Molecular Insights into the Pathophysiology of Neurological Disorders

  • Arpita Devi


Disabilities are limitations or restrictions to oneself. It may be mental or physical. Physical disability is limitation to one’s physical functions or mobility. Physical disabilities can be acquired at any time – before birth, after birth, during adulthood or old age. There can be various reasons why one becomes physically disabled. The reasons may be genetic, diseases or accidents. The physical disabilities are often related to our nervous system. Damage to neurons often leads to nervous system disorders which are seen in the form of physical or mental disability. But sometimes deformities of limbs or damage to locomotory tissues also results in physical disability. Microorganism-borne diseases such as polio also cause deformities of the limbs. Some forms of physical disability can be prevented. Polio can be prevented by vaccination, and care during pregnancy and childbirth can prevent prenatal disabilities. Genetic physical disabilities as well as age-related disabilities, on the other hand, are difficult to prevent. However, through physiotherapy and communication therapy, the patients are able to live an independent life.


Spina Bifida Muscular Dystrophy Poliomyelitis Diabetes Cerebral Palsy Stroke Epilepsy Alzheimer’s Disease Parkinson’s Disease 


  1. 1.
    Gilbert SF, Barresi MJF (2016) Developmental biology, 11th edn. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Greene ND, Copp AJ (2014) Neural tube defects. Annu Rev Neurosci 37:221–242PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mohd-Zin SW, Marwan AI, Abou Chaar MK, Ahmad-Annuar A, Abdul-Aziz NM (2017) Spina bifida: pathogenesis, mechanisms, and genes in mice and humans. Scientifica 2017:1–26CrossRefGoogle Scholar
  4. 4.
    Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM (2015) Spina bifida. Nat Re Dis Primer 1:15007CrossRefGoogle Scholar
  5. 5.
    Greenberg JA, Bell SJ, Guan Y, Yu YH (2011) Folic acid supplementation and pregnancy: more than just neural tube defect prevention. Rev Obstet Gynecol 4(2):52PubMedPubMedCentralGoogle Scholar
  6. 6.
    Safi J, Joyeux L, Chalouhi GE (2012) Periconceptional folate deficiency and implications in neural tube defects. J Pregnancy 2012:1–9CrossRefGoogle Scholar
  7. 7.
    Imbard A, Benoist JF, Blom H (2013) Neural tube defects, folic acid and methylation. Int J Environ Res Public Health 10(9):4352–4389PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Molloy AM, Kirke PN, Troendle JF, Burke H, Sutton M, Brody LC et al (2009) Maternal vitamin B12 status and risk of neural tube defects in a population with high neural tube defect prevalence and no folic acid fortification. Pediatrics 123(3):917–923PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Chen CP (2005) Congenital malformations associated with maternal diabetes. Taiwanese J Obstetrics Gynecol 44(1):1–7CrossRefGoogle Scholar
  10. 10.
    Zabihi S, Loeken MR (2010) Understanding diabetic teratogenesis: where are we now and where are we going? Birth Defects Res Part A 88(10):779–790CrossRefGoogle Scholar
  11. 11.
    Davidson CM, Northrup H, King TM, Fletcher JM, Townsend I, Tyerman GH, Au KS (2008) Genes in glucose metabolism and association with spina bifida. Reprod Sci 15(1):51–58PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Koren G, Nava-Ocampo AA, Moretti ME, Sussman R, Nulman I (2006) Major malformations with valproic acid. Can Fam Physician 52(4):441–442PubMedPubMedCentralGoogle Scholar
  13. 13.
    Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH Jr, Rothman KJ, Hendricks KA (2005) Exposure to fumonisins and the occurrence of neural tube defects along the Texas–Mexico border. Environ Health Perspect 114(2):237–241PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Bellayou H, Hamzi K, Rafai MA, Karkouri M, Slassi I, Azeddoug H, Nadifi S (2009) Duchenne and Becker muscular dystrophy: contribution of a molecular and immunohistochemical analysis in diagnosis in Morocco. Biomed Res Int 2009:325210Google Scholar
  15. 15.
    Deconinck N, Dan B (2007) Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36(1):1–7PubMedCrossRefGoogle Scholar
  16. 16.
    Dudley RW, Danialou G, Govindaraju K, Lands L, Eidelman DE, Petrof BJ (2006) Sarcolemmal damage in dystrophin deficiency is modulated by synergistic interactions between mechanical and oxidative/nitrosative stresses. Am J Pathol 168(4):1276–1287PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Vanderklish PW, Bahr BA (2000) The pathogenic activation of calpain: a marker and mediator of cellular toxicity and disease states. Int J Exp Pathol 81(5):323–339PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm Suppl 43:1–11PubMedPubMedCentralGoogle Scholar
  19. 19.
    Choi MH, Ow JR, Yang ND, Taneja R (2016) Oxidative stress-mediated skeletal muscle degeneration: molecules, mechanisms, and therapies. Oxidative Med Cell Longev 2016:1–13Google Scholar
  20. 20.
