2547–2555PubMedPubMedCentralGoogle Scholar
  37. Caffery B, Joyce E, Boone A, Slomovic A et al (2008b) Tear lipocalin and lysozyme in Sjogren and non-Sjogren dry eye. Optom Vis Sci 85:661–667PubMedCrossRefGoogle Scholar
  38. Caffery B, Heynen ML, Joyce E, Jones L et al (2010) MUC1 expression in Sjogren’s syndrome, KCS, and control subjects. Mol Vis 16:1720–1727PubMedPubMedCentralGoogle Scholar
  39. Calais G, Forzy G, Crinquette C, Mackowiak A et al (2010) Tear analysis in clinically isolated syndrome as new multiple sclerosis criterion. Mult Scler 16:87–92PubMedCrossRefGoogle Scholar
  40. Calvet GA, Kara EO, Giozza SP, Botto-Menezes CHA et al (2018) Study on the persistence of Zika virus (ZIKV) in body fluids of patients with ZIKV infection in Brazil. BMC Infect Dis 18:49PubMedPubMedCentralCrossRefGoogle Scholar
  41. Cancarini A, Fostinelli J, Napoli L, Gilberti ME et al (2017) Trace elements and diabetes: assessment of levels in tears and serum. Exp Eye Res 154:47–52PubMedCrossRefPubMedCentralGoogle Scholar
  42. Cao Z, Saravanan C, Goldstein MH, Wu HK et al (2008) Effect of human tears on acanthamoeba-induced cytopathic effect. Arch Ophthalmol 126:348–352PubMedCrossRefGoogle Scholar
  43. Carnt N, Montanez VM, Galatowicz G, Veli N, Calder V (2017) Tear cytokine levels in contact lens wearers with acanthamoeba keratitis. Cornea 36:791–798PubMedCrossRefGoogle Scholar
  44. Chao C, Tong L (2018) Tear lactoferrin and features of ocular allergy in different severities of meibomian gland dysfunction. Optom Vis Sci 95:930–936PubMedCrossRefGoogle Scholar
  45. Chen D, Wei Y, Li X, Epstein S et al (2009) sPLA2-IIa is an inflammatory mediator when the ocular surface is compromised. Exp Eye Res 88:880–888PubMedCrossRefGoogle Scholar
  46. Chhadva P, Lee T, Sarantopoulos CD, Hackam AS et al (2015) Human tear serotonin levels correlate with symptoms and signs of dry eye. Ophthalmology 122:1675–1680PubMedPubMedCentralCrossRefGoogle Scholar
  47. Cho NH, Shaw JE, Karuranga S, Huang Y et al (2018) IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281PubMedCrossRefGoogle Scholar
  48. Choi W, Lian C, Ying L, Kim GE et al (2016) Expression of lipid peroxidation markers in the tear film and ocular surface of patients with non-sjogren syndrome: potential biomarkers for dry eye disease. Curr Eye Res 41:1143–1149PubMedCrossRefGoogle Scholar
  49. Chotikavanich S, de Paiva CS, Li de Q, Chen JJ et al (2009) Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci 50:3203–3209PubMedPubMedCentralCrossRefGoogle Scholar
  50. Clementsen P, Milman N, Kilian M, Fomsgaard A et al (1990) Endotoxin from Haemophilus influenzae enhances IgE-mediated and non-immunological histamine release. Allergy 45:10–17PubMedCrossRefPubMedCentralGoogle Scholar
  51. Colligris B, Alkozi HA, Pintor J (2014) Recent developments on dry eye disease treatment compounds. Saudi J Ophthalmol 28:19–30PubMedCrossRefGoogle Scholar
  52. Colligris P, Perez de Lara MJ, Colligris B, Pintor J (2018) Ocular manifestations of Alzheimer’s and other neurodegenerative diseases: the prospect of the eye as a tool for the early diagnosis of Alzheimer’ disease. J Ophthalmol 2018:12CrossRefGoogle Scholar
  53. Comoglu SS, Guven H, Acar M, Ozturk G, Kocer B (2013) Tear levels of tumor necrosis factor-alpha in patients with Parkinson’s disease. Neurosci Lett 553:63–67PubMedCrossRefPubMedCentralGoogle Scholar
  54. Costagliola C, Romano V, De Tollis M, Aceto F et al (2013) TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm 2013:629529PubMedPubMedCentralCrossRefGoogle Scholar
  55. Coyle PK (1989) Molecular analysis of IgA in multiple sclerosis. J Neuroimmunol 22:83–92PubMedCrossRefPubMedCentralGoogle Scholar
  56. Coyle PK, Sibony PA (1987) Viral specificity of multiple sclerosis tear immunoglobulins. J Neuroimmunol 14:197–203PubMedCrossRefPubMedCentralGoogle Scholar
  57. Coyle PK, Sibony PA, Johnson C (1987a) Increased monomeric immunoglobulin A levels in tears from multiple sclerosis patients. Ann Neurol 21:211–214PubMedCrossRefPubMedCentralGoogle Scholar
  58. Coyle PK, Sibony P, Johnson C (1987b) Oligoclonal IgG in tears. Neurology 37:853–856PubMedCrossRefPubMedCentralGoogle Scholar
  59. Craig JP, Nelson JD, Azar DT, Belmonte C et al (2017) TFOS DEWS II report executive summary. Ocul Surf 15:802–812PubMedCrossRefPubMedCentralGoogle Scholar
  60. Csosz E, Boross P, Csutak A, Berta A et al (2012) Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteomics 75:2196–2204PubMedCrossRefGoogle Scholar
  61. D’Souza S, Tong L (2014) Practical issues concerning tear protein assays in dry eye. Eye Vis (Lond) 1:6CrossRefGoogle Scholar
  62. Daniel E, Duriasamy M, Ebenezer GJ, Shobhana, Job CK (2004) Elevated free tear lactoferrin levels in leprosy are associated with Type 2 reactions. Indian J Ophthalmol 52:51–56PubMedGoogle Scholar
  63. Dartt DA (2009) Neural regulation of lacrimal gland secretory processes: relevance in dry eye diseases. Prog Retin Eye Res 28:155–177CrossRefPubMedPubMedCentralGoogle Scholar
  64. Demirci S, Gunes A, Koyuncuoglu HR, Tok L, Tok O (2016) Evaluation of corneal parameters in patients with Parkinson’s disease. Neurol Sci 37:1247–1252PubMedCrossRefPubMedCentralGoogle Scholar
  65. Devos D, Forzy G, de Seze J, Caillez S et al (2001) Silver stained isoelectrophoresis of tears and cerebrospinal fluid in multiple sclerosis. J Neurol 248:672–675PubMedCrossRefPubMedCentralGoogle Scholar
