Tear Cocktail: Composition of Tears

  • Anjali Prashar


The seemingly clear tear fluid is actually a complex chemical cocktail comprising everything from proteins and lipids to vitamins, trace elements and the list goes on. Since the entire focus of tear diagnostics is based on altered constituents, understanding what these are is imperative. This chapter covers most of the tear constituents that have been investigated so far.

References: Author’s Tears

  1. Abe T, Nakajima A, Matsunaga M, Sakuragi S, Komatsu M (1999) Decreased tear lactoferrin concentration in patients with chronic hepatitis C. Br J Ophthalmol 83:684–687PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abelson MB, Baird RS, Allansmith MR (1980) Tear histamine levels in vernal conjunctivitis and other ocular inflammations. Ophthalmology 87:812–814PubMedCrossRefGoogle Scholar
  3. Ablamowicz AF, Nichols JJ (2017) Concentrations of MUC16 and MUC5AC using three tear collection methods. Mol Vis 23:529–537PubMedPubMedCentralGoogle Scholar
  4. Acera A, Vecino E, Rodriguez-Agirretxe I, Aloria K et al (2011a) Changes in tear protein profile in keratoconus disease. Eye (Lond) 25:1225–1233CrossRefGoogle Scholar
  5. Acera A, Suarez T, Rodriguez-Agirretxe I, Vecino E, Duran JA (2011b) Changes in tear protein profile in patients with conjunctivochalasis. Cornea 30:42–49PubMedCrossRefPubMedCentralGoogle Scholar
  6. Advedissian T, Deshayes F, Viguier M (2017) Galectin-7 in epithelial homeostasis and carcinomas. Int J Mol Sci 18:2760PubMedCentralCrossRefPubMedGoogle Scholar
  7. Aho HJ, Saari KM, Kallajoki M, Nevalainen TJ (1996) Synthesis of group II phospholipase A2 and lysozyme in lacrimal glands. Invest Ophthalmol Vis Sci 37:1826–1832PubMedGoogle Scholar
  8. Aho VV, Nevalainen TJ, Saari KM (2002b) Group IIA phospholipase A2 content of tears in patients with keratoconjunctivitis sicca. Graefes Arch Clin Exp Ophthalmol 240:521–523PubMedCrossRefGoogle Scholar
  9. Aho VV, Paavilainen V, Nevalainen TJ, Peuravuori H, Saari KM (2003a) Diurnal variation in group IIa phospholipase A2 content in tears of contact lens wearers and normal controls. Graefes Arch Clin Exp Ophthalmol 241:85–88PubMedCrossRefGoogle Scholar
  10. Alexander DB, Iigo M, Yamauchi K, Suzui M, Tsuda H (2012) Lactoferrin: an alternative view of its role in human biological fluids. Biochem Cell Biol 90:279–306PubMedCrossRefGoogle Scholar
  11. Allansmith MR, Radl J, Haaijman JJ, Mestecky J (1985) Molecular forms of tear IgA and distribution of IgA subclasses in human lacrimal glands. J Allergy Clin Immunol 76:569–576PubMedCrossRefGoogle Scholar
  12. Aluru SV, Agarwal S, Srinivasan B, Iyer GK et al (2012) Lacrimal proline rich 4 (LPRR4) protein in the tear fluid is a potential biomarker of dry eye syndrome. PLoS One 7:e51979PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ananthi S, Santhosh RS, Nila MV, Prajna NV et al (2011) Comparative proteomics of human male and female tears by two-dimensional electrophoresis. Exp Eye Res 92:454–463PubMedCrossRefGoogle Scholar
  14. Avetisov SE, Safonova TN, Novikov IA, Pateiuk LS, Griboedova IG (2014) Ocular surface acidity and buffering system (by studying the conjunctival sac). Vestn Oftalmol 130:5–10PubMedGoogle Scholar
  15. Baca JT, Finegold DN, Asher SA (2007a) Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 5:280–293CrossRefGoogle Scholar
  16. Baca JT, Taormina CR, Feingold E, Finegold DN et al (2007b) Mass spectral determination of fasting tear glucose concentrations in nondiabetic volunteers. Clin Chem 53:1370–1372CrossRefGoogle Scholar
  17. Badamchian M, Damavandy AA, Damavandy H, Wadhwa SD et al (2007) Identification and quantification of thymosin beta4 in human saliva and tears. Ann N Y Acad Sci 1112:458–465PubMedCrossRefPubMedCentralGoogle Scholar
  18. Badugu R, Jeng BH, Reece EA, Lakowicz JR (2018) Contact lens to measure individual ion concentrations in tears and applications to dry eye disease. Anal Biochem 542:84–94PubMedCrossRefGoogle Scholar
  19. Balasubramanian SA, Pye DC, Willcox MD (2012a) Levels of lactoferrin, secretory IgA and serum albumin in the tear film of people with keratoconus. Exp Eye Res 96:132–137PubMedCrossRefGoogle Scholar
  20. Balasubramanian SA, Mohan S, Pye DC, Willcox MD (2012b) Proteases, proteolysis and inflammatory molecules in the tears of people with keratoconus. Acta Ophthalmol 90:e303–e309PubMedCrossRefGoogle Scholar
  21. Balasubramanian SA, Pye DC, Willcox MD (2013a) Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus. Clin Exp Optom 96:214–218PubMedCrossRefGoogle Scholar
  22. Balasubramanian SA, Wasinger VC, Pye DC, Willcox MD (2013b) Preliminary identification of differentially expressed tear proteins in keratoconus. Mol Vis 19:2124–2134PubMedPubMedCentralGoogle Scholar
  23. Ballow M, Donshik PC, Mendelson L (1985) Complement proteins and C3 anaphylatoxin in the tears of patients with conjunctivitis. J Allergy Clin Immunol 76:473–476PubMedCrossRefGoogle Scholar
  24. Barka T, Asbell PA, van der Noen H, Prasad A (1991) Cystatins in human tear fluid. Curr Eye Res 10:25–34PubMedCrossRefGoogle Scholar
  25. Barteneva NS, Fasler-Kan E, Bernimoulin M, Stern JN et al (2013) Circulating microparticles: square the circle. BMC Cell Biol 14:23PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bennick A (1982) Salivary proline-rich proteins. Mol Cell Biochem 45:83–99PubMedCrossRefGoogle Scholar
  27. Boehm N, Funke S, Wiegand M, Wehrwein N et al (2013) Alterations in the tear proteome of dry eye patients – a matter of the clinical phenotype. Invest Ophthalmol Vis Sci 54:2385–2392PubMedCrossRefGoogle Scholar
  28. Brauer L, Kindler C, Jager K, Sel S et al (2007a) Detection of surfactant proteins A and D in human tear fluid and the human lacrimal system. Invest Ophthalmol Vis Sci 48:3945–3953PubMedCrossRefGoogle Scholar
  29. Brauer L, Johl M, Borgermann J, Pleyer U et al (2007b) Detection and localization of the hydrophobic surfactant proteins B and C in human tear fluid and the human lacrimal system. Curr Eye Res 32:931–938PubMedCrossRefGoogle Scholar
  30. Brinchmann MF, Patel DM, Iversen MH (2018) The role of galectins as modulators of metabolism and inflammation. Mediators Inflamm 2018:9186940PubMedPubMedCentralCrossRefGoogle Scholar
  31. Butrus SI, Ochsner KI, Abelson MB, Schwartz LB (1990) The level of tryptase in human tears. An indicator of activation of conjunctival mast cells. Ophthalmology 97:1678–1683PubMedCrossRefGoogle Scholar