    Rando TA, Disatnik MH, Yu Y, Franco A (1998) Muscle cells from mdx mice have an increased susceptibility to oxidative stress. Neuromuscul Disord 8(1):14–21PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chang WJ, Iannaccone ST, Lau KS, Masters BS, McCabe TJ, McMillan K et al (1996) Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci 93(17):9142–9147PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Paul JR (1971) A history of poliomyelitis. In: A history of poliomyelitis. Yale University Press, New Haven/LondonGoogle Scholar
  23. 23.
    Racaniello VR, Baltimore D (1981) Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci 78(8):4887–4891PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kitamura N, Semler BL, Rothberg PG, Larsen GR, Adler CJ, Dorner AJ, Emini EA, Hanecak R, Lee JJ, van der Werf S, Anderson CW (1981) Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291(5816):547PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Mehndiratta MM, Mehndiratta P, Pande R (2014) Poliomyelitis: historical facts, epidemiology, and current challenges in eradication. The Neurohospitalist 4(4):223–229PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lange R, Peng X, Wimmer E, Lipp M, Bernhardt G (2001) The poliovirus receptor CD155 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 285(2):218–227PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Devi A, Reddy AB, Yadav UC (2018) Aldose reductase inhibitors in the functional foods: regulation of diabetic complications. In: Functional food and human health. Springer, Singapore, pp 555–574CrossRefGoogle Scholar
  28. 28.
    Perry BD, Caldow MK, Brennan-Speranza TC, Sbaraglia M, Jerums G, Garnham A, Wong C, Levinger P, Asrar Ul Haq M, Hare DL, Price SR et al (2016) Muscle atrophy in patients with Type 2 Diabetes Mellitus: roles of inflammatory pathways, physical activity and exercise. Exerc Immunol Rev 22:94–109PubMedPubMedCentralGoogle Scholar
  29. 29.
    Kalyani RR, Corriere M, Ferrucci L (2014) Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabet Endocrinol 2(10):819CrossRefGoogle Scholar
  30. 30.
    O’Shea TM (2008) Diagnosis, treatment, and prevention of cerebral palsy. Clin Obstet Gynecol 51(4):816–828PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Marret S, Vanhulle C, Laquerriere A (2013) Chapter 16: Pathophysiology of cerebral palsy. In: Handbook of clinical neurology. Elsevier, Amsterdam, p 111Google Scholar
  32. 32.
    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371(9624):1612–1623PubMedCrossRefGoogle Scholar
  33. 33.
    Chen J, Zhu M, Ma G, Zhao Z, Sun Z (2013) Chlamydia pneumoniae infection and cerebrovascular disease: a systematic review and meta-analysis. BMC Neurol 13:183. Scholar
  34. 34.
    Heuschmann PU, Neureiter D, Gesslein M, Craiovan B, Maass M, Faller G et al (2001) Association between infection with Helicobacter pylori and Chlamydia pneumoniae and risk of ischemic stroke subtypes: results from a population-based case-control study. Stroke 32(10):2253–2258PubMedCrossRefGoogle Scholar
  35. 35.
    Guerriero RM, Giza CC, Rotenberg A (2015) Glutamate and GABA imbalance following traumatic brain injury. Curr Neurol Neurosci Rep 15(5):27PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Escayg A, Goldin AL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 51(9):1650–1658PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lerche H, Shah M, Beck H, Noebels J, Johnston D, Vincent A (2012) Ion channels in genetic and acquired forms of epilepsy. J Physiol 591(4):753–764PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112(10):5147–5192PubMedCrossRefGoogle Scholar
  39. 39.
    Barton S (2006) Microglia give amyloid plaques the brush off. Nat Rev Neurosci 7:254–255CrossRefGoogle Scholar
  40. 40.
    Wang WY, Tan MS, Yu JT, Tan L (2015) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3(10):136PubMedPubMedCentralGoogle Scholar
  41. 41.
    Chun W, Johnson GV (2007) The role of tau phosphorylation and cleavage in neuronal cell death. Front Biosci 12:733–756PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119(7):1459–1474PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yasuda T, Nakata Y, Mochizuki H (2012) α-Synuclein and neuronal cell death. Mol Neurobiol 47(2):466–483PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Nixon RA, Yang DS (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4(10):a008839. Scholar
  45. 45.
    Reeve AK, Grady JP, Cosgrave EM, Bennison E, Chen C, Hepplewhite PD, Morris CM (2018) Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. npj Parkinson’s Dis 4(1):9CrossRefGoogle Scholar
  46. 46.
    Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22(1):11–17PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Desai BS, Monahan AJ, Carvey PM, Hendey B (2007) Blood–brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant 16(3):285–299PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Arpita Devi
    • 1
  1. 1.Department of Molecular Biology and BiotechnologyTezpur UniversityTezpurIndia

Personalised recommendations