Advertisement

Crying on the Spot: Collection and Storage

  • Anjali Prashar
Chapter

Abstract

It is vital that the diagnostic tears are collected efficiently and gently for investigation, particularly since the entire focus here is of non-invasiveness. This chapter summarizes different collection techniques and how they are comparable with each other and emphasizes how the collection technique selected should be simple, with high sensitivity and reproducibility, low variability and provide an unaltered sample.

References: Author’s Tears

  1. Aho VV, Nevalainen TJ, Saari KM (2002a) Group IIA phospholipase A2 content of basal, nonstimulated and reflex tears. Curr Eye Res 24:224–227CrossRefGoogle Scholar
  2. Baca JT, Finegold DN, Asher SA (2007a) Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 5:280–293CrossRefGoogle Scholar
  3. Chhadva P, Lee T, Sarantopoulos CD, Hackam AS et al (2015) Human tear serotonin levels correlate with symptoms and signs of dry eye. Ophthalmology 122:1675–1680CrossRefGoogle Scholar
  4. Choy CK, Cho P, Chung WY, Benzie IF (2001) Water-soluble antioxidants in human tears: effect of the collection method. Invest Ophthalmol Vis Sci 42:3130–3134PubMedGoogle Scholar
  5. Choy CK, Benzie IF, Cho P (2004) Is ascorbate in human tears from corneal leakage or from lacrimal secretion? Clin Exp Optom 87:24–27CrossRefGoogle Scholar
  6. Chrai SS, Robinson JR (1976) Binding of sulfisoxazole to protein fractions of tears. J Pharm Sci 65:437–439CrossRefGoogle Scholar
  7. Comoglu SS, Guven H, Acar M, Ozturk G, Kocer B (2013) Tear levels of tumor necrosis factor-alpha in patients with Parkinson’s disease. Neurosci Lett 553:63–67CrossRefGoogle Scholar
  8. Daniel E, Duriasamy M, Ebenezer GJ, Shobhana, Job CK (2004) Elevated free tear lactoferrin levels in leprosy are associated with Type 2 reactions. Indian J Ophthalmol 52:51–56PubMedGoogle Scholar
  9. Dogru M, Katakami C, Inoue M (2001) Tear function and ocular surface changes in noninsulin-dependent diabetes mellitus. Ophthalmology 108:586–592CrossRefGoogle Scholar
  10. Dumortier G, Chaumeil JC (2004) Lachrymal determinations: methods and updates on biopharmaceutical and clinical applications. Ophthalmic Res 36:183–194CrossRefGoogle Scholar
  11. Enriquez-de-Salamanca A, Castellanos E, Stern ME, Fernandez I et al (2010) Tear cytokine and chemokine analysis and clinical correlations in evaporative-type dry eye disease. Mol Vis 16:862–873PubMedPubMedCentralGoogle Scholar
  12. Esmaeelpour M, Boulton M, Cai J, Murphy PJ (2005) The effect of tear collection technique on the accuracy of total tear protein, major proteins, and serum albumin. Invest Ophth Vis Sci 46:4398–4398Google Scholar
  13. Esmaeelpour M, Cai J, Watts P, Boulton M, Murphy PJ (2008) Tear sample collection using cellulose acetate absorbent filters. Ophthalmic Physiol Opt 28:577–583CrossRefGoogle Scholar
  14. Esmaeelpour M, Watts PO, Boulton ME, Cai J, Murphy PJ (2011) Tear film volume and protein analysis in full-term newborn infants. Cornea 30:400–404CrossRefGoogle Scholar
  15. Fukuda M, Fullard RJ, Willcox MD, Baleriola-Lucas C et al (1996) Fibronectin in the tear film. Invest Ophthalmol Vis Sci 37:459–467PubMedGoogle Scholar
  16. Fullard RJ, Snyder C (1990) Protein levels in nonstimulated and stimulated tears of normal human subjects. Invest Ophthalmol Vis Sci 31:1119–1126PubMedGoogle Scholar
