Skip to main content

Seed Biopriming Through Beneficial Rhizobacteria for Mitigating Soil-Borne and Seed-Borne Diseases

  • Chapter
  • First Online:
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 13))

Abstract

Seed priming enables seed hydration, thereby activating its metabolism without substantial germination. It also assists in rapid germination as well as enhances resistance to both biotic and abiotic stresses. Soilborne pathogens such as Sclerotium rolfsii, Sclerotinia sclerotiorum, and Rhizoctonia possess major threat to crop production on a global scale. These pathogens cause diseases at the time of seed germination; hence, seed biopriming approach will be advantageous for early crop protection. Further, seed biopriming also providing greater protection by biocontrol increased adherence to seed surface. Thereby biocontrol agents will be establishing prior to pathogen infection. In this context, seed biopriming is a promising technique in comparison to seed treatment, soil application, and foliar spray, thereby providing a significant contribution to sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB (2016) Plant growth-promoting microorganisms for environmental sustainability. Trend Biotechnol 34:847–850

    Article  CAS  Google Scholar 

  • Abuamsha R, Salman M, Ehlers R (2011) Effect of seed priming with Serratia plymuthica and Pseudomonas chlororaphis to control Leptosphaeria maculans in different oilseed rape cultivars. Eur J Plant Pathol 130:287–295

    Article  Google Scholar 

  • Agarwal VK, Sinclair JB (1996) Principles of seed pathology. CRC Press, Boca Raton

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Amin M, Teshele J, Tesfay A (2014) Evaluation of bioagents seed treatment against Colletotrichum lindemuthianum, in haricot bean anthracnose under field condition. Res Plant Sci 2:22–26

    Google Scholar 

  • Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480

    Chapter  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 411–449

    Chapter  Google Scholar 

  • Arumugam K, Ramalingam P, Appu M (2013) Isolation of Trichoderma viride and Pseudomonas fluorescens organism from soil and their treatment against rice pathogens. J Microbiol Biotech Res 3:77–81

    Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multi faceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticides. In Rai MK(ed) Food products Press, Binghamton, pp 137–181

    Google Scholar 

  • Bender CL, Rangaswamy V, Loper J (1999) Polyketide production by plant-associated pseudomonads. Annu Rev Phytopathol 37:175–196

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bisen K, Keswani C, Mishra S, Saxena A, Rakshit A, Singh HB (2015) Unrealized potential of seed biopriming for versatile agriculture. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer, New Delhi, pp 193–206

    Chapter  Google Scholar 

  • Borgen A, Davanlou M (2001) Biological control of common bunt (Tilletia tritici). J Crop Prod 3:157–171

    Article  Google Scholar 

  • Braun-Kiewnick A, Jacobsen BJ, Sands DC (2000) Biological control of Pseudomonas syringae pv syringae, the causal agent of basal kernel blight of barley, by antagonistic Pantoea agglomerans. Phytopathology 90:368–375

    Article  CAS  PubMed  Google Scholar 

  • Bressan W (2003) Biological control of maize seed pathogenic fungi by use of actinomycetes. Biocontrol 48:233–240

    Article  Google Scholar 

  • Callan NW, Mathre DE, Miller JB (1991) Field performance of sweet corn seed bio-primed and coated with Pseudomonas fluorescens AB254. Hortscience 26:1163–1165

    Article  Google Scholar 

  • Chahal SS (2012) Dr. Norman E Borlaug Memorial Lecture: Indian agriculture: Challenges and opportunities in post-Borlaug era. J Mycol Plant Pathol 42:48–55

    Google Scholar 

  • Chern LL, Lin HC, Chang CT, Ko WH (2014) Activation of systemic resistance to Magnaporthe oryzae in rice by substances produced by Fusarium solani isolated from Soil. J Phytopathol 162:434–441

    Article  CAS  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanism of bio- control of soilborne plant pathogens by rhizobacteria. Plant Soil 129:85–92