  32. Byun YS, Lee HJ, Shin S, Chung SH (2017) Elevation of autophagy markers in Sjogren syndrome dry eye. Sci Rep 7:17280PubMedPubMedCentralCrossRefGoogle Scholar
  33. Caffery B, Joyce E, Heynen ML, Jones L et al (2008a) MUC16 expression in Sjogren’s syndrome, KCS, and control subjects. Mol Vis 14:2547–2555PubMedPubMedCentralGoogle Scholar
  34. Cancarini A, Fostinelli J, Napoli L, Gilberti ME et al (2017) Trace elements and diabetes: assessment of levels in tears and serum. Exp Eye Res 154:47–52PubMedCrossRefPubMedCentralGoogle Scholar
  35. Carlson DM (1993) Salivary proline-rich proteins: biochemistry, molecular biology, and regulation of expression. Crit Rev Oral Biol Med 4:495–502PubMedCrossRefGoogle Scholar
  36. Carney LG (1991) Considerations in contact lens use under adverse conditions: proceedings of a symposium. The National Academies Press, Washington, DCGoogle Scholar
  37. Carracedo G, Carpena C, Concepcion P, Diaz V et al (2017) Presence of melatonin in human tears. J Optom 10:3–4PubMedCrossRefGoogle Scholar
  38. Carreno E, Enriquez-de-Salamanca A, Teson M, Garcia-Vazquez C et al (2010) Cytokine and chemokine levels in tears from healthy subjects. Acta Ophthalmol 88:e250–e258PubMedCrossRefGoogle Scholar
  39. Chagas CL, Costa Duarte L, Lobo-Junior EO, Piccin E et al (2015) Hand drawing of pencil electrodes on paper platforms for contactless conductivity detection of inorganic cations in human tear samples using electrophoresis chips. Electrophoresis 36:1837–1844PubMedCrossRefGoogle Scholar
  40. Chen D, Wei Y, Li X, Epstein S et al (2009) sPLA2-IIa is an inflammatory mediator when the ocular surface is compromised. Exp Eye Res 88:880–888PubMedCrossRefGoogle Scholar
  41. Chen S, Dong H, Yang S, Guo H (2017) Cathepsins in digestive cancers. Oncotarget 8:41690–41700PubMedPubMedCentralGoogle Scholar
  42. Chhadva P, Lee T, Sarantopoulos CD, Hackam AS et al (2015) Human tear serotonin levels correlate with symptoms and signs of dry eye. Ophthalmology 122:1675–1680PubMedPubMedCentralCrossRefGoogle Scholar
  43. Choi W, Lian C, Ying L, Kim GE et al (2016) Expression of lipid peroxidation markers in the tear film and ocular surface of patients with non-sjogren syndrome: potential biomarkers for dry eye disease. Curr Eye Res 41:1143–1149PubMedCrossRefGoogle Scholar
  44. Chotikavanich S, de Paiva CS, Li de Q, Chen JJ et al (2009) Production and activity of matrix metalloproteinase-9 on the ocular surface increase in dysfunctional tear syndrome. Invest Ophthalmol Vis Sci 50:3203–3209PubMedPubMedCentralCrossRefGoogle Scholar
  45. Choy CK, Benzie IF, Cho P (2000) Ascorbic acid concentration and total antioxidant activity of human tear fluid measured using the FRASC assay. Invest Ophthalmol Vis Sci 41:3293–3298PubMedPubMedCentralGoogle Scholar
  46. Choy CK, Benzie IF, Cho P (2004) Is ascorbate in human tears from corneal leakage or from lacrimal secretion? Clin Exp Optom 87:24–27PubMedCrossRefGoogle Scholar
  47. Coyle PK, Sibony PA (1986) Tear immunoglobulins measured by ELISA. Invest Ophthalmol Vis Sci 27:622–625PubMedGoogle Scholar
  48. D’Souza S, Tong L (2014) Practical issues concerning tear protein assays in dry eye. Eye Vis (Lond) 1:6CrossRefGoogle Scholar
  49. Daniel E, Duriasamy M, Ebenezer GJ, Shobhana, Job CK (2004) Elevated free tear lactoferrin levels in leprosy are associated with Type 2 reactions. Indian J Ophthalmol 52:51–56PubMedGoogle Scholar
  50. Danjo Y, Lee M, Horimoto K, Hamano T (1994) Ocular surface damage and tear lactoferrin in dry eye syndrome. Acta Ophthalmol (Copenh) 72:433–437CrossRefGoogle Scholar
  51. Darb-Esfahani S, von Minckwitz G, Denkert C, Ataseven B et al (2014) Gross cystic disease fluid protein 15 (GCDFP-15) expression in breast cancer subtypes. BMC Cancer 14:546PubMedPubMedCentralCrossRefGoogle Scholar
  52. Dartt DA (2011) Tear lipocalin: structure and function. Ocul Surf 9:126–138PubMedPubMedCentralCrossRefGoogle Scholar
  53. Dassati S, Waldner A, Schweigreiter R (2014) Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 35:1632–1642PubMedPubMedCentralCrossRefGoogle Scholar
  54. Daum KM, Hill RM (1982) Human tear glucose. Invest Ophthalmol Vis Sci 22:509–514PubMedPubMedCentralGoogle Scholar
  55. De Smet K, Contreras R (2005) Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett 27:1337–1347PubMedCrossRefPubMedCentralGoogle Scholar
  56. de Souza GA, Godoy LM, Mann M (2006) Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors. Genome Biol 7:R72CrossRefPubMedPubMedCentralGoogle Scholar
  57. De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 6:203PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dean AW, Glasgow BJ (2012) Mass spectrometric identification of phospholipids in human tears and tear lipocalin. Invest Ophthalmol Vis Sci 53:1773–1782PubMedPubMedCentralCrossRefGoogle Scholar
  59. Denisin AK, Karns K, Herr AE (2012) Post-collection processing of Schirmer strip-collected human tear fluid impacts protein content. Analyst 137:5088–5096PubMedCrossRefGoogle Scholar
  60. Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13060PubMedGoogle Scholar
  61. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29:313–326PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dikovskaya MA, Trunov AN, Chernykh VV, Korolenko TA (2013) Cystatin C and lactoferrin concentrations in biological fluids as possible prognostic factors in eye tumor development. Int J Circumpolar Health 72:21807CrossRefGoogle Scholar
  63. Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508PubMedCrossRefGoogle Scholar
  64. Doeuvre L, Plawinski L, Toti F, Angles-Cano E (2009) Cell-derived microparticles: a new challenge in neuroscience. J Neurochem 110:457–468PubMedCrossRefGoogle Scholar
  65. Edman MC, Janga SR, Meng Z, Bechtold M et al (2018) Increased Cathepsin S activity associated with decreased protease inhibitory capacity contributes to altered tear proteins in Sjogren’s Syndrome patients. Sci Rep 8:11044PubMedPubMedCentralCrossRefGoogle Scholar
  66. Evans V, Vockler C, Friedlander M, Walsh B, Willcox MD (2001) Lacryglobin in human tears, a potential marker for cancer. Clin Exp Ophthalmol 29:161–163PubMedCrossRefGoogle Scholar
  67. Farnaud S, Evans RW (2003) Lactoferrin – a multifunctional protein with antimicrobial properties. Mol Immunol 40:395–405PubMedCrossRefGoogle Scholar
  68. Feigenbaum D, Lew M, Janga S, Shah MK, Mack W, et al. (2018) Tear proteins as possible biomarkers for Parkinson’s disease. Neurology 90: 19–22Google Scholar