  66. Dikovskaya MA, Trunov AN, Chernykh VV, Korolenko TA (2013) Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development. Int J Circumpolar Health 72:21807CrossRefGoogle Scholar
  67. Doeuvre L, Plawinski L, Toti F, Angles-Cano E (2009) Cell-derived microparticles: a new challenge in neuroscience. J Neurochem 110:457–468PubMedCrossRefGoogle Scholar
  68. Dogru M, Katakami C, Inoue M (2001) Tear function and ocular surface changes in noninsulin-dependent diabetes mellitus. Ophthalmology 108:586–592PubMedCrossRefGoogle Scholar
  69. Dogru M, Karakaya H, Ozcetin H, Erturk H et al (2003) Tear function and ocular surface changes in keratoconus. Ophthalmology 110:1110–1118PubMedCrossRefGoogle Scholar
  70. Edman MC, Janga SR, Meng Z, Bechtold M et al (2018) Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjogren’s Syndrome patients. Sci Rep 8:11044PubMedPubMedCentralCrossRefGoogle Scholar
  71. Enriquez-de-Salamanca A, Castellanos E, Stern ME, Fernandez I et al (2010) Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis 16:862–873PubMedPubMedCentralGoogle Scholar
  72. Eperon S, Berguiga M, Ballabeni P, Guex-Crosier C, Guex-Crosier Y (2014) Total IgE and eotaxin (CCL11) contents in tears of patients suffering from seasonal allergic conjunctivitis. Graefes Arch Clin Exp Ophthalmol 252:1359–1367PubMedPubMedCentralCrossRefGoogle Scholar
  73. Epling J (2012) Bacterial conjunctivitis. BMJ Clin Evid 2012:0704PubMedPubMedCentralGoogle Scholar
  74. Erdogan-Poyraz C, Mocan MC, Bozkurt B, Gariboglu S et al (2009) Elevated tear interleukin-6 and interleukin-8 levels in patients with conjunctivochalasis. Cornea 28:189–193PubMedCrossRefGoogle Scholar
  75. Evans V, Vockler C, Friedlander M, Walsh B, Willcox MD (2001) Lacryglobin in human tears, a potential marker for cancer. Clin Exp Ophthalmol 29:161–163PubMedCrossRefGoogle Scholar
  76. Eylan E, Ronen D, Romano A, Smetana O (1977) Lysozyme tear level in patients with herpes simplex virus eye infection. Invest Ophthalmol Vis Sci 16:850–853PubMedGoogle Scholar
  77. Feigenbaum D, Lew M, Janga S, Shah MK et al (2018) Tear proteins as possible biomarkers for Parkinson’s disease (S3.006). Neurology 26:90Google Scholar
  78. Fox RI (2005) Sjogren’s syndrome. Lancet 366:321–331PubMedCrossRefGoogle Scholar
  79. Fujikawa LS, Salahuddin SZ, Ablashi D, Palestine AG et al (1986) HTLV-III in the tears of AIDS patients. Ophthalmology 93:1479–1481PubMedCrossRefGoogle Scholar
  80. Fukagawa K, Nakajima T, Tsubota K, Shimmura S et al (1999) Presence of eotaxin in tears of patients with atopic keratoconjunctivitis with severe corneal damage. J Allergy Clin Immunol 103:1220–1221PubMedCrossRefGoogle Scholar
  81. Fukuda M, Deai T, Hibino T, Higaki S et al (2003) Quantitative analysis of herpes simplex virus genome in tears from patients with herpetic keratitis. Cornea 22:S55–S60PubMedCrossRefGoogle Scholar
  82. Galvis V, Sherwin T, Tello A, Merayo J et al (2015) Keratoconus: an inflammatory disorder? Eye (Lond) 29:843–859CrossRefGoogle Scholar
  83. Gandhi R, Healy B, Gholipour T, Egorova S et al (2013) Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann Neurol 73:729–740PubMedCrossRefGoogle Scholar
  84. Gasymov OK, Abduragimov AR, Prasher P, Yusifov TN, Glasgow BJ (2005) Tear lipocalin: evidence for a scavenging function to remove lipids from the human corneal surface. Invest Ophthalmol Vis Sci 46:3589–3596PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ghavami S, Hashemi M, de Serres FJ, Bajestani SN et al (2007) Trypsin inhibitory capacity in vernal keratoconjunctivitis. Invest Ophthalmol Vis Sci 48:264–269PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17:43–46PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ghosh S, Ghosh S, Azharuddin M, Bera S et al (2014) Change in tear protein profile in diabetic retinopathy with duration of diabetes. Diabetes Metab Syndr 8:233–235PubMedCrossRefPubMedCentralGoogle Scholar
  88. Goebbels M (2000) Tear secretion and tear film function in insulin dependent diabetics. Br J Ophthalmol 84:19–21PubMedPubMedCentralCrossRefGoogle Scholar
  89. Goto E, Endo K, Suzuki A, Fujikura Y et al (2003) Tear evaporation dynamics in normal subjects and subjects with obstructive meibomian gland dysfunction. Invest Ophthalmol Vis Sci 44:533–539PubMedCrossRefPubMedCentralGoogle Scholar
  90. Goto E, Matsumoto Y, Kamoi M, Endo K et al (2007) Tear evaporation rates in Sjogren syndrome and non-Sjogren dry eye patients. Am J Ophthalmol 144:81–85PubMedCrossRefPubMedCentralGoogle Scholar
  91. Grus FH, Sabuncuo P, Dick HB, Augustin AJ, Pfeiffer N (2002) Changes in the tear proteins of diabetic patients. BMC Ophthalmol 2:4PubMedPubMedCentralCrossRefGoogle Scholar
  92. Grus FH, Podust VN, Bruns K, Lackner K et al (2005) SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 46:863–876PubMedCrossRefGoogle Scholar
  93. Gumus K, Yurci A, Mirza E, Arda H et al (2009) Evaluation of ocular surface damage and dry eye status in chronic hepatitis C at different stages of hepatic fibrosis. Cornea 28:997–1002PubMedCrossRefPubMedCentralGoogle Scholar
  94. Hagan S, Tomlinson A, Madden L, Clark A, Oliver K (2014) Analysis of tear fluid proteins: use of multiplex assays in profiling biomarkers of dry eye disease. EPMA J 5:A129PubMedCentralCrossRefGoogle Scholar
  95. Hamm-Alvarez SF, Janga SR, Edman MC, Madrigal S et al (2014) Tear cathepsin S as a candidate biomarker for Sjogren’s syndrome. Arthritis Rheumatol 66:1872–1881PubMedPubMedCentralCrossRefGoogle Scholar
  96. Han Y, Wu N, Zhu W, Li Y et al (2011) Detection of HIV-1 viruses in tears of patients even under long-term HAART. AIDS 25:1925–1927PubMedCrossRefPubMedCentralGoogle Scholar
  97. Herber S, Grus FH, Sabuncuo P, Augustin AJ (2001) Two-dimensional analysis of tear protein patterns of diabetic patients. Electrophoresis 22:1838–1844PubMedCrossRefPubMedCentralGoogle Scholar
  98. Hernandez-Ruiz M, Zlotnik A, Llorente L, Hernandez-Molina G (2018) Markedly high salivary and lacrimal CXCL17 levels in primary Sjogren’s syndrome. Joint Bone Spine 85:379–380PubMedCrossRefGoogle Scholar
  99. Hida RY, Ohashi Y, Takano Y, Dogru M et al (2005) Elevated levels of human alpha -defensin in tears of patients with allergic conjunctival disease complicated by corneal lesions: detection by SELDI ProteinChip system and quantification. Curr Eye Res 30:723–730PubMedCrossRefGoogle Scholar
  100. Huang JF, Zhang Y, Rittenhouse KD, Pickering EH, McDowell MT (2012) Evaluations of tear protein markers in dry eye disease: repeatability of measurement and correlation with disease. Invest Ophthalmol Vis Sci 53:4556–4564PubMedCrossRefPubMedCentralGoogle Scholar
  101. Huang FF, Wang ZJ, Zhang CR (2013) Tear HSV-specific secretory IgA as a potential indicator for recurrent stromal herpes simplex keratitis: a preliminary study. Cornea 32:987–991PubMedCrossRefPubMedCentralGoogle Scholar
  102. Jackson DC, Zeng W, Wong CY, Mifsud EJ et al (2016) tear interferon-gamma as a biomarker for evaporative dry eye disease. Invest Ophthalmol Vis Sci 57:4824–4830PubMedCrossRefGoogle Scholar
  103. Jacobi C, Wenkel H, Jacobi A, Korn K et al (2007) Hepatitis C and ocular surface disease. Am J Ophthalmol 144:705–711PubMedCrossRefGoogle Scholar
  104. Jinno A, Park PW (2015) Role of glycosaminoglycans in infectious disease. Methods Mol Biol 1229:567–585PubMedPubMedCentralCrossRefGoogle Scholar
  105. Jun AS, Cope L, Speck C, Feng X et al (2011) Subnormal cytokine profile in the tear fluid of keratoconus patients. PLoS One 6:e16437PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kacperska MJ, Walenczak J, Tomasik B (2016) Plasmatic microRNA as potential biomarkers of multiple sclerosis: literature review. Adv Clin Exp Med 25:775–779PubMedCrossRefGoogle Scholar
  107. Kaercher T, Bron AJ (2008) Classification and diagnosis of dry eye. Dev Ophthalmol 41:36–53PubMedCrossRefGoogle Scholar
  108. Kakimaru-Hasegawa A, Kuo CH, Komatsu N, Komatsu K et al (2008) Clinical application of real-time polymerase chain reaction for diagnosis of herpetic diseases of the anterior segment of the eye. Jpn J Ophthalmol 52:24–31PubMedCrossRefGoogle Scholar
  109. Kallo G, Emri M, Varga Z, Ujhelyi B et al (2016) Changes in the chemical barrier composition of tears in Alzheimer’s disease reveal potential tear diagnostic biomarkers. PLoS One 11:e0158000PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kang MH, Kim MK, Lee HJ, Lee HI et al (2011) Interleukin-17 in various ocular surface inflammatory diseases. J Korean Med Sci 26:938–944PubMedPubMedCentralCrossRefGoogle Scholar
  111. Karaman Erdur S, Kulac Karadeniz D, Kocabora MS, Ozsutcu M et al (2015) Ocular surface and tear parameters in patients with chronic hepatitis C at initial stages of hepatic fibrosis. Eye Contact Lens 41:117–120PubMedCrossRefGoogle Scholar
  112. Karamitsos A, Kokkas V, Goulas A, Paraskevopoulos P et al (2013) Ocular surface and tear film abnormalities in women under adjuvant chemotherapy for breast cancer with the 5-Fluorouracil, Epirubicin and Cyclophosphamide (FEC) regimen. Hippokratia 17:120–125PubMedPubMedCentralGoogle Scholar
  113. Karnati R, Laurie DE, Laurie GW (2013) Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp Eye Res 117:39–52PubMedCrossRefGoogle Scholar
  114. Kaufman HE, Azcuy AM, Varnell ED, Sloop GD et al (2005) HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci 46:241–247PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kawai S, Nakajima T, Hokari S, Komoda T, Kawai K (2002) Apolipoprotein A-I concentration in tears in diabetic retinopathy. Ann Clin Biochem 39:56–61PubMedCrossRefGoogle Scholar
  116. Keppler D (2006) Towards novel anti-cancer strategies based on cystatin function. Cancer Lett 235:159–176PubMedCrossRefGoogle Scholar
  117. Kidd-Ljunggren K, Holmberg A, Blackberg J, Lindqvist B (2006) High levels of hepatitis B virus DNA in body fluids from chronic carriers. J Hosp Infect 64:352–357PubMedCrossRefGoogle Scholar
  118. Kim JT, Lee SH, Chun YS, Kim JC (2011) Tear cytokines and chemokines in patients with Demodex blepharitis. Cytokine 53:94–99PubMedCrossRefGoogle Scholar
  119. Koo BS, Lee DY, Ha HS, Kim JC, Kim CW (2005) Comparative analysis of the tear protein expression in blepharitis patients using two-dimensional electrophoresis. J Proteome Res 4:719–724PubMedCrossRefGoogle Scholar
  120. Kosina-Hagyo K, Veres A, Fodor E, Mezei G et al (2012) Tear film function in patients with seasonal allergic conjunctivitis outside the pollen season. Int Arch Allergy Immunol 157:81–88PubMedCrossRefGoogle Scholar
  121. Kumagai N, Yamamoto K, Fukuda K, Nakamura Y et al (2002) Active matrix metalloproteinases in the tear fluid of individuals with vernal keratoconjunctivitis. J Allergy Clin Immunol 110:489–491PubMedCrossRefGoogle Scholar