    Article  Google Scholar 

  • Chet I, Borak Z, Oppenheim A (1993) Genetic engineering of microorganisms for improved biocontrol activity. Biotechnology 27:211–235

    Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain 45. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones. Springer, Dordrecht, pp 1–15

    Chapter  Google Scholar 

  • de Garcia Salamone IE, Hynes RK, Nelson LM (2005) Role of cytokinins in plant growth promotion by rhizosphere bacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 173–195

    Chapter  Google Scholar 

  • de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity and activity of 2, 4-diacetyl phloroglucinol producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology 93:54–63

    Article  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Doornbos RF, Van Loon LC, Peter AHM, Bakker A (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Rev Sustain Dev 32:227–243

    Article  Google Scholar 

  • Etesami H, Alikhani HA (2016) Suppression of the fungal pathogen Magnaporthe grisea by Stenotrophomonas maltophilia, seed-borne rice(Oryza sativa L.) endophytic bacterium. Arch Agron Soil 15:1–14

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Giorgio A, Cantore PL, Shanmugaiah V, Lamorte D, Iacobellis NS (2016) Rhizobacteria isolated from the common bean in southern Italy as potential biocontrol agents against common bacterial blight. Eur J Plant Pathol 144:297–309

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifca (Cairo) 2012:963401

    Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant Growth Promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    CAS  Google Scholar 

  • Harman GE, Taylor AG (1988) Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathol 78:520–525

    Article  Google Scholar 

  • Hastuti RD, Lestari Y, Suwanto A, Saraswati R (2012) Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). Hayati J Biosci 19:155–162

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hussain S, Ghaffar A, Aslam M (1990) Biological control of Macrophomina phaseolina charcoal rot of sunflower and mung bean. J Phytopathol 130:157–160

    Article  Google Scholar 

  • Jain S, Vaishnav A, Kumari S, Varma A, Tuteja N, Choudhary DK (2017) Chitinolytic Bacillus-mediated induction of jasmonic acid and defense-related proteins in soybean (Glycine max L. Merrill) plant against Rhizoctonia solani and Fusarium oxysporum. J Plant Growth Regul 36(1):200–214

    Article  CAS  Google Scholar 

  • Ji GH, Wei LF, He YQ, Wu YP, Bai XH (2008) Biological control of rice bacterial blight by Lysobacter antibiotics strain 13-1. Biol Control 45:288–296

    Article  Google Scholar 

  • Joe MM, Islam MR, Karthikeyan B, Bradeepa K, Sivakumaar PK, Sa T (2012) Resistance responses of rice to rice blast fungus after seed treatment with the endophytic Achromobacter xylosoxidans AUM54 strains. Crop Prot 42:141–148

    Article  Google Scholar 

  • Johnsson L, Hökeberg M, Gerhardson B (1998) Performance of the Pseudomonas chlororaphis biocontrol agent MA 342 against cereal seed-borne diseases in field experiments. Eur J Plant Pathol 104:701–711

    Article  Google Scholar 

  • Joshi M, Shrivastava R, Sharma AK, Prakash A (2012) Screening of resistant verities and antagonistic Fusarium oxysporum for biocontrol of Fusarium Wilt of Chilli. Plant Pathol Microbiol 3:134

    Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirth- ner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: the importance of the bacterial secondary metabolite 2,4-diacetyl phloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Khan MR, Fischer S, Egan D, Doohan FM (2006) Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathology 96:386–394

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi - current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Kildea S, Ransbotyn V, Khan MR, Fagan B, Leonard G, Mullins E, Doohan FM (2008) Bacillus megaterium shows potential for the biocontrol of Septoria tritici blotch of wheat. Biol Control 47:37–45

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Knudsen IM, Hockenhull J, Jensen DF (1995) Biocontrol of seedling diseases of barley and wheat caused by Fusarium culmorum and Bipolaris sorokiniana: effects of selected fungal antagonists on growth and yield components. Plant Pathol 44:467–477