  69. Fleming A (1922) On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc London 93:306–317CrossRefGoogle Scholar
  70. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318(Pt 1):1–14PubMedPubMedCentralCrossRefGoogle Scholar
  71. Fluckinger M, Haas H, Merschak P, Glasgow BJ, Redl B (2004) Human tear lipocalin exhibits antimicrobial activity by scavenging microbial siderophores. Antimicrob Agents Chemother 48:3367–3372PubMedPubMedCentralCrossRefGoogle Scholar
  72. Fukuda M, Fullard RJ, Willcox MD, Baleriola-Lucas C et al (1996) Fibronectin in the tear film. Invest Ophthalmol Vis Sci 37:459–467PubMedPubMedCentralGoogle Scholar
  73. Fullard RJ, Snyder C (1990) Protein levels in nonstimulated and stimulated tears of normal human subjects. Invest Ophthalmol Vis Sci 31:1119–1126PubMedPubMedCentralGoogle Scholar
  74. Gachon AM, Lacazette E (1998) Tear lipocalin and the eye’s front line of defence. Br J Ophthalmol 82:453–455PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720PubMedCrossRefGoogle Scholar
  76. Gasset AR, Braverman LE, Fleming MC, Arky RA, Alter BR (1968) Tear glucose detection of hyperglycemia. Am J Ophthalmol 65:414–420PubMedCrossRefGoogle Scholar
  77. Gasymov OK, Abduragimov AR, Yusifov TN, Glasgow BJ (1999) Interaction of tear lipocalin with lysozyme and lactoferrin. Biochem Biophys Res Commun 265:322–325PubMedCrossRefGoogle Scholar
  78. Gasymov OK, Abduragimov AR, Prasher P, Yusifov TN, Glasgow BJ (2005) Tear lipocalin: evidence for a scavenging function to remove lipids from the human corneal surface. Invest Ophthalmol Vis Sci 46:3589–3596PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gee K, Guzzo C, Che Mat NF, Ma W, Kumar A (2009) The IL-12 family of cytokines in infection, inflammation and autoimmune disorders. Inflamm Allergy Drug Targets 8:40–52PubMedCrossRefGoogle Scholar
  80. Glasgow BJ, Gasymov OK (2011) Focus on molecules: tear lipocalin. Exp Eye Res 92:242–243PubMedCrossRefPubMedCentralGoogle Scholar
  81. Glasgow BJ, Marshall G, Gasymov OK, Abduragimov AR et al (1999) Tear lipocalins: potential lipid scavengers for the corneal surface. Invest Ophthalmol Vis Sci 40:3100–3107PubMedPubMedCentralGoogle Scholar
  82. Glasgow BJ, Abduragimov AR, Gassymov OK, Yusifov TN et al (2002) Vitamin E associated with the lipocalin fraction of human tears. Adv Exp Med Biol 506:567–572PubMedCrossRefPubMedCentralGoogle Scholar
  83. Gogia R, Richer SP, Rose RC (1998) Tear fluid content of electrochemically active components including water soluble antioxidants. Curr Eye Res 17:257–263PubMedCrossRefPubMedCentralGoogle Scholar
  84. Gonzalez-Chavez SA, Arevalo-Gallegos S, Rascon-Cruz Q (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33(301):e301–e308Google Scholar
  85. Gotsch F, Romero R, Friel L, Kusanovic JP et al (2007) CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med 20:777–792PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gould SJ, Raposo G (2013) As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracellular Vesicles 2. CrossRefGoogle Scholar
  87. Gregory RL, Allansmith MR (1986) Naturally occurring IgA antibodies to ocular and oral microorganisms in tears saliva and colostrum: evidence for a common mucosal immune system and local immune response. Exp Eye Res 43:739–749PubMedCrossRefGoogle Scholar
  88. Grigor’eva AE, Tamkovich SN, Eremina AV, Tupikin AE et al (2016a) Characteristics of exosomes andmicroparticles discovered in human tears. Biomed Khim 62:99–106PubMedCrossRefGoogle Scholar
  89. Grus FH, Podust VN, Bruns K, Lackner K et al (2005) SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 46:863–876PubMedCrossRefGoogle Scholar
  90. Gupta G, Surolia A (2007) Collectins: sentinels of innate immunity. Bioessays 29:452–464PubMedCrossRefPubMedCentralGoogle Scholar
  91. Gupta AK, Sarin GS, Mathur MD, Ghosh B (1988) Alpha 1-antitrypsin and serum albumin in tear fluids in acute adenovirus conjunctivitis. Br J Ophthalmol 72:390–393PubMedPubMedCentralCrossRefGoogle Scholar
  92. Haagensen DE Jr, Mazoujian G, Holder WD Jr, Kister SJ, Wells SA Jr (1977) Evaluation of a breast cyst fluid protein detectable in the plasma of breast carcinoma patients. Ann Surg 185:279–285PubMedPubMedCentralCrossRefGoogle Scholar
  93. Ham BM, Jacob JT, Cole RB (2005) MALDI-TOF MS of phosphorylated lipids in biological fluids using immobilized metal affinity chromatography and a solid ionic crystal matrix. Anal Chem 77:4439–4447PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F (2008) Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res 6:892–906PubMedCrossRefGoogle Scholar
  95. Hernandez-Ruiz M, Zlotnik A, Llorente L, Hernandez-Molina G (2018) Markedly high salivary and lacrimal CXCL17 levels in primary Sjogren’s syndrome. Joint Bone Spine 85:379–380PubMedCrossRefGoogle Scholar
  96. Hodges RR, Dartt DA (2013) Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp Eye Res 117:62–78PubMedPubMedCentralCrossRefGoogle Scholar
  97. Holopainen JM, Moilanen JA, Sorsa T, Kivela-Rajamaki M et al (2003) Activation of matrix metalloproteinase-8 by membrane type 1-MMP and their expression in human tears after photorefractive keratectomy. Invest Ophthalmol Vis Sci 44:2550–2556PubMedCrossRefPubMedCentralGoogle Scholar
  98. Holzfeind P, Merschak P, Dieplinger H, Redl B (1995) The human lacrimal gland synthesizes apolipoprotein D mRNA in addition to tear prealbumin mRNA, both species encoding members of the lipocalin superfamily. Exp Eye Res 61:495–500PubMedCrossRefPubMedCentralGoogle Scholar
  99. Hrdličková-Cela E, Plzák J, Smetana K, Mělková Z et al (2001) Detection of galectin-3 in tear fluid at disease states and immunohistochemical and lectin histochemical analysis in human corneal and conjunctival epithelium. Br J Ophthalmol 85:1336PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ihnatko R, Eden U, Lagali N, Dellby A, Fagerholm P (2013) Analysis of protein composition and protein expression in the tear fluid of patients with congenital aniridia. J Proteomics 94:78–88PubMedCrossRefGoogle Scholar
  101. Imanishi J, Takahashi F, Inatomi A, Tagami H et al (1982) Complement levels in human tears. Jpn J Ophthalmol 26:229–233PubMedPubMedCentralGoogle Scholar
  102. Inic-Kanada A, Nussbaumer A, Montanaro J, Belij S et al (2012) Comparison of ophthalmic sponges and extraction buffers for quantifying cytokine profiles in tears using Luminex technology. Mol Vis 18:2717–2725PubMedPubMedCentralGoogle Scholar