  122. Kwon OY, Kim SH, Kim JH, Kim MH, Ko MK (1994) Schrimer test in Parkinson’s disease. J Korean Med Sci 9:239–242PubMedPubMedCentralCrossRefGoogle Scholar
  123. Lam H, Bleiden L, de Paiva CS, Farley W et al (2009) Tear cytokine profiles in dysfunctional tear syndrome. Am J Ophthalmol 147:198–205. e191PubMedCrossRefPubMedCentralGoogle Scholar
  124. Lam SM, Tong L, Reux B, Duan X et al (2014b) Lipidomic analysis of human tear fluid reveals structure-specific lipid alterations in dry eye syndrome. J Lipid Res 55:299–306PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lane JD, Krumholz DM, Sack RA, Morris C (2006) Tear glucose dynamics in diabetes mellitus. Curr Eye Res 31:895–901PubMedCrossRefPubMedCentralGoogle Scholar
  126. Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25:59–70PubMedCrossRefPubMedCentralGoogle Scholar
  127. Lebrecht A, Boehm D, Schmidt M, Koelbl H, Grus FH (2009a) Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry to detect breast cancer markers in tears and serum. Cancer Genomics Proteomics 6:75–83PubMedPubMedCentralGoogle Scholar
  128. Lebrecht A, Boehm D, Schmidt M, Koelbl H et al (2009b) Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics 6:177–182PubMedPubMedCentralGoogle Scholar
  129. Lee HJ, Patel S, Lee SJ (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25:6016–6024PubMedCrossRefGoogle Scholar
  130. Lee SH, Oh DH, Jung JY, Kim JC, Jeon CO (2012) Comparative ocular microbial communities in humans with and without blepharitis. Invest Ophthalmol Vis Sci 53:5585–5593PubMedCrossRefGoogle Scholar
  131. Lee SY, Han SJ, Nam SM, Yoon SC et al (2013a) Analysis of tear cytokines and clinical correlations in Sjogren syndrome dry eye patients and non-Sjogren syndrome dry eye patients. Am J Ophthalmol 156:247–253 e241PubMedCrossRefPubMedCentralGoogle Scholar
  132. Lee SY, Kim MJ, Kim MK, Wee WR (2013b) Comparative analysis of polymerase chain reaction assay for herpes simplex virus 1 detection in tear. Korean J Ophthalmol 27:316–321PubMedPubMedCentralCrossRefGoogle Scholar
  133. Lema I, Duran JA (2005) Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology 112:654–659PubMedCrossRefGoogle Scholar
  134. Lema I, Brea D, Rodriguez-Gonzalez R, Diez-Feijoo E, Sobrino T (2010) Proteomic analysis of the tear film in patients with keratoconus. Mol Vis 16:2055–2061PubMedPubMedCentralGoogle Scholar
  135. Leonardi A (2013) Allergy and allergic mediators in tears. Exp Eye Res 117:106–117PubMedPubMedCentralCrossRefGoogle Scholar
  136. Leonardi A, Borghesan F, Faggian D, Depaoli M et al (2000) Tear and serum soluble leukocyte activation markers in conjunctival allergic diseases. Am J Ophthalmol 129:151–158PubMedCrossRefPubMedCentralGoogle Scholar
  137. Leonardi A, Jose PJ, Zhan H, Calder VL (2003a) Tear and mucus eotaxin-1 and eotaxin-2 in allergic keratoconjunctivitis. Ophthalmology 110:487–492PubMedCrossRefGoogle Scholar
  138. Leonardi A, Brun P, Abatangelo G, Plebani M, Secchi AG (2003b) Tear levels and activity of matrix metalloproteinase (MMP)-1 and MMP-9 in vernal keratoconjunctivitis. Invest Ophthalmol Vis Sci 44:3052–3058PubMedCrossRefPubMedCentralGoogle Scholar
  139. Leonardi A, Sathe S, Bortolotti M, Beaton A, Sack R (2009) Cytokines, matrix metalloproteases, angiogenic and growth factors in tears of normal subjects and vernal keratoconjunctivitis patients. Allergy 64:710–717PubMedCrossRefPubMedCentralGoogle Scholar
  140. Li Y (2010) The detection of tear biomarkers for future prostate cancer diagnosis. The Open Biomark J 3:26–29CrossRefGoogle Scholar
  141. Li S, Sack R, Vijmasi T, Sathe S et al (2008a) Antibody protein array analysis of the tear film cytokines. Optom Vis Sci 85:653–660PubMedPubMedCentralCrossRefGoogle Scholar
  142. Li Y, Cozzi P, Zhao Z, Giannakis E et al (2008b) SELDI-TOF-MS analysis of urine and tear samples to discover novel biomarkers for diagnosis and prognosis of prostate cancer. Cancer Res 68:3924CrossRefGoogle Scholar
  143. Li K, Liu X, Chen Z, Huang Q, Wu K (2010) Quantification of tear proteins and sPLA2-IIa alteration in patients with allergic conjunctivitis. Mol Vis 16:2084–2091PubMedPubMedCentralCrossRefGoogle Scholar
  144. Li B, Sheng M, Li J, Yan G et al (2014) Tear proteomic analysis of Sjogren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci Rep 4:5772PubMedPubMedCentralCrossRefGoogle Scholar
  145. Lim JKH, Li Q-X, He Z, Vingrys AJ et al (2016) The eye as a biomarker for Alzheimer’s disease. Front Neurosci 10:536PubMedPubMedCentralCrossRefGoogle Scholar
  146. Liu J, Shi B, He S, Yao X et al (2010a) Changes to tear cytokines of type 2 diabetic patients with or without retinopathy. Mol Vis 16:2931–2938PubMedPubMedCentralGoogle Scholar
  147. Liu J, Sheha H, Tseng SC (2010b) Pathogenic role of Demodex mites in blepharitis. Curr Opin Allergy Clin Immunol 10:505–510PubMedPubMedCentralCrossRefGoogle Scholar
  148. Lorenzo-Morales J, Khan NA, Walochnik J (2015) An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite 22:10PubMedPubMedCentralCrossRefGoogle Scholar
  149. Louise Heiberg I, Hogh B (2012) Horizontal transmission of hepatitis B virus – why discuss when we can vaccinate? J Infect Dis 206:464–465PubMedCrossRefPubMedCentralGoogle Scholar
