Implementation of Optogenetics Technique for Neuron Photostimulation: A Physical Approach

  • Saurav Bharadwaj
  • Sushmita Mena
  • Dwarkadas Pralhaddas Kothari


Optogenetics is an opto-triggered neuron-switching technique in specific neuron clusters of the nervous system. Specifically, the chapter redefined the implantation of physical optode–electrode assembly on primate for simultaneous photo-switching and data recording from the complexly arranged neuron clusters. Specially, a number of modern commercial commutators are listed on the basis of flexible rotator optical joint, number of LEDs, magnetic base and low torque. However, the chapter highlights certain standard protocols used in the implantation of optode and electrode on the primate skull. For efficient optical stimulation and signal detection, it revised certain significant contributions on implementation of multimode fibres, photonic CMOS integrated, super flexible optofluidic ultrathin channel, iridium oxide electrodes and pulse width modulation control on different power levels and duty cycles. Specifically, the authors plotted different irradiance curves of mammalian brain tissues in linear scale at three wavelengths 473 nm, 561 nm and 630 nm. Successively, it is a collection of different wireless optogenetics systems of certain strength in each model as lightweight, super flexibility, optofluidic light delivery, small size, minimal heat emission and wide range output power control. Practically, a number of biomedical imaging techniques, that is, computer tomography, magnetic resonance imaging, micro-positron emission technology, micro-ultrasound, opto-micro-electrocorticography and electroretinography is implemented for studying the physiology and behaviour changes of primate under simultaneous photostimulation.


Carousel commutators Tungsten electrodes Stereotaxic frame Irradiance Transcranial magnetic stimulation 