  17. Fullard RJ, Tucker DL (1991) Changes in human tear protein levels with progressively increasing stimulus. Invest Ophthalmol Vis Sci 32:2290–2301PubMedGoogle Scholar
  18. Goebbels M (2000) Tear secretion and tear film function in insulin dependent diabetics. Br J Ophthalmol 84:19–21CrossRefGoogle Scholar
  19. Green-Church KB, Nichols KK, Kleinholz NM, Zhang L, Nichols JJ (2008) Investigation of the human tear film proteome using multiple proteomic approaches. Mol Vis 14:456–470PubMedPubMedCentralGoogle Scholar
  20. Green-Church KB, Butovich I, Willcox M, Borchman D et al (2011) The international workshop on meibomian gland dysfunction: report of the subcommittee on tear film lipids and lipid-protein interactions in health and disease. Invest Ophthalmol Vis Sci 52:1979–1993CrossRefGoogle Scholar
  21. Grus FH, Podust VN, Bruns K, Lackner K et al (2005) SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci 46:863–876CrossRefGoogle Scholar
  22. Inic-Kanada A, Nussbaumer A, Montanaro J, Belij S et al (2012) Comparison of ophthalmic sponges and extraction buffers for quantifying cytokine profiles in tears using Luminex technology. Mol Vis 18:2717–2725PubMedPubMedCentralGoogle Scholar
  23. Jones DT, Monroy D, Pflugfelder SC (1997) A novel method of tear collection: comparison of glass capillary micropipettes with porous polyester rods. Cornea 16:450–458CrossRefGoogle Scholar
  24. Kato M, Masamura N, Shono J, Okamoto D et al (2016) Production and characterization of tearless and non-pungent onion. Sci Rep 6:23779CrossRefGoogle Scholar
  25. Kijlstra A, Jeurissen SH, Koning KM (1983) Lactoferrin levels in normal human tears. Br J Ophthalmol 67:199–202CrossRefGoogle Scholar
  26. Lam SM, Tong L, Duan X, Petznick A et al (2014a) Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res 55:289–298CrossRefGoogle Scholar
  27. Lee SH, Oh DH, Jung JY, Kim JC, Jeon CO (2012) Comparative ocular microbial communities in humans with and without blepharitis. Invest Ophthalmol Vis Sci 53:5585–5593CrossRefGoogle Scholar
  28. Lee SY, Han SJ, Nam SM, Yoon SC et al (2013a) Analysis of tear cytokines and clinical correlations in Sjogren syndrome dry eye patients and non-Sjogren syndrome dry eye patients. Am J Ophthalmol 156:247–253 e241CrossRefGoogle Scholar
  29. Lee SY, Kim MJ, Kim MK, Wee WR (2013b) Comparative analysis of polymerase chain reaction assay for herpes simplex virus 1 detection in tear. Korean J Ophthalmol 27:316–321CrossRefGoogle Scholar
  30. Lehrer RI, Xu G, Abduragimov A, Dinh NN et al (1998) Lipophilin, a novel heterodimeric protein of human tears. FEBS Lett 432:163–167CrossRefGoogle Scholar
  31. Leonardi A (2013) Allergy and allergic mediators in tears. Exp Eye Res 117:106–117CrossRefGoogle Scholar
  32. Leonardi A, Jose PJ, Zhan H, Calder VL (2003a) Tear and mucus eotaxin-1 and eotaxin-2 in allergic keratoconjunctivitis. Ophthalmology 110:487–492CrossRefGoogle Scholar
  33. Lin C-E, Hiraka K, Matloff D, Johns J et al (2018) Development toward a novel integrated tear lactate sensor using Schirmer test strip and engineered lactate oxidase. Sensors Actuators B Chem 270:525–529CrossRefGoogle Scholar
  34. Liu C, Sheng Y, Sun Y, Feng J et al (2015) A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva. Biosens Bioelectron 70:455–461CrossRefGoogle Scholar
  35. Lopez Solis R, Traipe Castro L, Salinas Toro D, Srur M, Toledo Araya H (2013) Microdesiccates produced from normal human tears display four distinctive morphological components. Biol Res 46:299–305CrossRefGoogle Scholar
