Advertisement

Nano-TiO2-Engineered Cementitious Composites

  • Baoguo HanEmail author
  • Siqi Ding
  • Jialiang Wang
  • Jinping Ou
Chapter

Abstract

Nano-TiO2 particles with high strength and hardness are incorporated into cementitious composites to reinforce/modify their properties/performances. The effects of type, content, and particle size as well as surface treatment of nano-TiO2 on the mechanical properties/performances of cementitious composites are investigated. The enhancement mechanisms are analyzed through zeta potential, water vapor adsorption, contact angle, thermogravimetry, X-ray diffraction, nuclear magnetic resonance, and scanning electron microscope tests. The effects and modification mechanisms of nano-TiO2 on the rheological, durability, and electrical properties/performances of cementitious composites are also studied. Experimental results indicate that all types of nano-TiO2 present an obvious impact on the properties/performances cementitious composites because of their excellent mechanical characteristics and dispersibility in combination with nucleation and filling effects.

Keywords

Nano-TiO2 Types Cementitious composites Properties/performances Mechanisms 

References

  1. 1.
    L.S. Dubrovinsky, N.A. Dubrovinskaia, V. Swamy, J. Muscat, N.M. Harrison, R. Ahuja, B. Holm, B. Johansson, The hardest known oxide. Nature 410, 653–654 (2001)CrossRefGoogle Scholar
  2. 2.
    N. Daude, C. Gout, C. Jouanin, Electronic band structure of titanium dioxide. Phys. Rev. B 15(6), 3229 (1977)CrossRefGoogle Scholar
  3. 3.
    R.G. Breckenridge, W.R. Hosler, Electrical properties of titanium dioxide semiconductors. Phys. Rev. 91(4), 793 (1953)CrossRefGoogle Scholar
  4. 4.
    H. Yang, S. Zhu, N. Pan, Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J. Appl. Polym. Sci. 92(5), 3201–3210 (2004)CrossRefGoogle Scholar
  5. 5.
    G. Camino, L. Costa, G. Martinasso, Intumescent fire-retardant systems. Polym. Degrad. Stab. 23(4), 359–376 (1989)CrossRefGoogle Scholar
  6. 6.
    H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90(6), 1847–1868 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Benedix, F. Dehn, J. Quaas, M. Orgass, Application of titanium dioxide photocatalysis to create self-cleaning building materials. Lacer 5, 157–168 (2000)Google Scholar
  8. 8.
    A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol., C Photochem. Rev. 1(1), 1–21 (2000)CrossRefGoogle Scholar
  9. 9.
    A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces (Wiley, 1997)Google Scholar
  10. 10.
    W. Li, Z. Huang, F. Cao, Z. Sun, S.P. Shah, Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Constr. Build. Mater. 95, 366–374 (2015)CrossRefGoogle Scholar
  11. 11.
    B. Han, Z. Li, L. Zhang, S. Zeng, X. Yu, B. Han, J. Ou, Reactive powder concrete reinforced with nano SiO2-coated TiO2. Constr. Build. Mater. 148, 104–112 (2017)Google Scholar
  12. 12.
    B. Han, L. Zhang, S. Zeng, S. Dong, X. Yu, R. Yang, J. Ou, Nano-core effect in nano-engineered cementitious composites. Compos. A Appl. Sci. Manuf. 95, 100–109 (2017)CrossRefGoogle Scholar
  13. 13.
    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys (CRC Press, 2009)Google Scholar
  14. 14.
    H. Sis, M. Birinci, Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloids Surf., A Physicochem. Eng. Aspects 341(1–3), 60–67 (2009)CrossRefGoogle Scholar
  15. 15.
    A.N. Givi, S.A. Rashid, F.N.A. Aziz, M.A.M. Salleh, Experimental investigation of the size effects of SiO2 nano-particles on the mechanical properties of binary blended concrete. Compos. B Eng. 41(8), 673–677 (2010)CrossRefGoogle Scholar
  16. 16.
    R.Z. Yuan, Cementitious Material Science (Wuhan University of Technology Press, 1996)Google Scholar
  17. 17.
    Z. Li, B. Han, Y. Yu, S. Dong, L. Zhang, X. Dong, J. Ou, Effect of nano-titanium dioxide on mechanical and electrical properties and microstructure of reactive powder concrete. Mater. Res. Express 4(9), 095008 (2017)CrossRefGoogle Scholar
  18. 18.
    L.Q. Zhang, N. Ma, Y.Y. Wang, B.G. Han, X. Cui, X. Yu, J.P. Ou, Study on the reinforcing mechanisms of nano silica to cement-based materials with theoretical calculation and experimental evidence. J. Compos. Mater. 50(29), 4135–4146 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Grzeszczyk, G. Lipowski, Effect of content and particle size distribution of high calcium fly ash on the rheological properties of cement pastes. Cem. Concr. Res. 27(6), 907–916 (1997)CrossRefGoogle Scholar
  20. 20.
    A.B. Yu, N. Standish, Porosity calculations of multi-component mixtures of spherical particles. Powder Technol. 52, 233–241 (1987)CrossRefGoogle Scholar
  21. 21.
    T. Stovall, F. Larrard, M. Buil, Linear packing density model of grain mixtures. Powder Technol. 48, 1–12 (1986)CrossRefGoogle Scholar
  22. 22.
    G. Fu, W. Dekelbab, D random packing of polydisperse particles and concrete aggregate grading. Powder Technol. 133, 147–155 (2003)CrossRefGoogle Scholar
  23. 23.
    P.C. Hewlett, Lea’s Chemistry of Cement and Concrete, 4th edn. (Elsevier, 1988)Google Scholar
  24. 24.
    Y. Yang, X. Qi, Analysis of X-Ray Diffraction (Shanghai Jiaotong University Press, 1994)Google Scholar
  25. 25.
    Z. Li, S. Ding, X. Yu, B. Han, J. Ou, Multifunctional cementitious composites modified with nano-titanium dioxide: a review. Compos. A Appl. Sci. Manuf. 111, 115–137 (2018)CrossRefGoogle Scholar
  26. 26.
    Z. Li, J. Wang, B. Han, X. Yu, J. Ou, Investigating size effect of anatase phase nano TiO2 on the property of cement-based composites. Mater. Res. Express 5(8), 085034 (2018)CrossRefGoogle Scholar
  27. 27.
    P. Hosseini, A. Booshehrian, A. Madari, Developing concrete recycling strategies by utilization of nano-SiO2 particles. Waste Biomass Valoriz. 2(3), 347–355 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Baoguo Han
    • 1
    Email author
  • Siqi Ding
    • 2
  • Jialiang Wang
    • 1
  • Jinping Ou
    • 1
  1. 1.School of Civil EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations