Advertisement

Amelioration of Biotic Stress by Application of Rhizobacteria for Agriculture Sustainability

  • Satyavir S. Sindhu
  • Ruchi Sharma
Chapter
Part of the Microorganisms for Sustainability book series (MICRO, volume 13)

Abstract

Increase in agriculture crop yields is needed to feed the ever-growing human population. But, the biotic and abiotic stresses are major constraints for plant growth, crop yield, food quality, and global food security. Different pathogens, weeds, and insects collectively contribute to biotic stress. Biotic stress causes adverse impacts on plants, including hormonal and nutritional imbalance, physiological disorders, susceptibility to diseases, etc., and results in reduced economic yield. The application of plant growth-promoting rhizobacteria (PGPR) offers a cost-effective and eco-friendly mechanism for protecting plants against the stress conditions. These microbial populations in the rhizosphere may benefit the plant by increased recycling, solubilization, and uptake of mineral nutrients; by synthesis of vitamins, amino acids, auxins, and gibberellins; and by antagonism with potential plant pathogens. Certain PGPR strains also protect the plants against pathogens through a mechanism associated with induced systemic resistance (ISR) or systemic acquired resistance (SAR). Recent progress in our understanding on the diversity of rhizobacteria in the rhizosphere, their colonization ability, and their mechanism of action in amelioration of biotic stress will facilitate their application as a reliable component in the management of a sustainable agricultural system. In this chapter, the effects of rhizobacteria on plant susceptibility/resistance to potential deleterious organisms, including root and shoot pathogens, pathogens, weeds, and phytophagous insects, will be discussed. The application of these rhizobacteria as biofertilizers and biopesticides may become a feasible and potential technology in the future to feed the global population with reduced impact on environmental quality.

Keywords

Abiotic and biotic stresses Pathogen Insect Weed Amelioration of biotic stress Microbiome engineering 

References

  1. Aetiba JP, Osekre EA (2015) Field evaluation of Levo botanical insecticide for the management of insect pests of eggplant (Solanum melongena L.). Am J Expl Agri 8(1):147–153Google Scholar
  2. Agarry OO, Akinyosoye FA, Adetuyi FC (2005) Antagonistic properties of microorganisms associated with cassava (Manihot esculenta, Crantz) products. Afr J Biotechnol 4(7):627–632CrossRefGoogle Scholar
  3. Agarwal P, Agarwal PK (2016) Jatropha curcas pathogenesis-related-10a protein: a jack of many trades via cytokinin signaling. Clon Transgen 5(2):1–5.  https://doi.org/10.4172/2168-9849.1000152CrossRefGoogle Scholar
  4. Agler M, Ruhe J, Kroll S, Morhenn A, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ahemad M, Khan MS (2011) Functional aspects of plant growth promoting rhizobacteria: recent advancements. Insight Microbiol 1(3):39–54CrossRefGoogle Scholar
  6. Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57(7):578–589PubMedCrossRefGoogle Scholar
  7. Akhtar MS, Siddiqui ZA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 61–97CrossRefGoogle Scholar
  8. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  9. Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl-Goy P, Luntz T, Ward E (1993) Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A 99:7327–7331CrossRefGoogle Scholar
  10. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper no. 12-03. FAO, RomeGoogle Scholar
  11. Alvindia DG, Natsuaki KT (2009) Biocontrol activities of Bacillus amyloliquefaciens DGA14 isolated from banana fruit surface against banana crown rot-causing pathogens. Crop Prot 28(3):236–242CrossRefGoogle Scholar
  12. Amagasa T, Paul RN, Heitholt JJ, Duke SO (1994) Physiological effects of coexisting on Lemna pauscicostates. Pestic Biochem Physiol 49:37–52CrossRefGoogle Scholar
  13. An C, Mou Z (2011) Salicylic acid and its function in plant immunity. J Integr Plant Biol 53(6):412–428.  https://doi.org/10.1111/j.1744-7909.2011.01043.xCrossRefPubMedGoogle Scholar
  14. Antoniw JF, Ritter CE, Pierpoint WS, van Loon LC (1980) Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. J Gen Virol 47:79–87CrossRefGoogle Scholar
  15. Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32:1147–1160.  https://doi.org/10.1111/j.1365-3040.2009.01940.xCrossRefPubMedGoogle Scholar
  16. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18:611–620CrossRefGoogle Scholar
  17. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983.  https://doi.org/10.1038/415977aCrossRefPubMedGoogle Scholar
  18. Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea by Pseudomonas aeruginosa 7NSK2: the role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156.  https://doi.org/10.1094/MPMI.2002.15.11.1147CrossRefPubMedGoogle Scholar
  19. Ayres PG, Press MC, Spencer-Phillips PT (1996) Effects of pathogens and parasitic plants on source-sink relationships. Photoassimilate distribution in plants and crops. Malcolm Colin Press, Sheffield, pp 479–499Google Scholar
  20. Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–an overview of the mechanisms involved. Mycorrhiza 6(6):457–464CrossRefGoogle Scholar
  21. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefGoogle Scholar
  22. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bahar AA, Sezen K, Demirbağ Z, Nalçacioğlu R (2011) The relationship between insecticidal effects and chitinase activities of Coleopteran-originated entomopathogens and their chitinolytic profile. Ann Microbiol 62:647–653.  https://doi.org/10.1007/s13213-011-0301-yCrossRefGoogle Scholar
