Advertisement

Lead Telluride

  • Kazuto AkibaEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we firstly introduce basic properties and related literatures of lead telluride (PbTe), and then show experimental results obtained in this study. We identified large second harmonic in FFT spectra of the quantum oscillations, and pointed out that this is an evidence for large spin-splitting in PbTe. The simple band structure and distinct spin-splitting caused by strong spin-orbit interaction in PbTe enable us to testify the evaluation of the Zeeman-cyclotron ratio, which has been proposed as a macroscopic index to find how close the system is to the ideal two-band Dirac system. Comparing our data with numerical simulation based on Lifshitz-Kosevich formula, we determined the Zeeman-cyclotron ratio to 0.52 in pristine PbTe. We also pointed out that the effect of Zeeman splitting seriously affects the Landau-level fan diagram analysis, which is widely used to extract the nontrivial Berry’s phase from the quantum oscillations.

Keywords

Lead telluride quantum oscillation Zeeman-cyclotron ratio Landau-level fan diagram analysis Nontrivial Berry’s phase 

References

  1. 1.
    Nikolic PM (1965) Brit J Appl Phys 16:1075. http://stacks.iop.org/0508-3443/16/i=8/a=303
  2. 2.
    Conklin JB, Johnson LE, Pratt GW (1965) Phys Rev 137:A1282. https://link.aps.org/doi/10.1103/PhysRev.137.A1282
  3. 3.
    Kuraya T, Fuseya Y (2015) J Phys Conf Ser 603:012025. http://stacks.iop.org/1742-6596/603/i=1/a=012025
  4. 4.
    Nimtz G, Schlicht B (1983) Narrow-gap lead salts. In: Narrow-gap semiconductors. Springer, BerlinGoogle Scholar
  5. 5.
    Lin PJ, Kleinman L (1966) Phys Rev 142:478. https://link.aps.org/doi/10.1103/PhysRev.142.478
  6. 6.
    Setyawan W, Curtarolo S (2010) Comp Mater Sci 49:299. http://www.sciencedirect.com/science/article/pii/S0927025610002697
  7. 7.
    Allgaier RS, Scanlon WW (1958) Phys Rev 111:1029. https://link.aps.org/doi/10.1103/PhysRev.111.1029
  8. 8.
    Allgaier RS (1958) Phys Rev 112:828. https://link.aps.org/doi/10.1103/PhysRev.112.828
  9. 9.
    Kanai Y, Nii R, Watanabe N (1960) J Phys Soc Jpn 15:1717A. https://doi.org/10.1143/JPSJ.15.1717A
  10. 10.
    Cuff KF, Ellett MR, Kuglin CD (1961) J Appl Phys 32:2179. https://doi.org/10.1063/1.1777038
  11. 11.
    Stiles PJ, Burstein E, Langenberg DN (1961) Phys Rev Lett 6:667. https://link.aps.org/doi/10.1103/PhysRevLett.6.667
  12. 12.
    Stiles PJ, Burstein E, Langenberg DN (1962) Phys Rev Lett 9:257. https://link.aps.org/doi/10.1103/PhysRevLett.9.257
  13. 13.
    Nii R (1963) J Phys Soc Jpn 18:456. https://doi.org/10.1143/JPSJ.18.456
  14. 14.
    Burke JR, Houston B, Savage HT (1970) Phys Rev B 2:1977. https://link.aps.org/doi/10.1103/PhysRevB.2.1977
  15. 15.
    Giraldo-Gallo P, Sangiorgio B, Walmsley P, Silverstein HJ, Fechner M, Riggs SC, Geballe TH, Spaldin NA, Fisher IR (2016) Phys Rev B 94:195141. https://link.aps.org/doi/10.1103/PhysRevB.94.195141
  16. 16.
    Shoenberg D (1984) Magnetic oscillations in metals. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. 17.
    Jensen JD, Houston B, Burke JR (1978) Phys Rev B 18:5567. https://link.aps.org/doi/10.1103/PhysRevB.18.5567
  18. 18.
  19. 19.
    Thompson TE, Aron PR, Chandrasekhar BS, Langenberg DN (1971) Phys Rev B 4:518. https://link.aps.org/doi/10.1103/PhysRevB.4.518
  20. 20.
    Short NR (1968) J Phys D Appl Phys 1:129. http://stacks.iop.org/0022-3727/1/i=1/a=120
  21. 21.
    Dimmock JO, Melngailis I, Strauss AJ (1966) Phys Rev Lett 16:1193. https://link.aps.org/doi/10.1103/PhysRevLett.16.1193
  22. 22.
    Mazelsky R, Lubell MS, Kramer WE (1962) J Chem Phys 37:45. https://doi.org/10.1063/1.1732972
  23. 23.
  24. 24.
    Melngailis I, Calawa AR (1966) Appl Phys Lett 9:304. https://doi.org/10.1063/1.1754761
  25. 25.
    Golin S (1968) Phys Rev 176:830. https://link.aps.org/doi/10.1103/PhysRev.176.830
  26. 26.
    Herman F, Skillman S (1963) Atomic structure calculations. Prentice-Hall, New JerseyGoogle Scholar
  27. 27.