    Article  Google Scholar 

  • Koster M, van de Vosenberg J, Leong J, Weisbeek PJ (1993) Identification and characterization of the pup gene encoding an inducible ferric pseudo- actin receptor of Pseudomonas putidaWCS358. Mol Microbiol 8:591–601

    Article  CAS  PubMed  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102:967–973

    Article  CAS  PubMed  Google Scholar 

  • Latha P, Anand T, Ragupathi N, Prakasam V, Samiyappan R (2009) Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biol Control 50:85–93

    Article  Google Scholar 

  • Leong J (1986) Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu Rev Phytopathol 24:187–209

    Article  CAS  Google Scholar 

  • Levenfors JP, Eberhard TH, Levenfors JJ, Gerhardson B, Hokeberg M (2008) Biological control of snow mould (Microdochium nivale) in winter cereals by Pseudomonas brassicacearum MA250. Biocontrol 53:651–665

    Article  Google Scholar 

  • Li Q, Jiang Y, Ning P, Zheng L, Huang J, Li G, Jiang D, Hsiang T (2011) Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biol Control 58:139–148

    Article  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29:413–421

    Article  CAS  Google Scholar 

  • McDonald MB (1999) Seed deterioration: physiology, repair, and assessment. Seed Sci Technol 27:177–237

    Google Scholar 

  • Mehnaz S (2013) Secondary metabolites of Pseudomonasaurantiaca and their role in plant growth promotion. In: Arora NK (ed) Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 373–394

    Chapter  Google Scholar 

  • Minuto A, Spadaro D, Garibaldi A, Gullino ML (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Prot 25:468–475

    Article  Google Scholar 

  • Murunde R, Wainwright H (2018) Bio-priming to improve the seed germination, emergence and seedling growth of kale, carrot, and onions. Glob J Agric Res 6:26–34

    Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2012) Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbe Environ 28:42–49

    Article  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • Nion YA, Toyota K (2015) Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes Environ 30:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two sp. microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Pandey AK, Burlakoti RR, Kenyon L, Nair RM (2018) Perspectives and challenges for sustainable management of fungal diseases of mungbean (Vigna radiata L.) R. Wilczek var. radiata: a review. Front Environ Sci 6:53

    Article  Google Scholar 

  • Pane C, Villecco D, Campanile F, Zaccardelli M (2012) Novel strains of Bacillus, isolated from compost and compost-amended soils, as biological control agents against soil-borne phytopathogenic fungi. Biocontrol Sci Technol 22:1373–1388

    Article  Google Scholar 

  • Papavizas GC (1984) Soilborne plant pathogens: new opportunities for biological control. In: Proceedings British crop protection conference-pests and disease, pp 371–378

    Google Scholar 

  • Parmar P, Sindhu SS (2013) Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res 3:25–31

    Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Doredrecht, pp 195–230

    Chapter  Google Scholar 

  • Raaijmakers JM, Leeman M, van Oorschot MMP, van der Sluis I, Schip- pers B, Bakker PAHM (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081

    Article  Google Scholar 

  • Rangarajan S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Soil 251:73–82

    Article  Google Scholar 

  • Rani GD (2008) An overview of soil borne phytopathogens. In: Naik MK, Rani GD (eds) Advances in soil borne plant diseases. New India Publishing House, New Delhi, pp 1–31

    Google Scholar 

  • Ray S, Singh S, Sarma BK, Singh HB (2016) Endophytic Alcaligenes isolated from horticultural and medicinal crops promotes growth in Okra (Abelmoschus esculentus). J Plant Growth Reg 35:401–412

    Article  CAS  Google Scholar 

  • Ray K, Sen K, Ghosh PP, Barman AR, Mandal R, De Roy M, Dutta S (2017) Dynamics of Sclerotium rolfsii as influenced by different crop rhizosphere and microbial community. J Appl Nat Sci 9(3):1544–1550

    Article  CAS  Google Scholar 

  • Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50:194–198

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Sacherer P, Défago G, Haas D (1994) Extracellular protease and phospholipase C is controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116:155–160