  24. Bajaj Y (1970) Effect of gamma-irradiation on growth, RNA, protein, and nitrogen contents of bean callus cultures. Ann Bot 34(5):1089–1096CrossRefGoogle Scholar
  25. Baldani VD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  26. Banowetz GM, Azevedo MD, Armstrong DJ, Halgren AB, Mills DI (2008) Germination-Arrest Factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol Control 46:380–390CrossRefGoogle Scholar
  27. Bari R, Jones JD (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69(4):473–488CrossRefPubMedGoogle Scholar
  28. Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, Kalra A (2017) Plant growth promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161(4):502–514.  https://doi.org/10.1111/ppl.12614CrossRefPubMedGoogle Scholar
  29. Barral DHP, Clark JA (1991) Proteins arising during the late stages of embryogenesis in Pisum sativum. Planta 184:14–23Google Scholar
  30. Barreto MR, Guimaraes CT, Teixeira FF, Paiva E, Valicente FH (2005) Effect of Baculovirus spodoptera isolates in Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) larvae and their characterization by RAPD. Neotropical Entomol 34(1):67–75CrossRefGoogle Scholar
  31. Barrios S, Ouattara B, Strobl E (2008) The impact of climatic change on agricultural production: Is it different for Africa? Food Policy 33(4):287–298CrossRefGoogle Scholar
  32. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:242–252CrossRefGoogle Scholar
  33. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  34. Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedCrossRefGoogle Scholar
  35. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148–154PubMedPubMedCentralGoogle Scholar
  36. Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83.  https://doi.org/10.1023/A:1026290508166CrossRefGoogle Scholar
  37. Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283.  https://doi.org/10.1146/annurev-micro-092611-150107CrossRefPubMedPubMedCentralGoogle Scholar
  38. Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, Kumar PA (2005) Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Lett 243(2):467–472PubMedCrossRefGoogle Scholar
  39. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefGoogle Scholar
  40. Bhowmick R, Girotti AW (2010) Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 48:1296–1301PubMedPubMedCentralCrossRefGoogle Scholar
  41. Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci U S A 97:9329–9334PubMedPubMedCentralCrossRefGoogle Scholar
  42. Blaha D, Combaret CP, Mirza MS, Loccoz YM (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase encoding gene acdS in phytobene Wcial and pathogenic Proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470CrossRefGoogle Scholar
  43. Boets A, Arnaut G, Van Rie J, Damme N (2004) Toxins United States Patent No. 6, 706, 860Google Scholar
  44. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406CrossRefGoogle Scholar
  45. Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in the soil. Annu Rev Phytopathol 45:153–172.  https://doi.org/10.1146/annurev.phyto.45.062806.094354CrossRefPubMedGoogle Scholar
  46. Bowen D (1995) Characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Ph.D. thesis, University of Wisconsin, MadisonGoogle Scholar
  47. Bowen D, Blackburn M, Rocheleau T, Grutzmacher C, Ffrench-Constant RH (2000) Secreted proteases from Photorhabdus luminescens: Separation of the extracellular proteases from the insecticidal tc toxin complexes. Insect Biochem Mol Biol 30:69–74.  https://doi.org/10.1016/S0965-1748(99)00098-3CrossRefPubMedGoogle Scholar
  48. Boyetchko S, Rosskopf E (2006) Strategies for developing bioherbicides for sustainable weed management. In: Singh HP, Batish DR, Kohli RK (eds) Handbook for sustainable weed management. Haworth Press, Inc, New YorkGoogle Scholar
  49. Boyette CD, Hoagland RE (2013a) Bioherbicidal potential of a strain of Xanthomonas spp. for control of common Cocklebur (Xanthium strumarium). Biocontrol Sci Tech 23:183–196CrossRefGoogle Scholar
  50. Boyette CD, Hoagland RE (2013b) Influence of epidemiological factors on the bioherbicidal efficacy of a Xanthomonas campestris spp. for control of common Cocklebur (Xanthium strumarium). J Exper Biol Agri Sci 1:209–216Google Scholar
  51. Boyette CD, Hoagland RE (2015) Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Sci Tech 25:229–237CrossRefGoogle Scholar
  52. Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435PubMedCrossRefGoogle Scholar
  53. Broekaert WF, Delauré SL, De Bolle MF, Cammue BP (2006) The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol 44:393–416.  https://doi.org/10.1146/annurev.phyto.44.070505.143440CrossRefPubMedGoogle Scholar
  54. Bulgarelli D, Schlaeppi Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838.  https://doi.org/10.1146/annurev-arplant-050312-120106CrossRefPubMedGoogle Scholar
  55. Bulgarelli D, Garrido-the R, Munch PC, Weiman A, Droge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403.  https://doi.org/10.1016/j.chom.2015.01.011CrossRefPubMedPubMedCentralGoogle Scholar
  56. Bünemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A (2004) Microbial community composition and substrate used in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36(6):889–901CrossRefGoogle Scholar
  57. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245CrossRefGoogle Scholar
  58. Burnell AM, Stock SP (2000) Heterorhabditis, Steinernema, and their bacterial symbionts - lethal pathogens of insect. Nematology 2:31–42CrossRefGoogle Scholar
  59. Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D, Zaccardelli M, Setubal JC, Morales-Lizcano NP, Bernal A, Coaker G, Baker C, Bender CL, Leman S, Vinatzer BA (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7(8):e1002130PubMedPubMedCentralCrossRefGoogle Scholar
