Signal Integrity Analysis for Diameter-Dependent Mixed Carbon Nanotube Bundle Interconnects

  • Vijay Rao Kumbhare
  • Punya Prasanna Paltani
  • Manoj Kumar MajumderEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 933)


Recent VLSI technology considers the structure and modeling approach of mixed carbon nanotube bundle (MCB) interconnects. Initially, this research paper models different MCB structures by considering diameter-dependent modeling of interconnect parasitics. Finally, the unique models are used to study the effect of signal integrity using multi-line bus architecture. Crosstalk induced delay is analyzed by various dimensions of MCB using lengths which vary from 100 to 500 µm of global interconnects. Using industry standard HSPICE circuit simulations, it is observed that the overall improvement in crosstalk induced delay is 6.8% for novel MCB structure having single- and multi-walled CNTs (SWCNT and MWCNT) as compared to MCB containing SW- and DWCNT.


Mixed CNT bundle (MCB) Carbon nanotube (CNT) Signal integrity Propagation delay Interconnect Crosstalk 


  1. 1.
    Kaushik, B.K., Majumder, M.K., Kumar, V.R.: Carbon Nanotube based 3-D interconnects—a reality or a distant dream. IEEE Circ. Syst. Mag. 14(4), 16–35 (2014)CrossRefGoogle Scholar
  2. 2.
    Li, H.: Carbon nanomaterials for next-generation interconnects and passives: physics, statu, and prospects. IEEE Trans. Electr. Devices 56(9), 1799–1821 (2009)CrossRefGoogle Scholar
  3. 3.
    Xu, Y., Srivastava, A.: A model for carbon nanotube interconnects. Int. J. Circ. Theory Appl. 38(6), 559–575 (2010)zbMATHGoogle Scholar
  4. 4.
    Kumar, V.R., Majumder, M.K., Kaushik, B.K.: Graphene based on-chip interconnects and TSVs—prospects and challenges. IEEE Nanatechnol. Mag. 8(4), 14–20 (2014)CrossRefGoogle Scholar
  5. 5.
    International Technology Roadmap for Semiconductors: (2012), [Online]. Available:
  6. 6.
    Im, S., Srivastava, N., Banerjee, K., Goodson, K.E.: Scaling analysis of multilevel interconnect temperatures for high performance ICs. IEEE Trans. Electr. Devices 52(12), 2710–2719 (2005)CrossRefGoogle Scholar
  7. 7.
    Yokogawa, S., et al.: Tradeoff characteristics between resistivity and reliability for scaled-down cu-based interconnects. IEEE Trans. Electr. Devices 55(1), 350–357 (2008)CrossRefGoogle Scholar
  8. 8.
    Dadgour, H., Cassell, A.M., Banerjee, K.: Scaling and variability analysis of CNT-based NEMS devices and circuits with implications for process design. In IEDM Tech. Dig. pp. 529–532 (2008)Google Scholar
  9. 9.
    Li, H., Xu, C., Srivastava, N., Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: physics, status and prospects. IEEE Trans. Electr. Devices 56(9), 1799–1821 (2009)CrossRefGoogle Scholar
  10. 10.
    Subramaniam, C.H. et al.: One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite. Nature Commun. 2, 2202 (20013)Google Scholar
  11. 11.
    Han, Zh, Fina, A.: Thermal Conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36(7), 914–944 (2011)CrossRefGoogle Scholar
  12. 12.
    Berber, S., Kwon, Y.-K., Tomanek, D.: Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 84(20), 4613–4616 (2000)CrossRefGoogle Scholar
  13. 13.
    Avorious, P., Chen, Z., Perebeions, V.: Carbon-based electronics. Nat. Nanotechnol. 2(10), 605–613 (2007)CrossRefGoogle Scholar
  14. 14.
    Subash, S., Kolar, J., Masud, H.: A new spatially rearranged bundle of mixed carbon nanotubes as VLSI interconnect. IEEE Trans. Nanotechnol. 12(1), 3–12 (2011)CrossRefGoogle Scholar
  15. 15.
    Naeemi, A., Meindl, J.D.: Compact physical models for multiwall carbon-nanotube interconnects. IEEE Electr. Devices Lett. 27(5), 338–340 (2006)CrossRefGoogle Scholar
  16. 16.
    Li, H., Yin, W.Y., Banerjee, K., Mao, J.F.: Circuit modeling and performance analysis of multi-walled carbon nanaotube interconects. IEEE Trans. Electr. Devices 55(6), 1328–1337 (2008)CrossRefGoogle Scholar
  17. 17.
    Burke, P.J.: Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Trans. Nanotechnol. 1(3), 129–144 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Majumder, M.K., Pandya, N.D., Kaushik, B.K., Manhas, S.K.: Dynamic crosstalk effect in mixed CNT bundle interconnects. IET Electr. Lett. 48(7), 384–385 (2012)CrossRefGoogle Scholar
  19. 19.
    Kaushik, B.K., Sankar, S., Agarwal, R.P., Joshi, R.C.: An analytic approach to dynamic crosstalk in coupled interconnects. Microelectronic. J. 41(2/3), 85–92 (2010)CrossRefGoogle Scholar
  20. 20.
    Majumder, M.K., Kaushik, B.K., Manhas, S.K.: Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 56(6), 1666–1673 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vijay Rao Kumbhare
    • 1
  • Punya Prasanna Paltani
    • 1
  • Manoj Kumar Majumder
    • 1
    Email author
  1. 1.Dr. S. P. Mukherjee International Institute of Information TechnologyNaya RaipurIndia

Personalised recommendations