  150. Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML et al (2018) alpha-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 9:2293PubMedPubMedCentralCrossRefGoogle Scholar
  151. Maatta M, Kari O, Tervahartiala T, Wahlgren J et al (2008) Elevated expression and activation of matrix metalloproteinase 8 in tear fluid in atopic blepharoconjunctivitis. Cornea 27:297–301PubMedCrossRefPubMedCentralGoogle Scholar
  152. Magrini L, Bonini S, Centofanti M, Schiavone M, Bonini S (1996) Tear tryptase levels and allergic conjunctivitis. Allergy 51:577–581PubMedCrossRefGoogle Scholar
  153. Manns MP, Buti M, Gane E, Pawlotsky JM et al (2017) Hepatitis C virus infection. Nat Rev Dis Primers 3:17006PubMedCrossRefGoogle Scholar
  154. Maragou M, Vaikousis E, Ntre A, Koronis N et al (1996) Tear and saliva ferning tests in Sjogren’s syndrome (SS). Clin Rheumatol 15:125–132PubMedCrossRefGoogle Scholar
  155. Marmalidou A, Kheirkhah A, Dana R (2017) Conjunctivochalasis: a systematic review. Surv Ophthalmol 62(6):816–827CrossRefGoogle Scholar
  156. Masmali AM, Maeni YA, El-Hiti GA, Murphy PJ, Almubrad T (2017) Investigation of ocular tear ferning in controlled and uncontrolled diabetic subjects. Eye Contact Lens 36(1):1–5Google Scholar
  157. Massingale ML, Li X, Vallabhajosyula M, Chen D et al (2009) Analysis of inflammatory cytokines in the tears of dry eye patients. Cornea 28:1023–1027PubMedCrossRefGoogle Scholar
  158. Matsumoto Y, Kodama A, Goto E, Kawakita T et al (2017) The relation of ocular surface irregularity and visual disturbance in early stage acanthamoeba keratitis. Eye Contact Lens 43:51–56PubMedCrossRefGoogle Scholar
  159. McNamara NA, Ge S, Lee SM, Enghauser AM et al (2016) Reduced levels of tear lacritin are associated with corneal neuropathy in patients with the ocular component of sjogren’s syndrome. Invest Ophthalmol Vis Sci 57:5237–5243PubMedPubMedCentralCrossRefGoogle Scholar
  160. Meller D, Tseng SC (1998) Conjunctivochalasis: literature review and possible pathophysiology. Surv Ophthalmol 43:225–232PubMedCrossRefGoogle Scholar
  161. Mendel I, Muraine M, Riachi G, el Forzli F et al (1997) Detection and genotyping of the hepatitis C RNA in tear fluid from patients with chronic hepatitis C. J Med Virol 51:231–233PubMedCrossRefGoogle Scholar
  162. Michaud JE, Billups KL, Partin AW (2015) Testosterone and prostate cancer: an evidence-based review of pathogenesis and oncologic risk. Ther Adv Urol 7:378–387PubMedPubMedCentralCrossRefGoogle Scholar
  163. Mimura T, Usui T, Mori M, Funatsu H et al (2011) Relationship between total tear and serum IgE in allergic conjunctivitis. Int Arch Allergy Immunol 154:349–352PubMedCrossRefGoogle Scholar
  164. Mimura T, Usui T, Yamagami S, Miyai T, Amano S (2012) Relation between total tear IgE and severity of acute seasonal allergic conjunctivitis. Curr Eye Res 37:864–870PubMedCrossRefGoogle Scholar
  165. Montan PG, van Hage-Hamsten M (1996) Eosinophil cationic protein in tears in allergic conjunctivitis. Br J Ophthalmol 80:556–560PubMedPubMedCentralCrossRefGoogle Scholar
  166. Mrugacz M, Ostrowska L, Bryl A, Szulc A et al (2017) Pro-inflammatory cytokines associated with clinical severity of dry eye disease of patients with depression. Adv Med Sci 62:338–344PubMedCrossRefPubMedCentralGoogle Scholar
  167. Na KS, Mok JW, Kim JY, Rho CR, Joo CK (2012) Correlations between tear cytokines, chemokines, and soluble receptors and clinical severity of dry eye disease. Invest Ophthalmol Vis Sci 53:5443–5450PubMedCrossRefPubMedCentralGoogle Scholar
  168. Nelson JD, Shimazaki J, Benitez-del-Castillo JM, Craig JP et al (2011) The international workshop on meibomian gland dysfunction: report of the definition and classification subcommittee. Invest Ophthalmol Vis Sci 52:1930–1937PubMedPubMedCentralCrossRefGoogle Scholar
  169. Nomura K, Takamura E (1998) Tear IgE concentrations in allergic conjunctivitis. Eye (Lond) 12(Pt 2):296–298CrossRefGoogle Scholar
  170. Onguchi T, Dogru M, Okada N, Kato NA et al (2006) The impact of the onset time of atopic keratoconjunctivitis on the tear function and ocular surface findings. Am J Ophthalmol 141:569–571PubMedCrossRefPubMedCentralGoogle Scholar
  171. Ornek N, Dag E, Ornek K (2015) Corneal sensitivity and tear function in neurodegenerative diseases. Curr Eye Res 40:423–428PubMedCrossRefPubMedCentralGoogle Scholar
  172. Pannebaker C, Chandler HL, Nichols JJ (2010) Tear proteomics in keratoconus. Mol Vis 16:1949–1957PubMedPubMedCentralGoogle Scholar
  173. Pas-Wyroslak A, Wiszniewska M, Krecisz B, Swierczynska-Machura D et al (2012) Contact blepharoconjunctivitis due to black henna – a case report. Int J Occup Med Environ Health 25:196–199PubMedCrossRefPubMedCentralGoogle Scholar
  174. Pelikan Z (2012) Cytological changes in tears during the secondary conjunctival response induced by nasal allergy. Br J Ophthalmol 96:941–948PubMedCrossRefPubMedCentralGoogle Scholar
  175. Pelikan Z (2013) Inflammatory mediator profiles in tears accompanying keratoconjunctival responses induced by nasal allergy. Br J Ophthalmol 97:820–828PubMedCrossRefPubMedCentralGoogle Scholar
  176. Pelikan Z (2014b) Cytokines in tears during the secondary keratoconjunctival responses induced by allergic reaction in the nasal mucosa. Ophthalmic Res 52:32–42PubMedCrossRefPubMedCentralGoogle Scholar
  177. Perumal N, Funke S, Pfeiffer N, Grus FH (2016) Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep 6:29629PubMedPubMedCentralCrossRefGoogle Scholar
  178. Petruzziello A, Marigliano S, Loquercio G, Cozzolino A, Cacciapuoti C (2016) Global epidemiology of hepatitis C virus infection: an up-date of the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol 22:7824–7840PubMedPubMedCentralCrossRefGoogle Scholar
  179. Peuravuori H, Kari O, Peltonen S, Aho VV et al (2004) Group IIA phospholipase A2 content of tears in patients with atopic blepharoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 242:986–989PubMedCrossRefGoogle Scholar
  180. Pfaender S, Helfritz FA, Siddharta A, Todt D et al (2018) Environmental stability and infectivity of hepatitis C virus (HCV) in different human body fluids. Front Microbiol 9:504PubMedPubMedCentralCrossRefGoogle Scholar
  181. Pieragostino D, Agnifili L, Cicalini I, Calienno R et al (2017) Tear film steroid profiling in dry eye disease by liquid chromatography tandem mass spectrometry. Int J Mol Sci 18:1349PubMedCentralCrossRefPubMedGoogle Scholar
  182. Pinazo-Duran MD, Galbis-Estrada C, Pons-Vazquez S, Cantu-Dibildox J et al (2013) Effects of a nutraceutical formulation based on the combination of antioxidants and omega-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders. Clin Interv Aging 8:139–148PubMedPubMedCentralCrossRefGoogle Scholar
  183. Poewe W, Seppi K, Tanner CM, Halliday GM et al (2017) Parkinson disease. Nat Rev Dis Primers 3:17013PubMedCrossRefGoogle Scholar
  184. Posa A, Paulsen F, Dietz R, Garreis F et al (2017) Quantification of surfactant proteins in tears of patients suffering from dry eye disease compared to healthy subjects. Ann Anat 216:90–94PubMedCrossRefGoogle Scholar
  185. Pramod NP, Dhevahi E, Sudhamathi K, Kannan K, Thyagarajan SP (1999a) Tear secretory IgA: evaluation of usefulness as a diagnostic marker in herpetic keratitis. Ocul Immunol Inflamm 7:61–67PubMedCrossRefGoogle Scholar
  186. Pramod NP, Rajendran P, Kannan KA, Thyagarajan SP (1999b) Herpes simplex keratitis in South India: clinico-virological correlation. Jpn J Ophthalmol 43:303–307PubMedCrossRefGoogle Scholar
  187. Priyadarsini S, Hjortdal J, Sarker-Nag A, Sejersen H et al (2014) Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease. PLoS One 9:e113310PubMedPubMedCentralCrossRefGoogle Scholar
  188. Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11:111–128PubMedPubMedCentralGoogle Scholar
  189. Rabensteiner DF, Spreitzhofer E, Trummer G, Wachswender C et al (2010) Pollen enzymes degrade human tear fluid and conjunctival cells: an approach to understanding seasonal non-allergic conjunctivitis. Dev Ophthalmol 45:83–92PubMedCrossRefPubMedCentralGoogle Scholar
  190. Rajalakshmy AR, Malathi J, Madhavan HN, Bhaskar S, Iyer GK (2015) Patients with dry eye without hepatitis C virus infection possess the viral RNA in their tears. Cornea 34:28–31PubMedCrossRefGoogle Scholar
  191. Rao K, Farley WJ, Pflugfelder SC (2010) Association between high tear epidermal growth factor levels and corneal subepithelial fibrosis in dry eye conditions. Invest Ophthalmol Vis Sci 51:844–849PubMedPubMedCentralCrossRefGoogle Scholar
  192. Reich DS, Lucchinetti CF, Calabresi PA (2018) Multiple sclerosis. N Engl J Med 378:169–180PubMedCrossRefGoogle Scholar
  193. Richens JL, Spencer HL, Butler M, Cantlay F et al (2016) Rationalising the role of Keratin 9 as a biomarker for Alzheimer’s disease. Sci Rep 6:22962PubMedPubMedCentralCrossRefGoogle Scholar
  194. Rolando M, Refojo MF (1983) Tear evaporimeter for measuring water evaporation rate from the tear film under controlled conditions in humans. Exp Eye Res 36:25–33PubMedCrossRefGoogle Scholar
  195. Rolando M, Zierhut M (2001) The ocular surface and tear film and their dysfunction in dry eye disease. Surv Ophthalmol 45(Suppl 2):S203–S210CrossRefGoogle Scholar
  196. Saha K, Sarin GS, Chakraborty AK, Sen DK (1977) Ocular immunoglobulins in lepromatous leprosy. Int J Lepr Other Mycobact Dis 45:338–342PubMedGoogle Scholar
  197. Saijyothi AV, Fowjana J, Madhumathi S, Rajeshwari M et al (2012) Tear fluid small molecular antioxidants profiling shows lowered glutathione in keratoconus. Exp Eye Res 103:41–46PubMedCrossRefGoogle Scholar
  198. Salvisberg C, Tajouri N, Hainard A, Burkhard PR et al (2014) Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteomics Clin Appl 8:185–194PubMedCrossRefGoogle Scholar
  199. Satpathy G, Mishra AK, Tandon R, Sharma MK et al (2011) Evaluation of tear samples for Herpes Simplex Virus 1 (HSV) detection in suspected cases of viral keratitis using PCR assay and conventional laboratory diagnostic tools. Br J Ophthalmol 95:415–418PubMedCrossRefPubMedCentralGoogle Scholar
  200. Sayin N, Kara N, Pekel G (2015) Ocular complications of diabetes mellitus. World J Diabetes 6:92–108PubMedPubMedCentralCrossRefGoogle Scholar
  201. Schargus M, Ivanova S, Kakkassery V, Dick HB, Joachim S (2015) Correlation of tear film osmolarity and 2 different MMP-9 tests with common dry eye tests in a cohort of non-dry eye patients. Cornea 34:739–744PubMedCrossRefPubMedCentralGoogle Scholar
  202. Sen DK, Sarin GS (1980) Tear glucose levels in normal people and in diabetic patients. Br J Ophthalmol 64:693–695PubMedPubMedCentralCrossRefGoogle Scholar
  203. Senchyna M, Wax MB (2008) Quantitative assessment of tear production: a review of methods and utility in dry eye drug discovery. J Ocul Biol Dis Infor 1:1–6PubMedPubMedCentralCrossRefGoogle Scholar