  60. Caldwell CJ, Hynes RK, Boyetchko SM, Korber DR (2011) Colonization and bioherbicidal activity on green foxtail by Pseudomonas fluorescens BRG100 in a pesta formulation. Can J Microbiol 58:1–9PubMedCrossRefGoogle Scholar
  61. Canova SP, Petta T, Reyes LF, Zucchi TD, Moraes LA, Melo IS (2010) Characterization of lipopeptides from Paenibacillus sp. (IIRAC30) suppressing Rhizoctonia solani. World J Microbiol Biotechnol 26(12):2241–2247CrossRefGoogle Scholar
  62. Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, von Wiren N, Borriss R (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8(7):e68555.  https://doi.org/10.1371/journal.pone.0068555CrossRefPubMedPubMedCentralGoogle Scholar
  63. Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact 28(9):1049–1058PubMedCrossRefGoogle Scholar
  64. Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation, and use of biopesticides for integrated pest management. Phil Trans R Soc B Biol Sci 366(1573):1987–1998CrossRefGoogle Scholar
  65. Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499.  https://doi.org/10.1007/s00374-012-0691-4CrossRefGoogle Scholar
  66. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731.  https://doi.org/10.1371/journal.pone.0055731CrossRefPubMedPubMedCentralGoogle Scholar
  67. Chapman JW, Bell JR, Burgin LE, Reynolds DR, Pettersson LB, Hill JK, Bonsall MB, Thomas JA (2012) Seasonal migration to high latitudes results in major reproductive benefits in an insect. Proc Natl Acad Sci U S A 109(37):14924–14929PubMedPubMedCentralCrossRefGoogle Scholar
  68. Chaudhary HJ, Peng G, Hu M, He Y, Yang L, Luo Y, Tan Z (2012) Genetic diversity of endophytic diazotrophs of the wild rice, Oryza alta and identification of the new diazotroph, Acinetobacter oryzae sp. nov. Microb Ecol 63:813–821PubMedCrossRefGoogle Scholar
  69. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25(9):1007–1014.  https://doi.org/10.1038/nbt1325CrossRefPubMedGoogle Scholar
  70. Chen YC, Kidd BN, Carvalhais LC, Schenk PM (2014) Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum. Plant Signal Behav 9:e977710.  https://doi.org/10.4161/15592324.2014.977710CrossRefPubMedPubMedCentralGoogle Scholar
  71. Choi SK, Park SY, Kim R, Lee CH, Kim JF, Park SH (2008) Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun 365(1):89–95PubMedCrossRefGoogle Scholar
  72. Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513PubMedCrossRefGoogle Scholar
  73. Choudhary SR, Sindhu SS (2015) Suppression of Rhizoctonia solani root rot disease of clusterbean (Cyamopsis tetragonoloba) and plant growth promotion by rhizosphere bacteria. Plant Pathol J 14:48–57CrossRefGoogle Scholar
  74. Choudhary SR, Sindhu SS (2016) Growth stimulation of cluster bean (Cyamopsis tetragonoloba) by coinoculation with rhizosphere bacteria and Rhizobium. Legum Res 39(6):1003–1012Google Scholar
  75. Clair SB, Lynch JP (2010) The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 335(1-2):101–115CrossRefGoogle Scholar
  76. Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R, Ichinose Y, Martin GB, Leman S, Felix G, Vinatzer BA (2013) Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol 200:847–860PubMedPubMedCentralCrossRefGoogle Scholar
  77. Clinton A, Rumbaugh KP (2016) Interspecies and interkingdom signaling via quorum signals. Israel J Chem 56(5):265–272CrossRefGoogle Scholar
  78. Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252(1):169–175CrossRefGoogle Scholar
  79. Cocking EC, Webster G, Batchelor CA, Davey MR (1994) Nodulation of non-legume crops: a new look. Agro-Industry Hi-Tech, pp 21–24Google Scholar
  80. Corthals G, Gygi S, Aebersold R, Patterson S (2000) Identification of proteins by mass spectrometry. In: Proteome research: two-dimensional gel electrophoresis and identification methods. Springer, Berlin, pp 197–231CrossRefGoogle Scholar
  81. Crowell DN, John ME, Russell D, Amasino RM (1992) Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Mol Biol 18:459–466PubMedCrossRefGoogle Scholar
  82. Daigle DJ, Connick JWJ, Boyetchko SM (2002) Formulating a weed suppressive bacterium in ‘pesta’. Weed Technol 16:407–413CrossRefGoogle Scholar
  83. Darby C, Cosma CL, Thomas JH (1999) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:202–207.  https://doi.org/10.1073/pnas.96.26.15202CrossRefGoogle Scholar
  84. Das S, DeMason DA, Ehlers JD, Close TJ, Roberts PA (2008) Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J Exp Bot 59(6):1305–1313PubMedCrossRefGoogle Scholar
  85. de Barjac H, Lemille F (1970) Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis. J Invertebr Pathol 15:139–140CrossRefGoogle Scholar
  86. De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K (2015) What lies beneath belowground defense strategies in plants. Trends Plant Sci 20(2):91–101PubMedCrossRefGoogle Scholar
  87. de Maagd RA, Bravo A, Berry C, Crickmore N, Schnepf HE (2003) Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37:409–433.  https://doi.org/10.1146/annurev.genet.37.110801.143042CrossRefPubMedGoogle Scholar
  88. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJM, Dickman R, Kahmann JE (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430PubMedPubMedCentralCrossRefGoogle Scholar
  89. Dehgahi R, Zakaria L, Joniyas A, Subramaniam S (2014) Fusarium proliferatum culture filtrate sensitivity of Dendrobium sonia-28‘s PLBs derived regenerated plantlets. Malay J Microbiol 10(4):241–248Google Scholar
  90. Dehgahi R, Subramaniam S, Zakaria L, Joniyas A, Firouzjahi FB, Haghnama K, Razinataj M (2015a) Review of research on fungal pathogen attack and plant defense mechanism against the pathogen. Int Sci Res Agric Sci 2(8):197–208Google Scholar
  91. Dehgahi R, Zakaria L, Mohamad A, Joniyas A, Subramaniam S (2015b) Effects of fusaric acid treatment on the protocorm-like bodies of Dendrobium sonia-28. Protoplasma 15:1–7Google Scholar