    Article  CAS  PubMed  Google Scholar 

  • Sallam NM (2011) Biological control of common blight of bean (Phaseolus vulgaris) caused by Xanthomonas xonopodis pv. phaseoli by using the bacterium Rahnella aquatilis. Arch Phytopathol Plant Protect 44:1966–1975

    Article  Google Scholar 

  • Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 147–150

    Chapter  Google Scholar 

  • Singh HB (2016) Seed biopriming: a comprehensive approach towards agricultural sustainability. Indian Phytopathol 69:203–209

    Google Scholar 

  • Singh D, Maheshwari V (2001) Biological seed treatment for the control of loose smut of wheat. Indian Phytopathol 54(4):457–460

    Google Scholar 

  • Singh V, Upadhyay RS, Sarma BK, Singh HB (2016) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int J Agric Environ Biotechnol 9:361–365

    Article  Google Scholar 

  • Slimene IB, Tabbene O, Gharbi D, Mnasri B, Schmitter JM, Urdaci MC, Limam F (2015) Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection. Appl Biochem Biotechnol 175:3494–3506

    Article  PubMed  CAS  Google Scholar 

  • Smith JA, Métraux JP (1991) Pseudomonas syringae pv. syringae induces systemic resistance to Pyricularia oryzae in rice. Physiol Mol Plant Pathol 39:451–461

    Article  Google Scholar 

  • Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot 24(7):601–613

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spago FR, Mauro CI, Oliveira AG, Beranger JPO, Cely MVT, Stanganelli MM, Simionato AS, San Martin JAB, Andrade CGTJ, Mello JCP, Andrade G (2014) Pseudomonas aeruginosa produces secondary metabolites that have biological activity against plant pathogenic Xanthomonas species. Crop Prot 62:46–54

    Article  CAS  Google Scholar 

  • Sujatha N, Ammani K (2013) Siderophore production by the isolates of fluorescent Pseudomonads. Int J Curr Res Rev 5:1–7

    Google Scholar 

  • Tao A, Pang F, Huang S, Yu G, Li B, Wang T (2014) Characterization of endophytic Bacillus thuringiensis strains isolated from wheat plants as biocontrol agents against wheat flag smut. Biocontrol Sci Technol 24:901–924

    Article  Google Scholar 

  • Udayashankar AC, Nayaka SC, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59:114–122

    Article  CAS  Google Scholar 

  • Velusamy P, Immanuel JE, Gnanamanickam SS, Thomashow L (2006) Biological control of rice bacterial blight by plant-associated bacteria producing 2, 4-diacetyl phloroglucinol. Can J Microbiol 52:56–65

    Article  CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vidhyasekaran P, Kamala N, Ramanathan A, Rajappan K, Paranidharan V, Velazhahan R (2001) Induction of systemic resistance by Pseudomonas fluorescens Pf1 against Xanthomonas oryzae pv. oryzae in rice leaves. Phytoparasitica 29:155–166

    Article  Google Scholar 

  • Wadhwa K, Beniwal MS, Karwasara SS, Behl RK, Narula N (2011) Biological control of flag smut disease in wheat (T. aestivum) under field conditions using bioinoculants. J Genet Evol 4:15–21

    Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang RS, Liu YF, Chen ZY (2011) Screening, evaluation and utilization of antagonistic bacteria against Xanthomonas oryzae pv. oryzicola. Chin J Biol Control 4:1–14. http://cibrc.nic.in/bpr.doc

Download references

Acknowledgments

RS Rajput and P Singh are grateful to UGC- RET scholarship for providing financial assistance. HB Singh is grateful to DST for providing funding under a grant (BT/PR5990/AGR/5/587/2012).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajput, R.S., Singh, P., Singh, J., Ray, S., Vaishnav, A., Singh, H.B. (2019). Seed Biopriming Through Beneficial Rhizobacteria for Mitigating Soil-Borne and Seed-Borne Diseases. In: Sayyed, R. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 13. Springer, Singapore. https://doi.org/10.1007/978-981-13-6986-5_7

Download citation

Publish with us

Policies and ethics