  103. Jackson BC, Thompson DC, Wright MW, McAndrews M et al (2011) Update of the human secretoglobin (SCGB) gene superfamily and an example of ‘evolutionary bloom’ of androgen-binding protein genes within the mouse Scgb gene superfamily. Hum Genomics 5:691–702PubMedPubMedCentralCrossRefGoogle Scholar
  104. Janssen PT, van Bijsterveld OP (1983) The relations between tear fluid concentrations of lysozyme, tear-specific prealbumin and lactoferrin. Exp Eye Res 36:773–779PubMedCrossRefPubMedCentralGoogle Scholar
  105. Jensen OL, Gluud BS, Eriksen HO (1985a) Fibronectin in tears following surgical trauma to the eye. Acta Ophthalmol (Copenh) 63:346–350CrossRefGoogle Scholar
  106. Jinno A, Park PW (2015) Role of glycosaminoglycans in infectious disease. Methods Mol Biol 1229:567–585PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jumblatt MM, McKenzie RW, Jumblatt JE (1999) MUC5AC mucin is a component of the human precorneal tear film. Invest Ophthalmol Vis Sci 40:43–49PubMedPubMedCentralGoogle Scholar
  108. Jumblatt MM, Imbert Y, Young WW Jr, Foulks GN et al (2006) Glycoprotein 340 in normal human ocular surface tissues and tear film. Infect Immun 74:4058–4063PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kalra H, Simpson RJ, Ji H, Aikawa E et al (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10:e1001450PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kamboh MI, Ferrell RE (1986) Genetic studies of low-abundance human plasma proteins. I. Microheterogeneity of zinc-alpha 2-glycoprotein in biological fluids. Biochem Genet 24:849–857PubMedCrossRefPubMedCentralGoogle Scholar
  111. Kawai S, Nakajima T, Hokari S, Komoda T, Kawai K (2002) Apolipoprotein A-I concentration in tears in diabetic retinopathy. Ann Clin Biochem 39:56–61PubMedCrossRefGoogle Scholar
  112. Kennel KA, Drake MT, Hurley DL (2010) Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin Proc 85:752–757; quiz 757–758PubMedPubMedCentralCrossRefGoogle Scholar
  113. Keppler D (2006) Towards novel anti-cancer strategies based on cystatin function. Cancer Lett 235:159–176PubMedCrossRefGoogle Scholar
  114. Khaksari M, Mazzoleni LR, Ruan C, Kennedy RT, Minerick AR (2016) Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry. Exp Eye Res 155:54–63PubMedCrossRefGoogle Scholar
  115. Khurshid Z, Najeeb S, Mali M, Moin SF et al (2017) Histatin peptides: pharmacological functions and their applications in dentistry. Saudi Pharm J 25:25–31PubMedCrossRefGoogle Scholar
  116. Kijlstra A (1990) The role of lactoferrin in the nonspecific immune response on the ocular surface. Reg Immunol 3:193–197PubMedGoogle Scholar
  117. Kijlstra A, Kuizenga A (1994) Analysis and function of the human tear proteins. Adv Exp Med Biol 350:299–308PubMedCrossRefGoogle Scholar
  118. Kijlstra A, Jeurissen SH, Koning KM (1983) Lactoferrin levels in normal human tears. Br J Ophthalmol 67:199–202PubMedPubMedCentralCrossRefGoogle Scholar
  119. Kishazi E, Dor M, Eperon S, Oberic A et al (2017) Thyroid-associated orbitopathy and tears: a proteomics study. J Proteomics 170:110–116PubMedCrossRefGoogle Scholar
  120. Koo BS, Lee DY, Ha HS, Kim JC, Kim CW (2005) Comparative analysis of the tear protein expression in blepharitis patients using two-dimensional electrophoresis. J Proteome Res 4:719–724PubMedCrossRefGoogle Scholar
  121. Korb DR, Baron DF, Herman JP, Finnemore VM et al (1994) Tear film lipid layer thickness as a function of blinking. Cornea 13:354–359PubMedCrossRefGoogle Scholar
  122. Kuizenga A, Stolwijk TR, van Agtmaal EJ, van Haeringen NJ, Kijlstra A (1990) Detection of secretory IgM in tears of IgA deficient individuals. Curr Eye Res 9:997–1005PubMedCrossRefGoogle Scholar
  123. Kuwabara T, Ishikawa F, Kondo M, Kakiuchi T (2017) The role of IL-17 and related cytokines in inflammatory autoimmune diseases. Mediators Inflamm 2017:3908061PubMedPubMedCentralCrossRefGoogle Scholar
  124. Lam SM, Tong L, Duan X, Petznick A et al (2014a) Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res 55:289–298PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lam SM, Tong L, Reux B, Duan X et al (2014b) Lipidomic analysis of human tear fluid reveals structure-specific lipid alterations in dry eye syndrome. J Lipid Res 55:299–306PubMedPubMedCentralCrossRefGoogle Scholar
  126. Lambert LA, Perri H, Halbrooks PJ, Mason AB (2005) Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp Biochem Physiol B Biochem Mol Biol 142:129–141PubMedCrossRefPubMedCentralGoogle Scholar
  127. Lasser C (2015) Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 15:103–117PubMedCrossRefPubMedCentralGoogle Scholar
  128. Law RH, Zhang Q, McGowan S, Buckle AM et al (2006) An overview of the serpin superfamily. Genome Biol 7:216PubMedPubMedCentralCrossRefGoogle Scholar
  129. Lee SH, Oh DH, Jung JY, Kim JC, Jeon CO (2012) Comparative ocular microbial communities in humans with and without blepharitis. Invest Ophthalmol Vis Sci 53:5585–5593PubMedCrossRefGoogle Scholar
  130. Lee WY, Wang CJ, Lin TY, Hsiao CL, Luo CW (2013c) CXCL17, an orphan chemokine, acts as a novel angiogenic and anti-inflammatory factor. Am J Physiol Endocrinol Metab 304:E32–E40PubMedCrossRefGoogle Scholar
  131. Lehrer RI, Xu G, Abduragimov A, Dinh NN et al (1998) Lipophilin, a novel heterodimeric protein of human tears. FEBS Lett 432:163–167PubMedCrossRefGoogle Scholar
  132. Lema I, Duran JA (2005) Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology 112:654–659PubMedCrossRefGoogle Scholar
  133. Lema I, Brea D, Rodriguez-Gonzalez R, Diez-Feijoo E, Sobrino T (2010) Proteomic analysis of the tear film in patients with keratoconus. Mol Vis 16:2055–2061PubMedPubMedCentralGoogle Scholar
  134. Leonardi A (2000) Role of histamine in allergic conjunctivitis. Acta Ophthalmol Scand Suppl 230:18–21CrossRefGoogle Scholar
  135. Leonardi A (2013) Allergy and allergic mediators in tears. Exp Eye Res 117:106–117PubMedPubMedCentralCrossRefGoogle Scholar
  136. Leonardi A, Borghesan F, Faggian D, Depaoli M et al (2000) Tear and serum soluble leukocyte activation markers in conjunctival allergic diseases. Am J Ophthalmol 129:151–158PubMedCrossRefPubMedCentralGoogle Scholar
  137. Leonardi A, Jose PJ, Zhan H, Calder VL (2003a) Tear and mucus eotaxin-1 and eotaxin-2 in allergic keratoconjunctivitis. Ophthalmology 110:487–492PubMedCrossRefGoogle Scholar
  138. Leonardi A, Sathe S, Bortolotti M, Beaton A, Sack R (2009) Cytokines, matrix metalloproteases, angiogenic and growth factors in tears of normal subjects and vernal keratoconjunctivitis patients. Allergy 64:710–717PubMedCrossRefPubMedCentralGoogle Scholar