  92. Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens. Biol Control 37(1):68–74CrossRefGoogle Scholar
  93. Deng Y, Lu Z, Lu F, Zhang C, Wang Y, Zhao H, Bie X (2011) Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa. J Microbiol Methods 85(3):175–182PubMedCrossRefGoogle Scholar
  94. Devi K, Seth N, Kothamasi S, Kothamasi D (2007) Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions. Curr Microbiol 54:74–78PubMedCrossRefGoogle Scholar
  95. Devine TE, Kuykendall LD (1996) Host genetic control of symbiosis in soybean (Glycine max L.). Plant Soil 186:173–187CrossRefGoogle Scholar
  96. Dey C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694CrossRefGoogle Scholar
  97. Ding C, Shen Q, Zhang R, Chen W (2013) Evaluation of rhizosphere bacteria and derived bio-organic fertilizers as potential biocontrol agents against bacterial wilt (Ralstonia solanacearum) of potato. Plant Soil 366(1-2):453–466CrossRefGoogle Scholar
  98. Dixon R, Cheng Q, Shen GF, Day A, Day MD (1997) nif genes and expression in chloroplasts: Prospects and problems. Plant Soil 194:193–203CrossRefGoogle Scholar
  99. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548PubMedCrossRefGoogle Scholar
  100. Dohroo A, Sharma DR (2012) Role of plant growth promoting rhizobacteria, arbuscular mycorrhizal fungi and their helper bacteria on growth parameters and root rot of apple. World J Sci Tech 2(12):35–38Google Scholar
  101. Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552.  https://doi.org/10.1016/j.pbi.2004.07.005CrossRefPubMedGoogle Scholar
  102. Donnelly J (2002) Great Irish potato famine. The History Press, StroudGoogle Scholar
  103. Doornbos RF, van Loon LC (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere: a review. Agron Sustain Dev 32:227–243.  https://doi.org/10.1007/s13593-011-0028-yCrossRefGoogle Scholar
  104. Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66(7):2804–2810PubMedPubMedCentralCrossRefGoogle Scholar
  105. Dubey RK, Tripathi V, Dubey PK, Singh HB, Abhilash PC (2016) Exploring rhizospheric interactions for agricultural sustainability: the need for integrative research on multi-trophic interactions. J Clean Prod 115:362–365CrossRefGoogle Scholar
  106. Duke SO, Abbas HK, Boyette CD, Gohbara M (1991) Microbial compounds with the potential for herbicide use. In: Proceeding brighten crop protection conference weeds, Brighton, UK, pp 155–164Google Scholar
  107. Duke SO, Evidence A, Fiore M, Rimando AM, Vurro M, Chistiansen N, Looser R, Grossmann K (2011) Effects of the aglycone of ascaulitoxin on amino acid metabolism in Lemna paucicostata. Pestic Biochem Physiol 100:41–50CrossRefGoogle Scholar
  108. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 10:1–9Google Scholar
  109. Ehrlich HL (1996) How microbes influence mineral growth and dissolution. Chem Geol 132(1–4):5–9CrossRefGoogle Scholar
  110. El-Borollosy AM, Oraby MM (2012) Induced systemic resistance against Cucumber mosaic cucumovirus and promotion of cucumber growth by some plant growth-promoting rhizobacteria. Ann Agric Sci 57:91–97CrossRefGoogle Scholar
  111. Elkan GH (1992) Biological nitrogen fixation systems in tropical ecosystems: an overview. In: Mulongoy K, Gueye M, Spencer DSC (eds) Biological nitrogen fixation and sustainability of tropical agriculture. Wiley, Chichester, pp 27–40Google Scholar
  112. Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17(5):250–259PubMedPubMedCentralCrossRefGoogle Scholar
  113. Estruch JJ, Schell J, Spena A (1991) The protein encoded by the rolB plant oncogene hydrolyzes indole glucosides. EMBO J 10:3125–3128PubMedPubMedCentralCrossRefGoogle Scholar
  114. Evers D, Bonnechère S, Hoffmann L, Hausman JF (2007) Physiological aspects of abiotic stress response in potato. Belg J Bot 14:141–150Google Scholar
  115. Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen Z (2007) Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbiol 73(3):956–961PubMedCrossRefGoogle Scholar
  116. Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase-inhibitors. Plant Cell 4:129–134PubMedPubMedCentralCrossRefGoogle Scholar
  117. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276PubMedCrossRefGoogle Scholar
  118. Feng F, Zhou JM (2012) Plant-bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol 15:469–476PubMedCrossRefGoogle Scholar
  119. Ferguson CM, Barton DM, Harper LA, Swaminathan J, Van Koten C, Hurst MRH (2012) Survival of Yersinia entomophaga MH96 in a pasture ecosystem and effects on pest and non-target invertebrate populations. New Zealand Plant Protect 65:166–173Google Scholar
  120. Ferreira MI, Reinhardt CF (2016) Allelopathic weed suppression in agroecosystems: a review of theories and practices. Afr J Agric Res 11(6):450–459CrossRefGoogle Scholar
  121. Fickett ND, Boerboom CM, Stoltenberg DE (2013) Predicted corn yield loss due to weed competition prior to postemergence herbicide application on Wisconsin farms. Weed Technol 27:54–62CrossRefGoogle Scholar
  122. Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by coinoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  123. Flores HE, Vivanco JM, Loyola-Vargas VM (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4(6):220–226PubMedCrossRefGoogle Scholar
  124. Fox AR, Soto G, Valverde C, Russo D, Lagares A, Zorreguieta Á, Alleva K, Pascuan C, Frare R, Mercado-Blanco J, Dixon R (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. Environ Microbiol 18(10):3522–3534PubMedCrossRefGoogle Scholar
  125. Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instructor:1–12.  https://doi.org/10.1094/PHI-I-2008-0226-01
  126. Gallagher LA, Manoil C (2001) Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214.  https://doi.org/10.1128/JB.183.21.6207-6214.2001CrossRefPubMedPubMedCentralGoogle Scholar
  127. Gealy DR, Gurusiddah S, Ogg AGJ, Kennedy AC (1996) Metabolites from Pseudomonas fluorescens strain D7 inhibits downy brome (Bromus tectorum) seedling growth. Weed Technol 10:282–287CrossRefGoogle Scholar
  128. Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086.  https://doi.org/10.1046/j.1365-2672.2002.01658.xCrossRefPubMedGoogle Scholar
  129. Ghazalibigla H, Hampton JG, de Jong EVZ, Holyoake A (2016) Is induced systemic resistance the mechanism for control of black rot in Brassica oleracea by a Paenibacillus sp.? Biol Control 92:195–201CrossRefGoogle Scholar
  130. Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281CrossRefGoogle Scholar
  131. Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata lectin receptor kinase 1 suppresses the insect-mediated inhibition of induced defence responses during Menduca sexta herbivory. Plant Cell 23:3512–3532PubMedPubMedCentralCrossRefGoogle Scholar
  132. Giovanelli J, Owens LD, Mudd SH (1973) β-cystathionase. In vivo inactivation by rhizobitoxins and role of the enzyme in methionine biosynthesis in corn seedlings. Plant Physiol 51:492–503PubMedPubMedCentralCrossRefGoogle Scholar
  133. Glare TR, O’callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. Wiley, ChichesterGoogle Scholar
  134. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  135. Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378.  https://doi.org/10.1016/S0734-9750(97)00004-9CrossRefGoogle Scholar
  136. Gnanavel I (2015) Eco-friendly weed control options for sustainable agriculture. Sci Int 3:37–47CrossRefGoogle Scholar
  137. Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1–19Google Scholar
  138. Grace JK, Ewart D (1996) Recombinant cells of Pseudomonas fluorescens: a highly palatable encapsulation for delivery of genetically engineered toxins to subterranean termite (Isoptera: Rhinotermitidae). Lett Appl Microbiol 23:183–186CrossRefGoogle Scholar
  139. Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30(3):369–378.  https://doi.org/10.1016/S0038-0717(97)00124-7CrossRefGoogle Scholar
  140. Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120PubMedGoogle Scholar
  141. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240CrossRefGoogle Scholar
  142. Gupta S, Meena MK, Datta S (2014) Isolation, characterization of plant growth promoting bacteria from the plant Chlorophytum borivilianum and in-vitro screening for activity of nitrogen fixation, phosphate solubilization and IAA production. Int J Curr Microbiol App Sci 3:1082–1090Google Scholar
  143. Gusain YS, Singh US, Sharma AK (2015) Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol 14:764–773CrossRefGoogle Scholar
  144. Hacquard S, Garrido-Oter R, González A, Spaepen S, Ackermann G, Lebeis S, McHardy AC, Dangl JL, Knight R, Ley R, Schulze-Lefert P (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17(5):603–616.  https://doi.org/10.1016/j.chom.2015.04.009CrossRefPubMedGoogle Scholar
  145. Haggag WM, Abouziena HF, Abd-El-Kreem F, Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm 7(10):882–889Google Scholar
  146. Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S (2007) Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Mol Plant-Microbe Interact 20:1346–1352.  https://doi.org/10.1094/MPMI-20-11-1346CrossRefPubMedGoogle Scholar
  147. Hardarson G (1993) Methods for enhancing symbiotic nitrogen fixation. Plant Soil 152:1–17CrossRefGoogle Scholar
  148. Harding DP, Raizada MN (2015) Controlling weeds with fungi, bacteria and viruses: a review. Front Plant Sci 6:659–667PubMedPubMedCentralCrossRefGoogle Scholar
  149. Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320PubMedPubMedCentralCrossRefGoogle Scholar
  150. Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257.  https://doi.org/10.1007/s11104-008-9814-yCrossRefGoogle Scholar
  151. Hassan S, Mathesius U (2011) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63(9):3429–3444.  https://doi.org/10.1093/jxb/err430CrossRefGoogle Scholar
  152. Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, Molinaro A, Kaku H, Shibuya N (2014) Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci U S A 111:404–413CrossRefGoogle Scholar
  153. He Z, Kisla D, Zhang L, Yuan C, Green-Church KB, Yousef AE (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 73(1):168–178CrossRefGoogle Scholar
  154. Hernández MI, Chailloux M (2004) Las micorrizas arbusculares y las bacterias rizosfericas como alternative a la nutricion mineral del tomate. Cultivos Tropicales 25(2):5–13Google Scholar
  155. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  156. Hoshino T (2011) Violacein and related tryptophan metabolites produced by Chromobacterium violaceum: biosynthetic mechanism and pathway for construction of violacein core. Appl Microbiol Biotechnol 91:1463–1475.  https://doi.org/10.1007/s00253-011-3468-zCrossRefPubMedGoogle Scholar
  157. Howe GA (2004) Jasmonates. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action! Kluwer Academic Publishers, Dordrecht/Boston/London, pp 610–634Google Scholar
  158. Huang ZY, Bonsall RF, Mavrodi DV, Weller DM, Thomashow LS (2004) Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production. FEMS Microbiol Ecol 49:243–251PubMedCrossRefGoogle Scholar
  159. Huang J, Yang M, Zhang X (2016) The function of small RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327PubMedCrossRefGoogle Scholar
  160. Hurst MRH, Becher SA, Young SD, Nelson TL, Glare TR (2011) Yersinia entomophaga sp. nov., isolated from the New Zealand grass grub Costelytra zealandica. Int J Syst Evol Microbiol 61:844–849.  https://doi.org/10.1099/ijs.0.024406-0CrossRefPubMedGoogle Scholar
  161. Ibekwe AM, Kennedy AC, Stubbs TL (2010) An assessment of environmental conditions for control of downy brome by Pseudomonas fluorescens D7. Int J Environ Technol Manag 12:27–46CrossRefGoogle Scholar
  162. Imaizumi S, Nishino T, Miyabe K, Fujimori T, Yamada M (1997) Biological Control of Annual Bluegrass (Poa annua L.) with a Japanese Isolate of Xanthomonas campestris pv.poae (JT-P482). Biol Control 8:7–14CrossRefGoogle Scholar
  163. Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360.  https://doi.org/10.3389/fmicb.2015.01360CrossRefPubMedPubMedCentralGoogle Scholar
  164. Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Mass C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109.  https://doi.org/10.1046/j.1365-313X.1995.08010097.xCrossRefPubMedGoogle Scholar
  165. Jackson TA, Pearson JF, O’Callaghan M, Mahanty HK, Willocks M (1992) Pathogen to product development of Serratia entomophila Enterobacteriaceae as a commercial biological control agent for the New Zealand grass grub Costelytra zealandica. In: Jackson TA, Glare TR (eds) Use of pathogens in scarab pest management. Intercept Ltd., Andover, pp 191–198Google Scholar
  166. Jafri RH, Ahmad M, Idrees K (1976) Microsporidian infection in the workers of termite, Microcerotermes championi. Pak J Zool 8:234–236Google Scholar
  167. Jashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJGM (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front Plant Sci 6:584–589PubMedPubMedCentralCrossRefGoogle Scholar
  168. Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549CrossRefGoogle Scholar
  169. Jiang H, Wang X, Xiao C, Wang W, Zhao X, Sui J, Sa R, Guo TL, Liu X (2015) Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World J Microbiol Biotechnol 31:1605–1618.  https://doi.org/10.1007/s11274-015-1912-4CrossRefPubMedGoogle Scholar
  170. Jiao J, Zhou B, Zhu X, Gao Z, Liang Y (2013) Fusaric acid induction of programmed cell death modulated through nitric oxide signaling in tobacco suspension cells. Planta 238(4):727–737PubMedCrossRefGoogle Scholar
  171. Johnson A, Booth C (1983) Plant pathologist’s pocket book, 2nd edn. Commonwealth Agricultural Bureaux, SurreyGoogle Scholar
  172. Johnson SN, Rasmann S (2015) Root-feeding insects and their interactions with organisms in the rhizosphere. Annu Rev Entomol 60:517–535PubMedCrossRefGoogle Scholar
  173. Johnson SN, Erb M, Hartley SE (2016) Roots under attack: contrasting plant responses to below- and above-ground insect herbivory. New Phytol 210:413–418.  https://doi.org/10.1111/nph.13807CrossRefPubMedGoogle Scholar
  174. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.  https://doi.org/10.1038/nature05286CrossRefGoogle Scholar
  175. Jousset A, Rochat L, Lanoue A, Bonkowski M, Keel C, Scheu S (2011) Plants respond to pathogen infection by enhancing the antifungal gene expression of root-associated bacteria. Mol Plant-Microbe Interact 24:352–358.  https://doi.org/10.1094/MPMI-09-10-0208CrossRefPubMedGoogle Scholar
  176. Juan Y, Wei W, Peng Y, Bu T, Zheng Y, Li-hui Z, Jin-gao D (2015) Isolation and identification of Serratia marcescens Ha1 and herbicidal activity of Ha1 ‘pesta’ granular formulation. J Integr Agric 14:1348–1355CrossRefGoogle Scholar
  177. Kalra N, Suneja P, Mendiratta N, Gupta N (2013) Simulating the impact of climate change and its variability on growth and yield of crops. Clim Chang Environ Sustain 1(1):11–19CrossRefGoogle Scholar
  178. Kan J, Fang R, Jia Y (2017) Interkingdom signaling in plant-microbe interactions. Sci China Life Sci 60(8):785–796PubMedCrossRefGoogle Scholar
  179. Kanchiswamy CN, Malnoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151–158PubMedPubMedCentralCrossRefGoogle Scholar
  180. Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542PubMedCrossRefGoogle Scholar
  181. Kataryan BT, Torgashova GG (1976) Spectrum of herbicidal activity of 2, 4-diacetyl phloroglucinol. Dokl Akad Nauk Armyan SSR 63:109–112Google Scholar
  182. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: the importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13.  https://doi.org/10.1094/MPMI-5-004CrossRefGoogle Scholar
  183. Kennedy AC, Elliott LF, Young FL, Douglas CL (1991) Rhizobacteria suppressive to the weed downy brome. Am J Soil Sci Soc 55:722–727CrossRefGoogle Scholar
  184. Kennedy AC, Johnson BN, Stubbs TL (2001) Host range of a deleterious rhizobacterium for biological control of downy brome. Weed Sci 49:792–797CrossRefGoogle Scholar
  185. Kern MF, Maraschin SDF, Endt DV, Schrank A, Vainstein MA, Pasquali G (2010) Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Appl Biochem Biotechnol 160:1933–1946PubMedCrossRefGoogle Scholar
  186. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328.  https://doi.org/10.1146/annurev.arplant.53.100301.135207CrossRefPubMedGoogle Scholar
  187. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting bacteria for improving growth and yield of wheat. J Appl Microbiol 96:473–480PubMedPubMedCentralCrossRefGoogle Scholar
  188. Khan KI, Fazal QA, Jafri RH, Ahmad MU (1977) Susceptibility of various species of termites to a pathogen, Serratia marcescens. Pak J Sci Res 29:46–47Google Scholar
  189. Khan KI, Jafri RH, Ahmad M (1985) The pathogenicity and development of Bacillus thuringiensis in termites. Pak J Zool 17:201–209Google Scholar
  190. Khan KI, Jafri RH, Ahmad M, Khan KMS (1992) The pathogenicity of Pseudomonas aeruginosa against termites. Pak J Zool 24:243–245Google Scholar
  191. Khandelwal A (2016) Evaluation of the herbicidal potential of rhizosphere bacteria against bathu (Chenopodium album) and piazi (Asphodelus tenuifolius) weeds. Ph. D. thesis. Chaudhary Charan Singh Haryana Agricultural University, Hisar, HaryanaGoogle Scholar
  192. Khattak SU, Iqbal Z, Lutfullah G, Bacha N, Khan AA, Saeed M, Ali M (2014) Phytotoxic and herbicidal activities of Aspergillus and Penicillium species isolated from rhizosphere and soil. Pak J Weed Sci Res 20:293–303Google Scholar