  36. Lopez-Cisternas J, Castillo-Diaz J, Traipe-Castro L, Lopez-Solis RO (2006) Use of polyurethane minisponges to collect human tear fluid. Cornea 25:312–318CrossRefGoogle Scholar
  37. Madej KA (2010) Analysis of meconium, nails and tears for determination of medicines and drugs of abuse. Trends Analy Chem 29:246–259CrossRefGoogle Scholar
  38. Markoulli M, Papas E, Petznick A, Holden B (2011) Validation of the flush method as an alternative to basal or reflex tear collection. Curr Eye Res 36:198–207CrossRefGoogle Scholar
  39. Markoulli M, Papas E, Cole N, Holden BA (2012) The diurnal variation of matrix metalloproteinase-9 and its associated factors in human tears. Invest Ophthalmol Vis Sci 53:1479–1484CrossRefGoogle Scholar
  40. Ng V, Cho P, Mak S, Lee A (2000) Variability of tear protein levels in normal young adults: between-day variation. Graefes Arch Clin Exp Ophthalmol 238:892–899CrossRefGoogle Scholar
  41. Osei KA, Ovenseri-Ogbomo G, Kyei S, Ntodie M (2014) The effect of caffeine on tear secretion. Optom Vis Sci 91:171–177PubMedGoogle Scholar
  42. Pelikan Z (2014a) Cellular changes in tears associated with keratoconjunctival responses induced by nasal allergy. Eye (Lond) 28:430–438CrossRefGoogle Scholar
  43. Perumal N, Funke S, Wolters D, Pfeiffer N, Grus FH (2015) Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics 15:3370–3381CrossRefGoogle Scholar
  44. Pinazo-Duran MD, Galbis-Estrada C, Pons-Vazquez S, Cantu-Dibildox J et al (2013) Effects of a nutraceutical formulation based on the combination of antioxidants and omega-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders. Clin Interv Aging 8:139–148CrossRefGoogle Scholar
  45. Posa A, Brauer L, Schicht M, Garreis F et al (2013) Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid. Ann Anat 195:137–142CrossRefGoogle Scholar
  46. Qin W, Zhao C, Zhang L, Gao Y (2017) A dry method for preserving tear samples. bioRxiv.  https://doi.org/10.1101/131060
  47. Qu XD, Lehrer RI (1998) Secretory phospholipase A2 is the principal bactericide for staphylococci and other gram-positive bacteria in human tears. Infect Immun 66:2791–2797PubMedPubMedCentralGoogle Scholar
  48. Quah JH, Tong L, Barbier S (2014) Patient acceptability of tear collection in the primary healthcare setting. Optom Vis Sci 91:452–458CrossRefGoogle Scholar
  49. Rabensteiner DF, Spreitzhofer E, Trummer G, Wachswender C et al (2010) Pollen enzymes degrade human tear fluid and conjunctival cells: an approach to understanding seasonal non-allergic conjunctivitis. Dev Ophthalmol 45:83–92CrossRefGoogle Scholar
  50. Rohit A, Stapleton F, Brown SH, Mitchell TW, Willcox MD (2014a) Comparison of tear lipid profile among basal, reflex, and flush tear samples. Optom Vis Sci 91:1391–1395CrossRefGoogle Scholar
  51. Sakamoto R, Bennett ES, Henry VA, Paragina S et al (1993) The phenol red thread tear test: a cross-cultural study. Invest Ophthalmol Vis Sci 34:3510–3514PubMedGoogle Scholar
  52. Sariri R, Varasteh A, Sajedi RH (2010) Effect of Ramadan fasting on tear proteins. Acta Medica (Hradec Kralove) 53:147–151CrossRefGoogle Scholar
  53. Sayin N, Kara N, Pekel G (2015) Ocular complications of diabetes mellitus. World J Diabetes 6:92–108CrossRefGoogle Scholar