  139. Leonardi A, Borghesan F, Faggian D, Plebani M (2015) Microarray-based IgE detection in tears of patients with vernal keratoconjunctivitis. Pediatr Allergy Immunol 26:641–645PubMedCrossRefPubMedCentralGoogle Scholar
  140. Lew M et al (2018) Tear proteins as possible biomarkers for Parkinson’s disease. AAN 70th annual meeting abstractGoogle Scholar
  141. Li DQ, Pflugfelder SC (2005) Matrix metalloproteinases in corneal inflammation. Ocul Surf 3:S198–S202PubMedPubMedCentralGoogle Scholar
  142. Liu J, Shi B, He S, Yao X et al (2010a) Changes to tear cytokines of type 2 diabetic patients with or without retinopathy. Mol Vis 16:2931–2938PubMedPubMedCentralGoogle Scholar
  143. Luensmann D, Jones L (2012) Protein deposition on contact lenses: the past, the present, and the future. Cont Lens Anterior Eye 35:53–64PubMedCrossRefGoogle Scholar
  144. Madej KA (2010) Analysis of meconium, nails and tears for determination of medicines and drugs of abuse. Trends Analy Chem 29:246–259CrossRefGoogle Scholar
  145. Magister S, Kos J (2013) Cystatins in immune system. J Cancer 4:45–56PubMedCrossRefGoogle Scholar
  146. Marenholz I, Heizmann CW, Fritz G (2004) S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 322:1111–1122PubMedCrossRefGoogle Scholar
  147. Markoulli M, Papas E, Petznick A, Holden B (2011) Validation of the flush method as an alternative to basal or reflex tear collection. Curr Eye Res 36:198–207PubMedCrossRefPubMedCentralGoogle Scholar
  148. Markoulli M, Papas E, Cole N, Holden BA (2012) The diurnal variation of matrix metalloproteinase-9 and its associated factors in human tears. Invest Ophthalmol Vis Sci 53:1479–1484PubMedCrossRefPubMedCentralGoogle Scholar
  149. Martin XD, Brennan MC (1993) Dopamine and its metabolites in human tears. Eur J Ophthalmol 3:83–88PubMedCrossRefGoogle Scholar
  150. Martin XD, Brennan MC (1994) Serotonin in human tears. Eur J Ophthalmol 4:159–165PubMedCrossRefGoogle Scholar
  151. Martin LB, Kita H, Leiferman KM, Gleich GJ (1996) Eosinophils in allergy: role in disease, degranulation, and cytokines. Int Arch Allergy Immunol 109:207–215PubMedCrossRefGoogle Scholar
  152. Martinez R, Acera A, Soria J, Gonzalez N, Suarez T (2011) Allergic mediators in tear from children with seasonal and perennial allergic conjunctivitis. Arch Soc Esp Oftalmol 86:187–192PubMedCrossRefPubMedCentralGoogle Scholar
  153. Masoudi S, Zhong L, Raftery MJ, Stapleton FJ, Willcox MD (2014) Method development for quantification of five tear proteins using selected reaction monitoring (SRM) mass spectrometry. Invest Ophthalmol Vis Sci 55:767–775PubMedCrossRefGoogle Scholar
  154. Maurya RP, Bhushan P, Singh VP, Singh MK et al (2014) Immunoglobulin concentration in tears of contact lens wearers. J Ophthalmic Vis Res 9:320–323PubMedPubMedCentralGoogle Scholar
  155. Mazoujian G, Pinkus GS, Davis S, Haagensen DE Jr (1983) Immunohistochemistry of a gross cystic disease fluid protein (GCDFP-15) of the breast. a marker of apocrine epithelium and breast carcinomas with apocrine features. Am J Pathol 110:105–112PubMedPubMedCentralGoogle Scholar
  156. McDermott AM (2004) Defensins and other antimicrobial peptides at the ocular surface. Ocul Surf 2:229–247PubMedPubMedCentralCrossRefGoogle Scholar
  157. McDermott AM (2013) Antimicrobial compounds in tears. Exp Eye Res 117:53–61PubMedCrossRefGoogle Scholar
  158. McDermott AM, Rich D, Cullor J, Mannis MJ et al (2006) The in vitro activity of selected defensins against an isolate of Pseudomonas in the presence of human tears. Br J Ophthalmol 90:609–611PubMedPubMedCentralCrossRefGoogle Scholar
  159. McGill JI, Liakos GM, Goulding N, Seal DV (1984) Normal tear protein profiles and age-related changes. Br J Ophthalmol 68:316–320PubMedPubMedCentralCrossRefGoogle Scholar
  160. McKown RL, Wang N, Raab RW, Karnati R et al (2009) Lacritin and other new proteins of the lacrimal functional unit. Exp Eye Res 88:848–858PubMedCrossRefGoogle Scholar
  161. McKown RL, Coleman Frazier EV, Zadrozny KK, Deleault AM et al (2014) A cleavage-potentiated fragment of tear lacritin is bactericidal. J Biol Chem 289:22172–22182PubMedPubMedCentralCrossRefGoogle Scholar
  162. McNamara NA, Ge S, Lee SM, Enghauser AM et al (2016) Reduced levels of tear lacritin are associated with corneal neuropathy in patients with the ocular component of sjogren’s syndrome. Invest Ophthalmol Vis Sci 57:5237–5243PubMedPubMedCentralCrossRefGoogle Scholar
  163. Millar TJ, Mudgil P, Butovich IA, Palaniappan CK (2009) Adsorption of human tear lipocalin to human meibomian lipid films. Invest Ophthalmol Vis Sci 50:140–151PubMedCrossRefGoogle Scholar
  164. Mimura T, Usui T, Mori M, Funatsu H et al (2011) Relationship between total tear and serum IgE in allergic conjunctivitis. Int Arch Allergy Immunol 154:349–352PubMedCrossRefGoogle Scholar
  165. Mimura T, Usui T, Yamagami S, Miyai T, Amano S (2012) Relation between total tear IgE and severity of acute seasonal allergic conjunctivitis. Curr Eye Res 37:864–870PubMedCrossRefGoogle Scholar
  166. Molloy MP, Bolis S, Herbert BR, Ou K et al (1997) Establishment of the human reflex tear two-dimensional polyacrylamide gel electrophoresis reference map: new proteins of potential diagnostic value. Electrophoresis 18:2811–2815PubMedCrossRefGoogle Scholar
  167. Montan PG, van Hage-Hamsten M (1996) Eosinophil cationic protein in tears in allergic conjunctivitis. Br J Ophthalmol 80:556–560PubMedPubMedCentralCrossRefGoogle Scholar
  168. Mort JS, Buttle DJ, Cathepsin B (1997) Int J Biochem Cell Biol 29:715–720PubMedCrossRefGoogle Scholar
  169. Mrugacz M, Ostrowska L, Bryl A, Szulc A et al (2017) Pro-inflammatory cytokines associated with clinical severity of dry eye disease of patients with depression. Adv Med Sci 62:338–344PubMedCrossRefPubMedCentralGoogle Scholar
  170. Mudgil P, Torres M, Millar TJ (2006) Adsorption of lysozyme to phospholipid and meibomian lipid monolayer films. Colloids Surf B Biointerfaces 48:128–137PubMedCrossRefPubMedCentralGoogle Scholar
  171. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573PubMedCrossRefPubMedCentralGoogle Scholar
  172. Nakamura Y, Sotozono C, Kinoshita S (1998) Inflammatory cytokines in normal human tears. Curr Eye Res 17:673–676PubMedCrossRefPubMedCentralGoogle Scholar
  173. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S et al (2000) Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am J Pathol 156:899–909PubMedPubMedCentralCrossRefGoogle Scholar