  193. Kim SJ, Kremer RJ (2005) Scanning and transmission electron microscopy of root colonization of morning glory (Ipomoea spp.) seedlings by rhizobacteria. Symbiosis 39:117–124Google Scholar
  194. Kim YC, Leveau J, McSpadden Gardener BB, Pierson EA, Pierson LS III, Ryu C (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555.  https://doi.org/10.1128/AEM.01867-10CrossRefPubMedPubMedCentralGoogle Scholar
  195. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266CrossRefGoogle Scholar
  196. Knoester M, Pieterse CMJ, Bol JF, van Loon LC (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant-Microbe Interact 12:720–727PubMedPubMedCentralCrossRefGoogle Scholar
  197. Kremer R (2006) Deleterious rhizobacteria. In: Gnanamanickam S (ed) Plant-associated bacteria. Springer, DordrechtGoogle Scholar
  198. Kremer RJ, Kennedy AC (1996) Rhizobacteria as biocontrol agents of weeds. Weed Technol 10:601–609CrossRefGoogle Scholar
  199. Krishna V, Kumar KG, Pradeepa K, Kumar S, Kumar RS (2013) Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micro propagated clones. Indian J Exp Biol 51:531–542PubMedGoogle Scholar
  200. Kuc J (1982) Induced immunity to plant diseases. Bioscience 32:854–860CrossRefGoogle Scholar
  201. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under Indo-Gangetic plain of India. J Plant Growth Regul 36(3):608–617.  https://doi.org/10.1007/s00344-016-9663-5CrossRefGoogle Scholar
  202. Kume T, Matsuda T (1995) Changes in structural and antigenic properties of proteins by radiation. Radiat Phys Chem 46(2):225–231CrossRefGoogle Scholar
  203. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507PubMedPubMedCentralCrossRefGoogle Scholar
  204. Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit fly Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294.  https://doi.org/10.1007/s002840110219CrossRefPubMedGoogle Scholar
  205. Lacey LA, Goettel M (1995) Current developments in microbial control of insects, pests, and prospects for the early 21st century. Entomophaga 40:3–27.  https://doi.org/10.1007/BF02372677CrossRefGoogle Scholar
  206. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41.  https://doi.org/10.1016/j.jip.2015.07.009CrossRefPubMedGoogle Scholar
  207. Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Wu YS, Bais HP (2012) Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. Plant Physiol 160(3):1642–1661PubMedPubMedCentralCrossRefGoogle Scholar
  208. Lakshmi V, Kumari S, Singh A, Prabha C (2015) Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. J King Saud Univ Sci 27:113–119CrossRefGoogle Scholar
  209. Lal R (2001) Future climate change: implications for India summer monsoon and its variability. Curr Sci 81:1205–1207Google Scholar
  210. Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2):1–22CrossRefGoogle Scholar
  211. Lal R (2011) The new science of metagenomics: fourth domain of life. Indian J Microbiol 51(3):245–246PubMedPubMedCentralCrossRefGoogle Scholar
  212. Langham M, Glover K (2005) Effects of Wheat streak mosaic virus (genus: Tritimovirus; family: Potyviridae) on spring wheat. Phytopathology 95(6):556Google Scholar
  213. Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse US (2009) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588.  https://doi.org/10.1111/j.1469-8137.2009.03066.xCrossRefPubMedGoogle Scholar
  214. Lareen A, Burton F, Schafer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587PubMedPubMedCentralCrossRefGoogle Scholar
  215. Larimer AL, Clay K, Bever JD (2014) Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 95(4):1045–1054.  https://doi.org/10.1890/13-0025.1CrossRefPubMedGoogle Scholar
  216. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864.  https://doi.org/10.1126/science.aaa8764CrossRefPubMedGoogle Scholar
  217. Lee B, Lee S, Ryu CM (2012) Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. Ann Bot 110(2):281–290.  https://doi.org/10.1093/aob/mcs055CrossRefPubMedPubMedCentralGoogle Scholar
  218. Lee BD, Dutta S, Ryu H, Yoo SJ, Suh DS, Park K (2015) Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J Ginseng Res 39(3):213–320PubMedCrossRefGoogle Scholar
  219. Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3(1):7–15PubMedPubMedCentralCrossRefGoogle Scholar
  220. Lehr P (2010) Biopesticides: the global market. Report code CHM029B, BCC ResearchGoogle Scholar
  221. Li J, Kremer RJ (2006) Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol Control 39:58–65CrossRefGoogle Scholar
  222. Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R (2014) Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol 5:636–642PubMedPubMedCentralGoogle Scholar
  223. Li X, Zhang Y’n, Ding C, Jia Z, He Z, Zhang T, Wang X (2015) Declined soil suppressiveness to Fusarium oxysporum by rhizosphere microflora of cotton in soil sickness. Biol Fertil Soils 51:935–946.  https://doi.org/10.1007/s00374-015-1038-8CrossRefGoogle Scholar
  224. Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, Pée KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56(8):688–695CrossRefGoogle Scholar
  225. Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208PubMedPubMedCentralCrossRefGoogle Scholar
  226. Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51:941–954.  https://doi.org/10.1111/j.1365-313X.2007.03191.xCrossRefPubMedGoogle Scholar
  227. Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, Gong Z (2009) Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action. Biol Control 49:277–285.  https://doi.org/10.1016/j.biocontrol.2009.02.007CrossRefGoogle Scholar
  228. Liu J, Sui Y, Wisniewski M, Drobv S, Liu Y (2013) Review: utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167(2):153–160PubMedCrossRefGoogle Scholar