    Melngailis J, Harman TC, Mavroides JG, Dimmock JO (1971) Phys Rev B 3:370. https://link.aps.org/doi/10.1103/PhysRevB.3.370
  28. 28.
    Xu S-Y, Liu C, Alidoust N, Neupane M, Qian D, Belopolski I, Denlinger JD, Wang YJ, Lin H, Wray LA, Landolt G, Slomski B, Dil JH, Marcinkova A, Morosan E, Gibson Q, Sankar R, Chou FC, Cava RJ, Bansil A, Hasan MZ (2012) Nat Commun 3:1192. http://dx.doi.org/10.1038/ncomms2191
  29. 29.
    Fu L (2011) Phys Rev Lett 106:106802. https://link.aps.org/doi/10.1103/PhysRevLett.106.106802
  30. 30.
    Hsieh TH, Lin H, Liu J, Duan W, Bansil A, Fu L (2012) Nat Commun 3:982. http://dx.doi.org/10.1038/ncomms1969
  31. 31.
    Hayasaka H, Fuseya Y (2016) J Phys Condens Matter 28:31LT01. http://stacks.iop.org/0953-8984/28/i=31/a=31LT01
  32. 32.
    Fuseya Y, Zhu Z, Fauqué B, Kang W, Lenoir B, Behnia K (2015) Phys Rev Lett 115:216401. https://link.aps.org/doi/10.1103/PhysRevLett.115.216401
  33. 33.
    Assaf BA, Phuphachong T, Volobuev VV, Inhofer A, Bauer G, Springholz G, de Vaulchier LA, Guldner Y (2016) Sci Rep 6:20323. http://dx.doi.org/10.1038/srep20323
  34. 34.
    Phuphachong T, Assaf BA, Volobuev VV, Bauer G, Springholz G, de Vaulchier L-A, Guldner Y (2017) Crystals 7:29. http://www.mdpi.com/2073-4352/7/1/29
  35. 35.
    Takaoka S, Murase K (1982) J Phys Soc Jpn 51:1857. https://doi.org/10.1143/JPSJ.51.1857
  36. 36.
    Takaoka S, Murase K (1979) Phys Rev B 20:2823. https://link.aps.org/doi/10.1103/PhysRevB.20.2823
  37. 37.
    Takaoka S (1978) Investigation of electronic properties under the phase transition in Pb\(_{1-x}\)Ge\(_x\)Te and Pb\(_{1-x}\)Sn\(_x\)Te semiconductors. PhD thesis, Osaka UniversityGoogle Scholar
  38. 38.
    Barone P, Rauch T, Sante DD, Henk J, Mertig I, Picozzi S (2013) Phys Rev B 88:045207. https://link.aps.org/doi/10.1103/PhysRevB.88.045207
  39. 39.
    Nabi Z, Abbar B, Méçabih S, Khalfi A, Amrane N (2000) Comp Mater Sci 18:127. http://www.sciencedirect.com/science/article/pii/S0927025699000993
  40. 40.
    Samara GA, Drickamer HG (1962) J Chem Phys 37:1159. https://doi.org/10.1063/1.1733240
  41. 41.
    Mariano AN, Chopra KL (1967) Appl Phys Lett 10:282. https://doi.org/10.1063/1.1754812
  42. 42.
    Wakabayashi I, Kobayashi H, Nagasaki H, Minomura S (1968) J Phys Soc Jpn 25:227. https://doi.org/10.1143/JPSJ.25.227
  43. 43.
    Rousse G, Klotz S, Saitta AM, Rodriguez-Carvajal J, McMahon MI, Couzinet B, Mezouar M (2005) Phys Rev B 71:224116. https://link.aps.org/doi/10.1103/PhysRevB.71.224116
  44. 44.
    Chouteau G, Briggs A (1977) Solid State Commun 21:785. http://www.sciencedirect.com/science/article/pii/0038109877911528
  45. 45.
    Orbanić F, Novak M, Baćani M, Kokanović I (2017) Phys Rev B 95:035208. https://link.aps.org/doi/10.1103/PhysRevB.95.035208
  46. 46.
    Roth LM, Argyres PN (1966) Magnetic quantum effects. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 1. Academic Press, New YorkGoogle Scholar
  47. 47.
    Murakawa H, Bahramy MS, Tokunaga M, Kohama Y, Bel C, Kaneko Y, Nagaosa N, Hwang HY, Tokura Y (2013) Science 342:1490. http://science.sciencemag.org/content/342/6165/1490
  48. 48.
    Narita S, Takafuji Y (1976) Solid State Commun 20:357. http://www.sciencedirect.com/science/article/pii/0038109876905251
  49. 49.
    Takafuji Y, Narita S (1982) Jpn J Appl Phys 21:1315. http://stacks.iop.org/1347-4065/21/i=9R/a=1315
  50. 50.
    Abrikosov AA (1998) Phys Rev B 58:2788. https://link.aps.org/doi/10.1103/PhysRevB.58.2788
  51. 51.
    Abrikosov AA (2000) Phys Rev B 61:7770. https://link.aps.org/doi/10.1103/PhysRevB.61.7770
  52. 52.
    Bhattacharya A, Skinner B, Khalsa G, Suslov AV (2016) Nat Commun 7:12974. http://dx.doi.org/10.1038/ncomms12974
  53. 53.
    Kivelson S, Lee D-H, Zhang S-C (1992) Phys Rev B 46:2223. https://link.aps.org/doi/10.1103/PhysRevB.46.2223
  54. 54.
    Kravchenko SV, Furneaux JE, Pudalov VM (1994) Phys Rev B 49:2250. https://link.aps.org/doi/10.1103/PhysRevB.49.2250

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan

Personalised recommendations