  204. Sharif R, Bak-Nielsen S, Sejersen H, Ding K et al (2018) Prolactin-Induced Protein is a novel biomarker for Keratoconus. Exp Eye Res 179:55–63PubMedCrossRefPubMedCentralGoogle Scholar
  205. Shetty R, Ghosh A, Lim RR, Subramani M et al (2015) Elevated expression of matrix metalloproteinase-9 and inflammatory cytokines in keratoconus patients is inhibited by cyclosporine A. Invest Ophthalmol Vis Sci 56:738–750PubMedCrossRefPubMedCentralGoogle Scholar
  206. Shetty R, Sethu S, Chevour P, Deshpande K et al (2016) Lower vitamin D level and distinct tear cytokine profile were observed in patients with mild dry eye signs but exaggerated symptoms. Transl Vis Sci Technol 5:16PubMedPubMedCentralCrossRefGoogle Scholar
  207. Shetty R, Deshmukh R, Ghosh A, Sethu S, Jayadev C (2017) Altered tear inflammatory profile in Indian keratoconus patients – the 2015 Col Rangachari Award paper. Indian J Ophthalmol 65:1105–1108PubMedPubMedCentralCrossRefGoogle Scholar
  208. Shoji J, Kitazawa M, Inada N, Sawa M et al (2003a) Efficacy of tear eosinophil cationic protein level measurement using filter paper for diagnosing allergic conjunctival disorders. Jpn J Ophthalmol 47:64–68PubMedCrossRefGoogle Scholar
  209. Shoji J, Kato H, Kitazawa M, Inada N, Sawa M (2003b) Evaluation of staphylococcal enterotoxin-specific IgE antibody in tears in allergic keratoconjunctival disorders. Jpn J Ophthalmol 47:609–611PubMedCrossRefPubMedCentralGoogle Scholar
  210. Shoji J, Inada N, Sawa M (2006) Antibody array-generated cytokine profiles of tears of patients with vernal keratoconjunctivitis or giant papillary conjunctivitis. Jpn J Ophthalmol 50:195–204PubMedCrossRefPubMedCentralGoogle Scholar
  211. Shoji J, Kawaguchi A, Gotoh A, Inada N, Sawa M (2007) Concentration of soluble interleukin-6 receptors in tears of allergic conjunctival disease patients. Jpn J Ophthalmol 51:332–337PubMedCrossRefPubMedCentralGoogle Scholar
  212. Shoji J, Inada N, Sawa M (2009) Evaluation of eotaxin-1, -2, and -3 protein production and messenger RNA expression in patients with vernal keratoconjunctivitis. Jpn J Ophthalmol 53:92–99PubMedCrossRefGoogle Scholar
  213. Shoji J, Sakimoto T, Inada N, Kamei Y et al (2016) A diagnostic method for herpes simplex keratitis by simultaneous measurement of viral DNA and virus-specific secretory IgA in tears: an evaluation. Jpn J Ophthalmol 60:294–301PubMedCrossRefGoogle Scholar
  214. Shoji J, Aso H, Inada N (2017) Clinical Usefulness of Simultaneous Measurement of the Tear Levels of CCL17, CCL24, and IL-16 for the Biomarkers of Allergic Conjunctival Disorders. Curr Eye Res 42:677–684PubMedCrossRefPubMedCentralGoogle Scholar
  215. Singh P, Singh A (2012) Choroidal melanoma. Oman J Ophthalmol 5:3–9PubMedPubMedCentralCrossRefGoogle Scholar
  216. Sogutlu Sari E, Koc R, Yazici A, Sahin G et al (2015) Tear osmolarity, break-up time and Schirmer’s scores in Parkinson’s disease. Turk J Ophthalmol 45:142–145PubMedPubMedCentralCrossRefGoogle Scholar
  217. Solomon A, Dursun D, Liu Z, Xie Y et al (2001) Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci 42:2283–2292PubMedPubMedCentralGoogle Scholar
  218. Song CH, Choi JS, Kim DK, Kim JC (1999) Enhanced secretory group II PLA2 activity in the tears of chronic blepharitis patients. Invest Ophthalmol Vis Sci 40:2744–2748PubMedGoogle Scholar
  219. Soria J, Duran JA, Etxebarria J, Merayo J et al (2013) Tear proteome and protein network analyses reveal a novel pentamarker panel for tear film characterization in dry eye and meibomian gland dysfunction. J Proteomics 78:94–112PubMedCrossRefPubMedCentralGoogle Scholar
  220. Soria J, Acera A, Merayo LJ, Duran JA et al (2017) Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 7:17478PubMedPubMedCentralCrossRefGoogle Scholar
  221. Srinivasan S, Thangavelu M, Zhang L, Green KB, Nichols KK (2012) iTRAQ quantitative proteomics in the analysis of tears in dry eye patients. Invest Ophthalmol Vis Sci 53:5052–5059PubMedPubMedCentralCrossRefGoogle Scholar
  222. Su CS, Bowden S, Fong LP, Taylor HR (1994) Detection of hepatitis B virus DNA in tears by polymerase chain reaction. Arch Ophthalmol 112:621–625PubMedCrossRefGoogle Scholar
  223. Tabbara KF (2001) Tear tryptase in vernal keratoconjunctivitis. Arch Ophthalmol 119:338–342PubMedCrossRefGoogle Scholar
  224. Tagawa Y, Namba K, Nakazono Y, Iwata D, Ishida S (2017) Evaluating the efficacy of epinastine ophthalmic solution using a conjunctivitis allergen challenge model in patients with birch pollen allergic conjunctivitis. Allergol Int 66:338–343PubMedCrossRefGoogle Scholar
  225. Tamer C, Melek IM, Duman T, Oksuz H (2005) Tear film tests in Parkinson’s disease patients. Ophthalmology 112:1795PubMedCrossRefGoogle Scholar
  226. Tan JJL, Balne PK, Leo YS, Tong L et al (2017) Persistence of Zika virus in conjunctival fluid of convalescence patients. Sci Rep 7:11194PubMedPubMedCentralCrossRefGoogle Scholar
  227. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007) Ocul Surf 2007 5:75–92Google Scholar
  228. Tishler M, Yaron I, Geyer O, Shirazi I et al (1998) Elevated tear interleukin-6 levels in patients with Sjogren syndrome. Ophthalmology 105:2327–2329PubMedCrossRefGoogle Scholar
  229. Tomosugi N, Kitagawa K, Takahashi N, Sugai S, Ishikawa I (2005) Diagnostic potential of tear proteomic patterns in Sjogren’s syndrome. J Proteome Res 4:820–825PubMedCrossRefGoogle Scholar