  174. Nevalainen TJ, Aho HJ, Peuravuori H (1994) Secretion of group 2 phospholipase A2 by lacrimal glands. Invest Ophthalmol Vis Sci 35:417–421PubMedPubMedCentralGoogle Scholar
  175. Ni M, Evans DJ, Hawgood S, Anders EM et al (2005) Surfactant protein D is present in human tear fluid and the cornea and inhibits epithelial cell invasion by Pseudomonas aeruginosa. Infect Immun 73:2147–2156PubMedPubMedCentralCrossRefGoogle Scholar
  176. Nomura K, Takamura E (1998) Tear IgE concentrations in allergic conjunctivitis. Eye (Lond) 12(Pt 2):296–298CrossRefGoogle Scholar
  177. Oh JW, Shin JC, Jang SJ, Lee HB (1999) Expression of ICAM-1 on conjunctival epithelium and ECP in tears and serum from children with allergic conjunctivitis. Ann Allergy Asthma Immunol 82:579–585PubMedCrossRefPubMedCentralGoogle Scholar
  178. Ohashi Y, Motokura M, Kinoshita Y, Mano T et al (1989) Presence of epidermal growth factor in human tears. Invest Ophthalmol Vis Sci 30:1879–1882PubMedPubMedCentralGoogle Scholar
  179. Ohashi Y, Dogru M, Tsubota K (2006) Laboratory findings in tear fluid analysis. Clin Chim Acta 369:17–28CrossRefGoogle Scholar
  180. Omali NB, Subbaraman LN, Coles-Brennan C, Fadli Z, Jones LW (2015) Biological and clinical implications of lysozyme deposition on soft contact lenses. Optom Vis Sci 92:750–757PubMedPubMedCentralCrossRefGoogle Scholar
  181. Park KS, Kim SS, Kim JC, Kim HC et al (2008) Serum and tear levels of nerve growth factor in diabetic retinopathy patients. Am J Ophthalmol 145:432–437PubMedCrossRefGoogle Scholar
  182. Perez-Vilar J, Hill RL (1999) The structure and assembly of secreted mucins. J Biol Chem 274:31751–31754PubMedCrossRefPubMedCentralGoogle Scholar
  183. Perumal N, Funke S, Pfeiffer N, Grus FH (2014) Characterization of lacrimal proline-rich protein 4 (PRR4) in human tear proteome. Proteomics 14:1698–1709PubMedCrossRefGoogle Scholar
  184. Perumal N, Funke S, Wolters D, Pfeiffer N, Grus FH (2015) Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics 15:3370–3381PubMedCrossRefGoogle Scholar
  185. Perumal N, Funke S, Pfeiffer N, Grus FH (2016) Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep 6:29629PubMedPubMedCentralCrossRefGoogle Scholar
  186. Peuravuori H, Kari O, Peltonen S, Aho VV et al (2004) Group IIA phospholipase A2 content of tears in patients with atopic blepharoconjunctivitis. Graefes Arch Clin Exp Ophthalmol 242:986–989PubMedCrossRefGoogle Scholar
  187. Peuravuori H, Aho VV, Aho HJ, Collan Y, Saari KM (2006) Bactericidal/permeability-increasing protein in lacrimal gland and in tears of healthy subjects. Graefes Arch Clin Exp Ophthalmol 244:143–148PubMedCrossRefPubMedCentralGoogle Scholar
  188. Pflugfelder SC, Liu Z, Monroy D, Li DQ et al (2000) Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid. Invest Ophthalmol Vis Sci 41:1316–1326PubMedPubMedCentralGoogle Scholar
  189. Pieragostino D, Agnifili L, Cicalini I, Calienno R et al (2017) Tear film steroid profiling in dry eye disease by liquid chromatography tandem mass spectrometry. Int J Mol Sci 18:1349PubMedCentralCrossRefPubMedGoogle Scholar
  190. Pinazo-Duran MD, Zanon-Moreno V, Lleo-Perez A, Garcia-Medina JJ et al (2016) Genetic systems for a new approach to risk of progression of diabetic retinopathy. Arch Soc Esp Oftalmol 91:209–216PubMedCrossRefGoogle Scholar
  191. Posa A, Paulsen F, Dietz R, Garreis F et al (2017) Quantification of surfactant proteins in tears of patients suffering from dry eye disease compared to healthy subjects. Ann Anat 216:90–94PubMedCrossRefGoogle Scholar
  192. Prause JU (1983) Serum albumin, serum antiproteases and polymorphonuclear leucocyte neutral collagenolytic protease in the tear fluid of normal healthy persons. Acta Ophthalmol (Copenh) 61:261–271CrossRefGoogle Scholar
  193. Qu XD, Lehrer RI (1998) Secretory phospholipase A2 is the principal bactericide for staphylococci and other gram-positive bacteria in human tears. Infect Immun 66:2791–2797PubMedPubMedCentralGoogle Scholar
  194. Rantamaki AH, Seppanen-Laakso T, Oresic M, Jauhiainen M, Holopainen JM (2011) Human tear fluid lipidome: from composition to function. PLoS One 6:e19553PubMedPubMedCentralCrossRefGoogle Scholar
  195. Rao K, Farley WJ, Pflugfelder SC (2010) Association between high tear epidermal growth factor levels and corneal subepithelial fibrosis in dry eye conditions. Invest Ophthalmol Vis Sci 51:844–849PubMedPubMedCentralCrossRefGoogle Scholar
  196. Redl B (2000) Human tear lipocalin. Biochim Biophys Acta 1482:241–248PubMedCrossRefGoogle Scholar
  197. Rohit A, Willcox M, Stapleton F (2013a) Tear lipid layer and contact lens comfort: a review. Eye Contact Lens 39:247–253PubMedCrossRefPubMedCentralGoogle Scholar
  198. Rohit A, Stapleton F, Brown SH, Mitchell TW, Willcox MD (2014a) Comparison of tear lipid profile among basal, reflex, and flush tear samples. Optom Vis Sci 91:1391–1395PubMedCrossRefPubMedCentralGoogle Scholar
  199. Rohit A, Willcox MD, Brown SH, Mitchell TW, Stapleton F (2014b) Clinical and biochemical tear lipid parameters in contact lens wearers. Optom Vis Sci 91:1384–1390PubMedCrossRefGoogle Scholar
  200. Roth J, Vogl T, Sorg C, Sunderkotter C (2003) Phagocyte-specific S100 proteins: a novel group of proinflammatory molecules. Trends Immunol 24:155–158PubMedCrossRefGoogle Scholar
  201. Rummenie VT, Matsumoto Y, Dogru M, Wang Y et al (2008) Tear cytokine and ocular surface alterations following brief passive cigarette smoke exposure. Cytokine 43:200–208PubMedCrossRefGoogle Scholar
  202. Runstrom G, Mann A, Tighe B (2013) The fall and rise of tear albumin levels: a multifactorial phenomenon. Ocul Surf 11:165–180PubMedCrossRefGoogle Scholar
  203. Russell ST, Zimmerman TP, Domin BA, Tisdale MJ (2004) Induction of lipolysis in vitro and loss of body fat in vivo by zinc-alpha2-glycoprotein. Biochim Biophys Acta 1636:59–68PubMedCrossRefGoogle Scholar
  204. Saari KM, Aine E, Posz A, Klockars M (1983) Lysozyme content of tears in normal subjects and in patients with external eye infections. Graefes Arch Clin Exp Ophthalmol 221:86–88PubMedCrossRefPubMedCentralGoogle Scholar
  205. Saari KM, Aho V, Paavilainen V, Nevalainen TJ (2001) Group II PLA(2) content of tears in normal subjects. Invest Ophthalmol Vis Sci 42:318–320PubMedPubMedCentralGoogle Scholar
  206. Saatci AO, Irkec M, Ozgunes H (1991) Zinc in tears. Ophthalmic Res 23:31–32PubMedCrossRefGoogle Scholar
  207. Sack RA, Tan KO, Tan A (1992) Diurnal tear cycle: evidence for a nocturnal inflammatory constitutive tear fluid. Invest Ophthalmol Vis Sci 33:626–640PubMedPubMedCentralGoogle Scholar
  208. Saijyothi AV, Fowjana J, Madhumathi S, Rajeshwari M et al (2012) Tear fluid small molecular antioxidants profiling shows lowered glutathione in keratoconus. Exp Eye Res 103:41–46PubMedCrossRefGoogle Scholar
  209. Sakai K, Kino S, Masuda A, Takeuchi M et al (2014) Determination of HEL (Hexanoyl-lysine adduct): a novel biomarker for omega-6 PUFA oxidation. Subcell Biochem 77:61–72PubMedCrossRefGoogle Scholar
  210. Sallenave JM (2010) Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 42:635–643PubMedCrossRefGoogle Scholar
  211. Salvisberg C, Tajouri N, Hainard A, Burkhard PR et al (2014) Exploring the human tear fluid: discovery of new biomarkers in multiple sclerosis. Proteomics Clin Appl 8:185–194PubMedCrossRefGoogle Scholar
  212. Sariri R, Ghafoori H (2008) Tear proteins in health, disease, and contact lens wear. Biochemistry (Mosc) 73:381–392CrossRefGoogle Scholar
  213. Sathe S, Sakata M, Beaton AR, Sack RA (1998) Identification, origins and the diurnal role of the principal serine protease inhibitors in human tear fluid. Curr Eye Res 17:348–362PubMedCrossRefGoogle Scholar
  214. Satoh F, Umemura S, Osamura RY (2000) Immunohistochemical analysis of GCDFP-15 and GCDFP-24 in mammary and non-mammary tissue. Breast Cancer 7:49–55PubMedCrossRefGoogle Scholar
  215. Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA (2015) The fusion of two worlds: non-coding RNAs and extracellular vesicles – diagnostic and therapeutic implications (Review). Int J Oncol 46:17–27PubMedCrossRefPubMedCentralGoogle Scholar
  216. Saville JT, Zhao Z, Willcox MD, Ariyavidana MA et al (2011) Identification of phospholipids in human meibum by nano-electrospray ionisation tandem mass spectrometry. Exp Eye Res 92:238–240PubMedCrossRefPubMedCentralGoogle Scholar
  217. Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125:S41–S52PubMedPubMedCentralCrossRefGoogle Scholar
  218. Seifert K, Gandia NC, Wilburn JK, Bower KS et al (2012) Tear lacritin levels by age, sex, and time of day in healthy adults. Invest Ophthalmol Vis Sci 53:6610–6616PubMedPubMedCentralCrossRefGoogle Scholar
  219. Semeraro F, Costagliola C, Cancarini A, Gilberti E et al (2012) Defining reference values of trace elements in the tear film: diagnostic methods and possible applications. Ecotoxicol Environ Saf 80:190–194CrossRefGoogle Scholar
  220. Sen DK, Sarin GS (1980) Tear glucose levels in normal people and in diabetic patients. Br J Ophthalmol 64:693–695PubMedPubMedCentralCrossRefGoogle Scholar
  221. Sen DK, Sarin GS (1982) Tear lysozyme in lepromatous leprosy. Int J Lepr Other Mycobact Dis 50:322–324PubMedPubMedCentralGoogle Scholar
  222. Sethu S, Shetty R, Deshpande K, Pahuja N et al (2016) Correlation between tear fluid and serum vitamin D levels. Eye Vis (Lond) 3:22CrossRefGoogle Scholar
  223. Shetty R, Ghosh A, Lim RR, Subramani M et al (2015) Elevated expression of matrix metalloproteinase-9 and inflammatory cytokines in keratoconus patients is inhibited by cyclosporine A. Invest Ophthalmol Vis Sci 56:738–750PubMedCrossRefPubMedCentralGoogle Scholar
  224. Shetty R, Sethu S, Chevour P, Deshpande K et al (2016) Lower vitamin D level and distinct tear cytokine profile were observed in patients with mild dry eye signs but exaggerated symptoms. Transl Vis Sci Technol 5:16PubMedPubMedCentralCrossRefGoogle Scholar
  225. Shoji J, Kitazawa M, Inada N, Sawa M et al (2003a) Efficacy of tear eosinophil cationic protein level measurement using filter paper for diagnosing allergic conjunctival disorders. Jpn J Ophthalmol 47:64–68PubMedCrossRefGoogle Scholar
  226. Sim RB, Clark H, Hajela K, Mayilyan KR (2006) Collectins and host defence. Novartis Found Symp 279:170–181; discussion 181–176, 216–179PubMedPubMedCentralGoogle Scholar
  227. Sitaramamma T, Shivaji S, Rao GN (1998) HPLC analysis of closed, open, and reflex eye tear proteins. Indian J Ophthalmol 46:239–245PubMedGoogle Scholar
  228. Sobrin L, Liu Z, Monroy DC, Solomon A et al (2000) Regulation of MMP-9 activity in human tear fluid and corneal epithelial culture supernatant. Invest Ophthalmol Vis Sci 41:1703–1709PubMedGoogle Scholar
  229. Solomon A, Dursun D, Liu Z, Xie Y et al (2001) Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci 42:2283–2292PubMedPubMedCentralGoogle Scholar
  230. Song CH, Choi JS, Kim DK, Kim JC (1999) Enhanced secretory group II PLA2 activity in the tears of chronic blepharitis patients. Invest Ophthalmol Vis Sci 40:2744–2748PubMedGoogle Scholar
  231. Soria J, Acera A, Merayo LJ, Duran JA et al (2017) Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 7:17478PubMedPubMedCentralCrossRefGoogle Scholar
  232. Sorkhabi R, Ghorbanihaghjo A, Ghasemi M, Khabazi A, Ahoor M (2013) Lacritin level in tear film of rheumatoid arthritis patients. IRJO 25:284–287Google Scholar
  233. Spurr-Michaud S, Argueso P, Gipson I (2007) Assay of mucins in human tear fluid. Exp Eye Res 84:939–950PubMedPubMedCentralCrossRefGoogle Scholar
  234. Steele PS, Jumblatt MM, Smith NB, Pierce WM (2002) Detection of histatin 5 in normal human schirmer strip samples by mass spectroscopy. Invest Ophth Vis Sci 43:98–98Google Scholar
  235. Tabbara KF (2001) Tear tryptase in vernal keratoconjunctivitis. Arch Ophthalmol 119:338–342PubMedCrossRefGoogle Scholar
  236. Takenaka Y, Fukumori T, Raz A (2002) Galectin-3 and metastasis. Glycoconj J 19:543–549PubMedCrossRefGoogle Scholar
  237. Tanida I, Ueno T, Kominami E (2008) LC3 and Autophagy. Methods Mol Biol 445:77–88PubMedCrossRefGoogle Scholar
  238. Tchah H (1989) Measurement of IgA level in normal human tears by enzyme-linked immunosorbent assay. Korean J Ophthalmol 3:70–74PubMedCrossRefGoogle Scholar
  239. Tiffany JM (2003) Tears in health and disease. Eye (Lond) 17:923–926CrossRefGoogle Scholar
  240. Tuft SJ, Dart JK (1989) The measurement of IgE in tear fluid: a comparison of collection by sponge or capillary. Acta Ophthalmol (Copenh) 67:301–305CrossRefGoogle Scholar
  241. Ubels JL, MacRae SM (1984) Vitamin A is present as retinol in the tears of humans and rabbits. Curr Eye Res 3:815–822PubMedCrossRefGoogle Scholar
  242. Uchino Y, Uchino M, Yokoi N, Dogru M et al (2014) Alteration of tear mucin 5AC in office workers using visual display terminals: the Osaka Study. JAMA Ophthalmol 132:985–992PubMedCrossRefPubMedCentralGoogle Scholar
  243. Uchino Y, Mauris J, Woodward AM, Dieckow J et al (2015) Alteration of galectin-3 in tears of patients with dry eye disease. Am J Ophthalmol 159:1027–1035. e1023PubMedPubMedCentralCrossRefGoogle Scholar