  54. Schmut O, Horwath-Winter J, Zenker A, Trummer G (2002) The effect of sample treatment on separation profiles of tear fluid proteins: qualitative and semi-quantitative protein determination by an automated analysis system. Graefes Arch Clin Exp Ophthalmol 240:900–905CrossRefGoogle Scholar
  55. Semeraro F, Costagliola C, Cancarini A, Gilberti E et al (2012) Defining reference values of trace elements in the tear film: diagnostic methods and possible applications. Ecotoxicol Environ Saf 80:190–194CrossRefGoogle Scholar
  56. Senchyna M, Wax MB (2008) Quantitative assessment of tear production: a review of methods and utility in dry eye drug discovery. J Ocul Biol Dis Infor 1:1–6CrossRefGoogle Scholar
  57. Solomon A, Dursun D, Liu Z, Xie Y et al (2001) Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci 42:2283–2292PubMedGoogle Scholar
  58. Soria J, Duran JA, Etxebarria J, Merayo J et al (2013) Tear proteome and protein network analyses reveal a novel pentamarker panel for tear film characterization in dry eye and meibomian gland dysfunction. J Proteomics 78:94–112CrossRefGoogle Scholar
  59. Soria J, Acera A, Merayo LJ, Duran JA et al (2017) Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 7:17478CrossRefGoogle Scholar
  60. Sorkhabi R, Ghorbanihaghjo A, Ghasemi M, Khabazi A, Ahoor M (2013) Lacritin level in tear film of rheumatoid arthritis patients. IRJO 25:284–287Google Scholar
  61. Spurr-Michaud S, Argueso P, Gipson I (2007) Assay of mucins in human tear fluid. Exp Eye Res 84:939–950CrossRefGoogle Scholar
  62. Stuchell RN, Feldman JJ, Farris RL, Mandel ID (1984) The effect of collection technique on tear composition. Invest Ophthalmol Vis Sci 25:374–377PubMedGoogle Scholar
  63. Traipe-Castro L, Salinas-Toro D, Lopez D, Zanolli M et al (2014) Dynamics of tear fluid desiccation on a glass surface: a contribution to tear quality assessment. Biol Res 47:25CrossRefGoogle Scholar
  64. Uchino Y, Uchino M, Yokoi N, Dogru M et al (2014) Alteration of tear mucin 5AC in office workers using visual display terminals: the Osaka Study. JAMA Ophthalmol 132:985–992CrossRefGoogle Scholar
  65. van Agtmaal EJ, van Haeringen NJ, Bloem MW, Schreurs WH, Saowakontha S (1987) Recovery of protein from tear fluid stored in cellulose sponges. Curr Eye Res 6:585–588CrossRefGoogle Scholar
  66. van Setten GB, Stephens R, Tervo T, Salonen EM et al (1990) Effects of the Schirmer test on the fibrinolytic system in the tear fluid. Exp Eye Res 50:135–141CrossRefGoogle Scholar
  67. van Setten GB, Blalock TD, Grotendorst G, Schultz GS (2003) Detection of connective tissue growth factor (CTGF) in human tear fluid: preliminary results. Acta Ophthalmol Scand 81:51–53CrossRefGoogle Scholar
  68. Vashisht S, Singh S (2011) Evaluation of Phenol Red Thread test versus Schirmer test in dry eyes: a comparative study. Int J Appl Basic Med Res 1:40–42CrossRefGoogle Scholar
  69. Wei Y, Gadaria-Rathod N, Epstein S, Asbell P (2013) Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: standard operating procedures. Invest Ophthalmol Vis Sci 54:8327–8336CrossRefGoogle Scholar
  70. Yu L, Chen X, Qin G, Xie H, Lv P (2008) Tear film function in type 2 diabetic patients with retinopathy. Ophthalmologica 222:284–291CrossRefGoogle Scholar
  71. Yusifov TN, Abduragimov AR, Narsinh K, Gasymov OK, Glasgow BJ (2008) Tear lipocalin is the major endonuclease in tears. Mol Vis 14:180–188PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Anjali Prashar
    • 1
  1. 1.MumbaiIndia

Personalised recommendations