  1. 1.
    Zemelman BV, Lee GA, Ng M, Miesenbock G (2002) Selective photostimulation of genetically chARGed neurons. Neuron 33(1):15–22CrossRefGoogle Scholar
  2. 2.
    Sierra YAB, Rost BR, Pofahl M, Fernandes AM, Kopton RA, Moser S, Holtkamp D, Masala N, Beed P, Tukker JJ, Oldani S, Wolfgang B, Kohl P, Baier H, Schneider-Warme F, Hegemann P, Beck H (2018) Reinhard Seifert10 and Dietmar Schmitz, Potassium channel-based optogenetic silencing. Nat Commun 9(1):4611CrossRefGoogle Scholar
  3. 3.
    Kim CK, Adhikari A, Deisseroth K (2017) Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci 18(4):222CrossRefGoogle Scholar
  4. 4.
    Zhang F, Wang L-P, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633CrossRefGoogle Scholar
  5. 5.
    Yong Kwon K, Sirowatka B, Weber A, Li W (2013) Opto-ECoG array: a hybrid neural interface with transparent ECoG electrode array and integrated LEDs for optogenetics. IEEE Trans Biomed Circ Syst 7(5):593–600CrossRefGoogle Scholar
  6. 6.
    Yan B, Nirenberg S (2018) An embedded real-time processing platform for optogenetic neuroprosthetic applications. IEEE Trans Neural Syst Rehabil Eng 26(1):233–243CrossRefGoogle Scholar
  7. 7.
    Reiner A, Isaco EY (2013) The Brain Prize 2013: the optogenetics revolution. Trends Neurosci 36(10):557–560CrossRefGoogle Scholar
  8. 8.
    Crick F, Frs O (1999) The impact of molecular biology on neuroscience. Philos Trans R Soc Lond Ser B Biol Sci 354(1392):2021–2025CrossRefGoogle Scholar
  9. 9.
    Lee ST, Williams PA, Braine CE, Lin D-T, John SWM, Irazoqui PP (2015) A miniature, fiber-coupled, wireless, deep-brain optogenetic stimulator. IEEE Trans Neural Syst Rehabil Eng 23(4):655–664CrossRefGoogle Scholar
  10. 10.
    Pashaie R, Falk R (2013) Single optical fiber probe for fluorescence detection and optogenetic stimulation. IEEE Trans Biomed Eng 60(2):268–280CrossRefGoogle Scholar
  11. 11.
    Sparta DR, Stamatakis AM, Phillips JL, Hovels N, van Zessen R, Stuber GD (2012) Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. Nat Protoc 7(1):12CrossRefGoogle Scholar
  12. 12.
    Pashaie R, Baumgartner R, Richner TJ, Brodnick SK, Azimipour M, Eliceiri KW, Williams JC (2015) Closed-loop optogenetic brain interface. IEEE Trans Biomed Eng 62(10):2327–2337CrossRefGoogle Scholar
  13. 13.
    Gagnon-Turcotte G, Khiarak MN, Ethier C, De Koninck Y, Gosselin B (2018) A 0.13-μm CMOS SoC for simultaneous multichannel optogenetics and neural recording. IEEE J Solid-State Circ 53(11):3087–3100CrossRefGoogle Scholar
  14. 14.
    Jeong JW, McCall JG, Shin G, Zhang Y, Al-Hasani R, Kim M, Li S, Sim JY, Jang KI, Shi Y, Hong DY (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162(3):662–674CrossRefGoogle Scholar
  15. 15.
    Cao H, Gu L, Mohanty SK, Chiao J-C (2013) An integrated μ-LED optrode for optogenetic stimulation and electrical recording. IEEE Trans Biomed Eng 60(1):225–229CrossRefGoogle Scholar
  16. 16.
    Bi X, Xie T, Fan B, Khan W, Guo Y, Li W (2016) A flexible, micro-lens-coupled LED stimulator for optical neuromodulation. IEEE Trans Biomed Circ Syst 10(5):972–978CrossRefGoogle Scholar
  17. 17.
    Balasubramaniam S, Wirdatmadja SA, Barros MT, Koucheryavy Y, Stachowiak M, Jornet JM (2018) Wireless communications for optogenetics-based brain stimulation present technology and future challenges. IEEE Commun Mag 56(7):218–224CrossRefGoogle Scholar
  18. 18.
    SeungWook O, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207CrossRefGoogle Scholar
  19. 19.
    Al-Atabany W, McGovern B, Mehran K, Berlinguer-Palmini R, Degenaar P (2013) A processing platform for optoelectronic/optogenetic retinal prosthesis. IEEE Trans Biomed Eng 60(3):781–791CrossRefGoogle Scholar
  20. 20.
    Chen CH, McCullagh EA, Pun SH, Mak PU, Vai MI, In Mak P, Klug A, Lei TC (2017) An integrated circuit for simultaneous extracellular electrophysiology recording and optogenetic neural manipulation. IEEE Trans Biomed Eng 64(3):557–568CrossRefGoogle Scholar
  21. 21.
    Gerhardt KP, Olson EJ, Castillo-Hair SM, Hartsough LA, Landry BP, Ekness F, Yokoo R, Gomez EJ, Ramakrishnan P, Suh J, Savage DF, Tabor JJ (2016) An open-hardware platform for optogenetics and photobiology. Sci Rep 6:35363CrossRefGoogle Scholar
  22. 22.
    Wietek J, Rodriguez-Rozada S, Tutas J, Tenedini F, Grimm C, Oertner TG, Soba P, Hegemann P, Simon Wiegert J (2017) Anion conducting channelrhodopsins with tuned spectra and modified kinetics engineered for optogenetic manipulation of behaviour. Sci Rep 7(1):14957CrossRefGoogle Scholar
  23. 23.
    Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Yang SM, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP, Boyden ES, Lichtman JW, Williams ZM, McCarroll SA, Arlotta P (2017) Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545(7652):48CrossRefGoogle Scholar
  24. 24.
    Gagnon-Turcotte G, LeChasseur Y, Bories C, Messaddeq Y, De Koninck Y, Gosselin B (2017) A wireless headstage for combined optogenetics and multichannel electrophysiological recording. IEEE Trans Biomed Circ Syst 11:1), 1–1),14CrossRefGoogle Scholar
  25. 25.
    Hashimoto M, Hata A, Miyata T, Hirase H (2014) Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice. Neurophotonics 1(1):011002CrossRefGoogle Scholar
  26. 26.
    Park SI, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, Pullen MY, Noh KN, Davidson S, Oh SJ, Yoon J, Jang K-I, Samineni VK, Norman M, Grajales-Reyes JG, Vogt SK, Sundaram SS, Wilson KM, Ha JS, Xu R, Pan T, Kim T-i, Huang Y, Montana MC, Golden JP, Bruchas MR, Gereau RW, Rogers JA (2015) Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 33(12):1280CrossRefGoogle Scholar
  27. 27.
    Montgomery KL, Yeh AJ, Ho JS, Tsao V, Iyer SM, Grosenick L, Ferenczi EA, Tanabe Y, Deisseroth K, Delp SL, Poon AS (2015) Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Method 12(10):969CrossRefGoogle Scholar
  28. 28.
    Shin G, Gomez AM, Al-Hasani R, Ra Jeong Y, Kim J, Xie Z, Banks A, Lee SM, Han SY, Yoo CJ, Lee J-L, Lee SH, Kurniawan J, Tureb J, Guo Z, Yoon J, Park S-I, Bang SY, Nam Y, Walicki MC, Samineni VK, Mickle AD, Lee K, Heo SY, McCall JG, Pan T, Wang L, Feng X, Kim T-i, Kim JK, Li Y, Huang Y, Gereau RW, Ha JS, Bruchas MR, Rogers JA (2017) Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93(3):509–521CrossRefGoogle Scholar
  29. 29.
    Chow BY, Han X, Dobry AS, Qian X, Chuong AS, Li M, Henninger MA, Belfort GM, Lin Y, Monahan PE, Boyden ES (2010) High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463(7277):98CrossRefGoogle Scholar
  30. 30.
    Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633CrossRefGoogle Scholar
  31. 31.
    Chuong AS, Miri ML, Busskamp V, Matthews GA, Acker LC, Srensen AT, Young A, Klapoetke NC, Henninger MA, Kodandaramaiah SB, Ogawa M (2014) Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat Neurosci 17(8):1123CrossRefGoogle Scholar
  32. 32.
    Alberio L, Locarno A, Saponaro A, Romano E, Bercier V, Albadri S, Simeoni F, Moleri S, Pelucchi S, Porro A, Marcello E, Barsotti N, Kukovetz K, Boender AJ, Contestabile A, Luo S, Moutal A, Ji Y, Romani G, Beltrame M, Del Bene F, Di Luca M, Khanna R, Colecraft HM, Pasqualetti M, Thie G, Tonini R, Moroni A (2018) A light-gated potassium channel for sustained neuronal inhibition. Nat Method 15(11):969CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Saurav Bharadwaj
    • 1
  • Sushmita Mena
    • 2
  • Dwarkadas Pralhaddas Kothari
    • 3
  1. 1.Indian Institute of Information Technology GuwahatiGuwahatiIndia
  2. 2.Assam Down Town UniversityGuwahatiIndia
  3. 3.Indian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations