Advertisement

The Design of Interactive Framework for Space-Exploration Robotic Systems

  • Wei ShiEmail author
  • Shengyi Jin
  • Yang Zhang
  • Xiangjin Deng
  • Yanhong Zheng
  • Meng Yao
  • Zhihui Zhao
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 550)

Abstract

The deep space-exploration spacecraft or robot need to perform missions in complex and harsh environments and far away from the earth. Restricted by large communication delay and low-bandwidth, the operator on the earth can’t interact frequently with spacecraft or robot. For the reasons, the system design of spacecraft is required to powerfully autonomous and reliable. This paper is based on the application of the sampling robot for extraterrestrial planets, described the design of interactive framework for task-level Command control of robotic systems, establish a standard planning operators(POs) sets that can cover the operating space basically, and shows how to improve system autonomy through interactive planning and learning. Under this framework designation, with a small amount of task-level command and state feedback telemetering between the operator on the earth and the spacecraft, it can meet the mission.

Keywords

Interactive-framework Planning operators (POs) Space-exploration robotic systems Task-level command 

References

  1. 1.
    Colby, M., Yliniemi, L., Tumer, K.: Autonomous multiagent space exploration with high-level human feedback. J. Aerosp. Inf. Syst. 13(8) (2016)CrossRefGoogle Scholar
  2. 2.
    Ella, H., Josh, N., Marc, S., Doug, G., Tim, E., Ken, C.: Onboard Autonomous Planning System, SpaceOps Conferences 5–9 May 2014, Pasadena, CA SpaceOps 2014 Conference (2014)Google Scholar
  3. 3.
    Truszkowski, W.F., Hinchey, M.G., Rash, J.L., Rouff, C.A.: Autonomous and autonomic systems: a paradigm for future space exploration missions. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 36(3), 279–291 (2006).  https://doi.org/10.1109/tsmcc.2006.871600CrossRefGoogle Scholar
  4. 4.
    Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)CrossRefGoogle Scholar
  5. 5.
    Veloso, M., Bala, J., Boloedorn, E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K., Dzeroski, S., Fisher, D., Fahlman, S., et al.: The NONK’s problems: a performance comparison of different learning algorithms, Technical report CMU-C5-91-197. Carnegie-Mellon University (1991)Google Scholar
  6. 6.
    Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., Blythe, J.: Integrating planning and learning: the prodigy architecture. J. Exp. Theor. Artif. Intell. 7(1), 81–120 (1995)CrossRefGoogle Scholar
  7. 7.
    Benson, S.: Inductive learning of reactive action models. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 47–54. Morgan Kaufmann (1995)Google Scholar
  8. 8.
    Gil, Y.: Learing by experimentation: incremental refinement of incomplete planning domains. In: Proceedings of the Eleventh International Conference on Machine Leaning (1994)Google Scholar
  9. 9.
    Rybski, P., Yoon, K., Stolarz, J., Veloso, M.: Interactive robot task training through dialog and demonstration. In: 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 49–56. IEEE (2007)Google Scholar
  10. 10.
    Nicolescu, M., Mataric, M.: Natural methods for robot task learning: instructive demonstrations, generalization and practice. In: Proceedings of the Second International Joint Conference on Autonoumous Agents and Multiagent Systems, pp. 241–248. ACM (2003)Google Scholar
  11. 11.
    Polushin, I.G., Dashkovskiy, S.N.: A small gain framework for networked cooperative teleoperation. In: Proceedings of the 8th IFAC Symposium on Nonlinear Control Systems, pp. 90–95. Bologna, Italy (2010)CrossRefGoogle Scholar
  12. 12.
    Agostini, A., Torras, C., Worgotter, F.: Efficient interactive decision-making framework for robotic applications. J. Artif. Intell. 247, 187–212 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Wei Shi
    • 1
    Email author
  • Shengyi Jin
    • 1
  • Yang Zhang
    • 1
  • Xiangjin Deng
    • 1
  • Yanhong Zheng
    • 1
  • Meng Yao
    • 1
  • Zhihui Zhao
    • 1
  1. 1.Beijing Institute of Spacecraft System EngineeringBeijingChina

Personalised recommendations