Advertisement

Advanced Approaches for Medical Image Segmentation

  • Sanjay SaxenaEmail author
  • Adhesh Garg
  • Puspanjali Mohapatra
Chapter

Abstract

Image segmentation, i.e., dividing an image into its constituent’s regions, is a decisive phase in plentiful medical imaging studies to extract meaningful information such as shape, volume, motion, and abnormalities and to quantify changes of the human organs by radiologists and investigators, which can be facilitated by several automated computational procedures. Several efficient approaches for medical image segmentation have been developed till now based on hard and soft computing models such as thresholding, clustering, graph cut approaches, fuzzy-based approaches, neural network approaches, and many more. Tremendous success of deep learning nowadays has achieved state-of-the-art performance for instinctive medical image segmentation. This chapter provides the brief introduction about medical image segmentation and several current researches for the precise dissection. Further, it will provide the information about the deep learning used as an advanced approach presently for accurate segmentation of medical images.

Keywords

Medical image segmentation Medical imaging Deep learning Computational intelligence techniques 

References

  1. 1.
    Reyes Aldasoro C, Bhalerao A (2007) Volumetric texture segmentation by discriminant feature selection and multiresolution classification. IEEE Trans Med Imaging 26(1):1–14.  https://doi.org/10.1109/tmi.2006.884637CrossRefPubMedGoogle Scholar
  2. 2.
    Sharma N, Ray A, Shukla K, Sharma S, Pradhan S, Srivastva A, Aggarwal L (2010) Automated medical image segmentation techniques. J Med Phys 35(1):3.  https://doi.org/10.4103/0971-6203.58777CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mesejo P, Ibáñez Ó, Cordón Ó, Cagnoni S (2016) A survey on image segmentation using metaheuristic-based deformable models: state of the art and critical analysis. Appl Soft Comput 44:1–29.  https://doi.org/10.1016/j.asoc.2016.03.004CrossRefGoogle Scholar
  4. 4.
    Choy S, Lam S, Yu K, Lee W, Leung K (2017) Fuzzy model-based clustering and its application in image segmentation. Pattern Recogn 68:141–157.  https://doi.org/10.1016/j.patcog.2017.03.009CrossRefGoogle Scholar
  5. 5.
    Li Y, Shen Y (2009) An automatic fuzzy c-means algorithm for image segmentation. Soft Comput 14(2):123–128.  https://doi.org/10.1007/s00500-009-0442-0CrossRefGoogle Scholar
  6. 6.
    Jiao L, Gong M, Wang S, Hou B, Zheng Z, Wu Q (2010) Natural and remote sensing image segmentation using memetic computing. IEEE Comput Intell Mag 5(2):78–91.  https://doi.org/10.1109/mci.2010.936307CrossRefGoogle Scholar
  7. 7.
    Angel Arul Jothi J, Mary Anita Rajam V (2016) A survey on automated cancer diagnosis from histopathology images. Artif Intell Rev 48(1):31–81.  https://doi.org/10.1007/s10462-016-9494-6CrossRefGoogle Scholar
  8. 8.
    Saritha S, Amutha Prabha N (2016) A comprehensive review: segmentation of MRI images-brain tumor. Int J Imaging Syst Technol 26(4):295–304.  https://doi.org/10.1002/ima.22201CrossRefGoogle Scholar
  9. 9.
    Zhao Q, Li X, Li Y, Zhao X (2017) A fuzzy clustering image segmentation algorithm based on Hidden Markov Random Field models and Voronoi Tessellation. Pattern Recogn Lett 85:49–55.  https://doi.org/10.1016/j.patrec.2016.11.019CrossRefGoogle Scholar
  10. 10.
    Aghajari E, Chandrashekhar G (2017) Self-organizing map based extended Fuzzy C-means (SEEFC) algorithm for image segmentation. Appl Soft Comput 54:347–363.  https://doi.org/10.1016/j.asoc.2017.01.003CrossRefGoogle Scholar
  11. 11.
    Borges V, Guliato D, Barcelos C, Batista M (2014) An iterative fuzzy region competition algorithm for multiphase image segmentation. Soft Comput 19(2):339–351.  https://doi.org/10.1007/s00500-014-1256-2CrossRefGoogle Scholar
  12. 12.
    Sonka M, Hlavac V, Boyle R (1999) Image processing, analysis and machine vision. Thomson Learning, SingaporeGoogle Scholar
  13. 13.
    Bhaumik H, Bhattacharyya S, Nath M, Chakraborty S (2016) Hybrid soft computing approaches to content based video retrieval: a brief review. Appl Soft Comput 46:1008–1029.  https://doi.org/10.1016/j.asoc.2016.03.022CrossRefGoogle Scholar
  14. 14.
    Jiang X, Wang Q, He B, Chen S, Li B (2016) Robust level set image segmentation algorithm using local correntropy-based fuzzy c-means clustering with spatial constraints. Neurocomputing 207:22–35.  https://doi.org/10.1016/j.neucom.2016.03.046CrossRefGoogle Scholar
  15. 15.
    Ibrahim D (2016) An overview of soft computing. In: 12th international conference on application of fuzzy systems and soft computing, ICAFS 2016, Vienna, Austria. Proc Comput Sci 102:34–38. , 29–30.  https://doi.org/10.1016/j.procs.2016.09.366CrossRefGoogle Scholar
  16. 16.