  244. Uchino Y, Uchino M, Yokoi N, Dogru M et al (2016) Impact of cigarette smoking on tear function and correlation between conjunctival goblet cells and tear MUC5AC concentration in office workers. Sci Rep 6:27699PubMedPubMedCentralCrossRefGoogle Scholar
  245. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64:676–705PubMedCrossRefGoogle Scholar
  246. van Setten GB, Stephens R, Tervo T, Salonen EM et al (1990) Effects of the Schirmer test on the fibrinolytic system in the tear fluid. Exp Eye Res 50:135–141PubMedCrossRefGoogle Scholar
  247. Velez VF, Romano JA, McKown RL, Green K et al (2013) Tissue transglutaminase is a negative regulator of monomeric lacritin bioactivity. Invest Ophthalmol Vis Sci 54:2123–2132CrossRefGoogle Scholar
  248. Venkata SJ, Narayanasamy A, Srinivasan V, Iyer GK et al (2009) Tear ascorbic acid levels and the total antioxidant status in contact lens wearers: a pilot study. Indian J Ophthalmol 57:289–292PubMedPubMedCentralCrossRefGoogle Scholar
  249. Venza I, Visalli M, Ceci G, Teti D (2004) Quantitative determination of histamine in tears during conjunctivitis by a novel HPLC method. Ophthalmic Res 36:62–69PubMedCrossRefGoogle Scholar
  250. Verma M, Lam TK, Hebert E, Divi RL (2015) Extracellular vesicles: potential applications in cancer diagnosis, prognosis, and epidemiology. BMC Clin Pathol 15:6PubMedPubMedCentralCrossRefGoogle Scholar
  251. Versura P, Bavelloni A, Blalock W, Fresina M, Campos EC (2012) A rapid standardized quantitative microfluidic system approach for evaluating human tear proteins. Mol Vis 18:2526–2537PubMedPubMedCentralGoogle Scholar
  252. Versura P, Bavelloni A, Grillini M, Fresina M, Campos EC (2013a) Diagnostic performance of a tear protein panel in early dry eye. Mol Vis 19:1247–1257PubMedPubMedCentralGoogle Scholar
  253. Vogel HJ (2012) Lactoferrin, a bird’s eye view. Biochem Cell Biol 90:233–244PubMedCrossRefGoogle Scholar
  254. Wakamatsu TH, Satake Y, Igarashi A, Dogru M et al (2012) IgE and eosinophil cationic protein (ECP) as markers of severity in the diagnosis of atopic keratoconjunctivitis. Br J Ophthalmol 96:581–586PubMedCrossRefGoogle Scholar
  255. Weber JA, Baxter DH, Zhang S, Huang DY et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741PubMedPubMedCentralCrossRefGoogle Scholar
  256. Wei Y, Gadaria-Rathod N, Epstein S, Asbell P (2013) Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: standard operating procedures. Invest Ophthalmol Vis Sci 54:8327–8336PubMedPubMedCentralCrossRefGoogle Scholar
  257. Wilkinson RD, Williams R, Scott CJ, Burden RE (2015) Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biol Chem 396:867–882PubMedCrossRefPubMedCentralGoogle Scholar
  258. Willcox MD, Morris CA, Thakur A, Sack RA et al (1997) Complement and complement regulatory proteins in human tears. Invest Ophthalmol Vis Sci 38:1–8PubMedPubMedCentralGoogle Scholar
  259. Winiarczyk M, Kaarniranta K, Winiarczyk S, Adaszek L et al (2018) Tear film proteome in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 256:1127–1139PubMedPubMedCentralCrossRefGoogle Scholar
  260. Wizert A, Iskander DR, Cwiklik L (2017) Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study. Biochim Biophys Acta 1859:2289–2296CrossRefGoogle Scholar
  261. Yamada M, Mochizuki H, Kawai M, Tsubota K, Bryce TJ (2005) Decreased tear lipocalin concentration in patients with meibomian gland dysfunction. Br J Ophthalmol 89:803–805PubMedPubMedCentralCrossRefGoogle Scholar
  262. Yamada M, Mochizuki H, Kawashima M, Hata S (2006) Phospholipids and their degrading enzyme in the tears of soft contact lens wearers. Cornea 25:S68–S72PubMedCrossRefGoogle Scholar
  263. Yamamoto GK, Allansmith MR (1979) Complement in tears from normal humans. Am J Ophthalmol 88:758–763PubMedCrossRefPubMedCentralGoogle Scholar
  264. Yasueda S, Yamakawa K, Nakanishi Y, Kinoshita M, Kakehi K (2005) Decreased mucin concentrations in tear fluids of contact lens wearers. J Pharm Biomed Anal 39:187–195PubMedCrossRefPubMedCentralGoogle Scholar
  265. Yoon KC, Park CS, You IC, Choi HJ et al (2010) Expression of CXCL9, -10, -11, and CXCR3 in the tear film and ocular surface of patients with dry eye syndrome. Invest Ophthalmol Vis Sci 51:643–650PubMedPubMedCentralCrossRefGoogle Scholar
  266. You J, Fitzgerald A, Cozzi PJ, Zhao Z et al (2010) Post-translation modification of proteins in tears. Electrophoresis 31:1853–1861PubMedCrossRefPubMedCentralGoogle Scholar
  267. You J, Willcox M, Fitzgerald A, Schiller B et al (2016a) Absolute quantification of human tear lactoferrin using multiple reaction monitoring technique with stable-isotopic labeling. Anal Biochem 496:30–34PubMedCrossRefPubMedCentralGoogle Scholar
  268. Yu L, Chen X, Qin G, Xie H, Lv P (2008) Tear film function in type 2 diabetic patients with retinopathy. Ophthalmologica 222:284–291PubMedPubMedCentralCrossRefGoogle Scholar
  269. Yusifov TN, Abduragimov AR, Gasymov OK, Glasgow BJ (2000) Endonuclease activity in lipocalins. Biochem J 347(Pt 3):815–819PubMedPubMedCentralCrossRefGoogle Scholar
  270. Yusifov TN, Abduragimov AR, Narsinh K, Gasymov OK, Glasgow BJ (2008) Tear lipocalin is the major endonuclease in tears. Mol Vis 14:180–188PubMedPubMedCentralGoogle Scholar
  271. Zaidi MR, Merlino G (2011) The two faces of interferon-gamma in cancer. Clin Cancer Res 17:6118–6124PubMedPubMedCentralCrossRefGoogle Scholar
  272. Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45:27–37PubMedPubMedCentralCrossRefGoogle Scholar
  273. Zhao H, Jumblatt JE, Wood TO, Jumblatt MM (2001) Quantification of MUC5AC protein in human tears. Cornea 20:873–877PubMedCrossRefGoogle Scholar
  274. Zhao Z, Liu J, Shi B, He S et al (2010) Advanced glycation end product (AGE) modified proteins in tears of diabetic patients. Mol Vis 16:1576–1584PubMedPubMedCentralGoogle Scholar
  275. Zhou L, Huang LQ, Beuerman RW, Grigg ME et al (2004) Proteomic analysis of human tears: defensin expression after ocular surface surgery. J Proteome Res 3:410–416PubMedCrossRefGoogle Scholar
  276. Zhou L, Beuerman RW, Ang LP, Chan CM et al (2009) Elevation of human alpha-defensins and S100 calcium-binding proteins A8 and A9 in tear fluid of patients with pterygium. Invest Ophthalmol Vis Sci 50:2077–2086PubMedCrossRefGoogle Scholar
  277. Zhou L, Zhao SZ, Koh SK, Chen L et al (2012) In-depth analysis of the human tear proteome. J Proteomics 75:3877–3885PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anjali Prashar
    • 1
  1. 1.MumbaiIndia

Personalised recommendations