  230. Traipe-Castro L, Salinas-Toro D, Lopez D, Zanolli M et al (2014) Dynamics of tear fluid desiccation on a glass surface: a contribution to tear quality assessment. Biol Res 47:25CrossRefPubMedPubMedCentralGoogle Scholar
  231. Tsung PK, Hong BS, Holly FJ, Gordon W Jr (1983) Decrease of lactoferrin concentration in the tears of myotonic muscular dystrophy patients. Clin Chim Acta 134:213–219PubMedCrossRefGoogle Scholar
  232. Uchino Y, Uchino M, Yokoi N, Dogru M et al (2014) Alteration of tear mucin 5AC in office workers using visual display terminals: the Osaka Study. JAMA Ophthalmol 132:985–992PubMedCrossRefPubMedCentralGoogle Scholar
  233. Uchino Y, Mauris J, Woodward AM, Dieckow J et al (2015) Alteration of galectin-3 in tears of patients with dry eye disease. Am J Ophthalmol 159:1027–1035. e1023PubMedPubMedCentralCrossRefGoogle Scholar
  234. Uchio E, Ono SY, Ikezawa Z, Ohno S (2000) Tear levels of interferon-gamma, interleukin (IL) -2, IL-4 and IL-5 in patients with vernal keratoconjunctivitis, atopic keratoconjunctivitis and allergic conjunctivitis. Clin Exp Allergy 30:103–109PubMedCrossRefGoogle Scholar
  235. Urbaniak A, Jablonska K, Podhorska-Okolow M, Ugorski M, Dziegiel P (2018) Prolactin-induced protein (PIP)-characterization and role in breast cancer progression. Am J Cancer Res 8:2150–2164PubMedPubMedCentralGoogle Scholar
  236. Vaikoussis E, Georgiou P, Nomicarios D (1994) Tear mucus ferning in patients with Sjogren’s syndrome. Doc Ophthalmol 87:145–151PubMedCrossRefGoogle Scholar
  237. Validad MH, Khazaei HA, Pishjoo M, Safdari Z (2017) the study of interleukin-17 level in vernal keratoconjunctivitis disease and its relationship between symptom and sign severity. Semin Ophthalmol 32:721–724PubMedCrossRefGoogle Scholar
  238. Vashisht S, Singh S (2011) Evaluation of Phenol Red Thread test versus Schirmer test in dry eyes: a comparative study. Int J Appl Basic Med Res 1:40–42PubMedPubMedCentralCrossRefGoogle Scholar
  239. Venza I, Visalli M, Ceci G, Teti D (2004) Quantitative determination of histamine in tears during conjunctivitis by a novel HPLC method. Ophthalmic Res 36:62–69PubMedCrossRefGoogle Scholar
  240. Versura P, Nanni P, Bavelloni A, Blalock WL et al (2010) Tear proteomics in evaporative dry eye disease. Eye (Lond) 24:1396–1402CrossRefGoogle Scholar
  241. Versura P, Bavelloni A, Grillini M, Fresina M, Campos EC (2013a) Diagnostic performance of a tear protein panel in early dry eye. Mol Vis 19:1247–1257PubMedPubMedCentralGoogle Scholar
  242. Vetter P, Fischer WA 2nd, Schibler M, Jacobs M et al (2016) Ebola virus shedding and transmission: review of current evidence. J Infect Dis 214:S177–S184PubMedPubMedCentralCrossRefGoogle Scholar
  243. Weaver J (2011) Women’s tears contain chemical cues. Nat News.  https://doi.org/10.1038/news.2011.2
  244. Winiarczyk M, Kaarniranta K, Winiarczyk S, Adaszek L et al (2018) Tear film proteome in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 256:1127–1139PubMedPubMedCentralCrossRefGoogle Scholar
  245. Wood H (2016) Could tear proteins be biomarkers for Alzheimer disease? Nature Rev Neurol 12:432CrossRefGoogle Scholar
  246. Woodward AM, Senchyna M, Argueso P (2012) Differential contribution of hypertonic electrolytes to corneal epithelial dysfunction. Exp Eye Res 100:98–100PubMedPubMedCentralCrossRefGoogle Scholar
  247. Yamada M, Mochizuki H, Kawai M, Tsubota K, Bryce TJ (2005) Decreased tear lipocalin concentration in patients with meibomian gland dysfunction. Br J Ophthalmol 89:803–805PubMedPubMedCentralCrossRefGoogle Scholar
  248. Yoon KC, Jeong IY, Park YG, Yang SY (2007) Interleukin-6 and tumor necrosis factor-alpha levels in tears of patients with dry eye syndrome. Cornea 26:431–437PubMedCrossRefGoogle Scholar
  249. Yoon KC, Park CS, You IC, Choi HJ et al (2010) Expression of CXCL9, -10, -11, and CXCR3 in the tear film and ocular surface of patients with dry eye syndrome. Invest Ophthalmol Vis Sci 51:643–650PubMedPubMedCentralCrossRefGoogle Scholar
  250. You YS, Qu NB, Yu XN (2016b) Alcohol consumption and dry eye syndrome: a meta-analysis. Int J Ophthalmol 9:1487–1492PubMedPubMedCentralGoogle Scholar
  251. Yu L, Chen X, Qin G, Xie H, Lv P (2008) Tear film function in type 2 diabetic patients with retinopathy. Ophthalmologica 222:284–291PubMedPubMedCentralCrossRefGoogle Scholar
  252. Zhang J, Hodge W, Hutnick C, Wang X (2011a) Noninvasive diagnostic devices for diabetes through measuring tear glucose. J Diabetes Sci Technol 5:166–172PubMedPubMedCentralCrossRefGoogle Scholar
  253. Zhang X, Zhao L, Deng S, Sun X, Wang N (2016) Dry eye syndrome in patients with diabetes mellitus: prevalence, etiology, and clinical characteristics. J Ophthalmol 2016:8201053PubMedPubMedCentralGoogle Scholar
  254. Zhao H, Jumblatt JE, Wood TO, Jumblatt MM (2001) Quantification of MUC5AC protein in human tears. Cornea 20:873–877PubMedCrossRefGoogle Scholar
  255. Zhao Z, Liu J, Shi B, He S et al (2010) Advanced glycation end product (AGE) modified proteins in tears of diabetic patients. Mol Vis 16:1576–1584PubMedPubMedCentralGoogle Scholar
  256. Zhao H, Li Q, Ye M, Yu J (2018) Tear luminex analysis in dry eye patients. Med Sci Monit 24:7595–7602PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anjali Prashar
    • 1
  1. 1.MumbaiIndia

Personalised recommendations