    Lee J, Jun S, Cho Y, Lee H, Kim G, Seo J, Kim N (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18(4):570.  https://doi.org/10.3348/kjr.2017.18.4.570CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wong K (n.d.) Medical image segmentation: methods and applications in functional imaging. Topics in biomedical engineering international book series handbook of biomedical image analysis, pp 111–182.  https://doi.org/10.1007/0-306-48606-7_3
  18. 18.
    Saad NM, Abu-Bakar SA, Muda S, Mokji M (2011) Segmentation of brain lesions in diffusion-weighted MRI using thresholding technique. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA).  https://doi.org/10.1109/icsipa.2011.6144092
  19. 19.
    Aslam A, Khan E, Beg MS (2015) Improved edge detection algorithm for brain tumor segmentation. Proc Comput Sci 58:430–437.  https://doi.org/10.1016/j.procs.2015.08.057CrossRefGoogle Scholar
  20. 20.
    Mathur N, Mathur S, Mathur D (2016) A novel approach to improve sobel edge detector. Proc Comput Sci 93:431–438.  https://doi.org/10.1016/j.procs.2016.07.230CrossRefGoogle Scholar
  21. 21.
    Lin G, Wang W, Kang C, Wang C (2012) Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing. Magn Reson Imaging 30(2):230–246.  https://doi.org/10.1016/j.mri.2011.09.008CrossRefPubMedGoogle Scholar
  22. 22.
    Viji KS, Jayakumari J (2013) Modified texture based region growing segmentation of MR brain images. In: 2013 IEEE conference on information and communication technologies.  https://doi.org/10.1109/cict.2013.6558183
  23. 23.
    Pandav S (2014) Brain tumor extraction using marker controlled watershed segmentation. Int J Eng Res Technol. ISSN:2278-0181Google Scholar
  24. 24.
    Sudharani K, Sarma T, Prasad KS (2016) Advanced morphological technique for automatic brain tumor detection and evaluation of statistical parameters. Proc Technol 24:1374–1387.  https://doi.org/10.1016/j.protcy.2016.05.153CrossRefGoogle Scholar
  25. 25.
    Trevino A (n.d.) Introduction to K-means Clustering. Retrieved from: https://www.datascience.com/blog/k-means-clustering
  26. 26.
    Subbanna N, Precup D, Arbel T (2014) Iterative multilevel MRF leveraging context and voxel information for brain tumour segmentation in MRI. In: 2014 IEEE conference on computer vision and pattern recognition.  https://doi.org/10.1109/cvpr.2014.58
  27. 27.
    Vijay V, Kavitha A, Rebecca SR (2016) Automated brain tumor segmentation and detection in MRI using Enhanced Darwinian Particle Swarm Optimization(EDPSO). Proc Comput Sci 92:475–480.  https://doi.org/10.1016/j.procs.2016.07.370CrossRefGoogle Scholar
  28. 28.
    Pezoulas VC, Zervakis M, Pologiorgi I, Seferlis S, Tsalikis GM, Zarifis G, Giakos GC (2017) A tissue classification approach for brain tumor segmentation using MRI. In: 2017 IEEE international conference on Imaging Systems and Techniques (IST).  https://doi.org/10.1109/ist.2017.8261542
  29. 29.
    Chandra GR, Rao KR (2016) Tumor detection in brain using genetic algorithm. Proc Comput Sci 79:449–457.  https://doi.org/10.1016/j.procs.2016.03.058CrossRefGoogle Scholar
  30. 30.
    Chacón M MI (n.d.) Fuzzy logic for image processing: definition and applications of a fuzzy image processing scheme. In: Advances in industrial control advanced fuzzy logic technologies in industrial applications, pp 101–113.  https://doi.org/10.1007/978-1-84628-469-4_7
  31. 31.
    Nimeesha KM, Gowda RM (2013) Brain tumour segmentation using Kmeans and fuzzy c-means clustering algorithm. Int J Comput Sci Inf Technol Res Excell 3:60–65Google Scholar
  32. 32.
    Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88.  https://doi.org/10.1016/j.media.2017.07.005CrossRefPubMedGoogle Scholar
  33. 33.
    Visin F, Romero A, Cho K, Matteucci M, Ciccone M, Kastner K, Courville A (2016) ReSeg: a recurrent neural network-based model for semantic segmentation. In: 2016 IEEE conference on Computer Vision and Pattern Recognition Workshops (CVPRW).  https://doi.org/10.1109/cvprw.2016.60
  34. 34.
    Chen H, Dou Q, Yu L, Qin J, Heng P (2018) VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage 170:446–455.  https://doi.org/10.1016/j.neuroimage.2017.04.041CrossRefPubMedGoogle Scholar
  35. 35.
    Kooi T, Litjens G, Ginneken BV, Gubern-Mérida A, Sánchez CI, Mann R, Karssemeijer N (2017) Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal 35:303–312.  https://doi.org/10.1016/j.media.2016.07.007CrossRefPubMedGoogle Scholar
  36. 36.
    Milletari F, Ahmadi S, Kroll C, Plate A, Rozanski V, Maiostre J, Navab N (2017) Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. Comput Vis Image Underst 164:92–102.  https://doi.org/10.1016/j.cviu.2017.04.002CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sanjay Saxena
    • 1
    Email author
  • Adhesh Garg
    • 1
  • Puspanjali Mohapatra
    • 1
  1. 1.Department of Computer Science & EngineeringInternational Institute of Information TechnologyBhubaneswarIndia

Personalised recommendations