  229. Liu H, Ma Y, Chen N, Guo S, Liu H, Guo X, Chong K, Xu Y (2014a) Overexpression of stress-inducible OsBURP16, the beta-subunit of polygalacturonase 1, decreases pectin contents and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ 37:1144–1158PubMedCrossRefGoogle Scholar
  230. Liu WD, Liu JL, Triplett L, Leach JE, Wang GL (2014b) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241PubMedCrossRefGoogle Scholar
  231. Liu Y, Zhang H, Xiong M, Li F, Li L, Wang G, Pan G (2017) Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature. Biol Fertil Soils 53:3–8.  https://doi.org/10.1007/s00374-016-1159-8CrossRefGoogle Scholar
  232. Lo SC, Hipskind JD, Nicholson RL (1999) cDNA cloning of a sorghum pathogenesis-related protein (PR-10) and differential expression of defense-related genes following inoculation with Cochliobolus heterostrophus or Colletotrichum sublineolum. Mol Plant-Microbe Interact 12(6):479–489PubMedCrossRefGoogle Scholar
  233. Lopez-Bucio J, Nieto-Jacobo MF, Ramırez-Rodrıguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160(1):1–3PubMedCrossRefGoogle Scholar
  234. Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) Ethylene Response Factor1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedPubMedCentralCrossRefGoogle Scholar
  235. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81PubMedCrossRefGoogle Scholar
  236. Lowe-Power TM, Jacobs JM, Ailloud F, Fochs B, Prior P, Allen C (2016) Degradation of the plant defense signal salicylic acid protects Ralstonia solanacearum from toxicity and enhances virulence on tobacco. Mol Biol 7(3):e00656-16.  https://doi.org/10.1128/mbio.00656-16CrossRefGoogle Scholar
  237. Lu J, Robert CA, Riemann M, Cosme M, Mène-Saffrané L, Massana J, Stout MJ, Lou Y, Gershenzon J, Erb M (2015) Induced jasmonate signaling leads to contrasting effects on root damage and herbivore performance. Plant Physiol 167(3):1100–1116PubMedPubMedCentralCrossRefGoogle Scholar
  238. Lydon J, Patterson CD (2001) Detection of tabtoxin-producing strains of Pseudomonas syringae by PCR. Lett Appl Microbiol 32(3):166–170PubMedCrossRefGoogle Scholar
  239. Lysenko O, Kucera M (1971) Microorganisms as sources of new insecticidal chemicals; toxins. In: Burges HD, Hussey NW (eds) Microbial control of insects and mites. Academic, London/New York, pp 205–227Google Scholar
  240. Mahadtanapuk S, Sanguansermsri M, Cutler RW, Sardsud V, Anuntalabhochai S (2007) Control of anthracnose caused by Colletotrichum musae on Curcuma alismatifolia Gagnep. using antagonistic Bacillus spp. Am J Agric Biol Sci 2(2):54–61CrossRefGoogle Scholar
  241. Maheshwari DK, Kumar S, Maheshwari NK, Patel D, Saraf M (2012) Nutrient availability and management in the rhizosphere by microorganisms. In: Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 301–326CrossRefGoogle Scholar
  242. Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178PubMedPubMedCentralCrossRefGoogle Scholar
  243. Margesin R, Neuner G, Storey K (2007) Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94(2):77–99PubMedCrossRefGoogle Scholar
  244. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889Google Scholar
  245. Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis–model and research methods. Soil Biol Biochem 43(5):883–894.  https://doi.org/10.1016/j.soilbio.2011.01.005CrossRefGoogle Scholar
  246. Martin PAW, Shropshire ADS, Gundersen-Rindal DE, Blackburn MB (2007) Chromobacterium subtsugae sp.nov. and use for control of insect pests. US Patent Application Publication, 2007/0172463 A1Google Scholar
  247. Mascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32:177–188.  https://doi.org/10.1007/s11274-016-2131-3CrossRefPubMedGoogle Scholar
  248. Matilla MA, Espinosa-Urgel M, Roderiguez-Herva JJ, Ramos JL, Ramos-Gonzalez MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179PubMedPubMedCentralCrossRefGoogle Scholar
  249. Matton DP, Brisson N (1989) Cloning, expression and sequence conservation of pathogenesis-related gene transcripts of potato. Mol Plant-Microbe Interact 2:325–331PubMedCrossRefGoogle Scholar
  250. Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88:936–942PubMedPubMedCentralCrossRefGoogle Scholar
  251. Maxton A, Singh P, Masih SA (2018) ACC deaminase-producing bacteria mediated drought and salt tolerance in Capsicum annuum. J Plant Nutr 41(5):574–583CrossRefGoogle Scholar
  252. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  253. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  254. Mazzola M, Stahlman PW, Leach JE (1995) Application method affects the distribution and efficacy of rhizobacteria suppressive of downy brome (Bromus tectorum). Soil Biol Biochem 27:1271–1278CrossRefGoogle Scholar
  255. McPhail KL, Armstrong DJ, Azevedo MD, Banowetz GM, Mills DI (2010) 4-Formyl-amino-oxy-vinyl glycine, an herbicidal germination-arrest factor from Pseudomonas rhizosphere bacteria. J Nat Prod 73(11):1853–1857PubMedPubMedCentralCrossRefGoogle Scholar
  256. Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate solubilizing bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46:169–174.  https://doi.org/10.1007/s00374-009-0421-8CrossRefGoogle Scholar
  257. Mejri D, Gamalero E, Tombolini R, Musso C, Massa N, Berta G, Souissi T (2010) Biological control of great brome (Bromus diandrus) in durum wheat (Triticum durum): specificity, physiological traits, and impact on plant growth and root architecture of the fluorescent pseudomonad strain X33d. BioControl 55:561–572CrossRefGoogle Scholar
  258. Mejri D, Gamalero E, SOUISSI T (2013) Formulation development of the deleterious rhizobacterium Pseudomonas trivialis X33d for biocontrol of brome (Bromus diandrus) in durum wheat. J Appl Microbiol 114:219–228PubMedCrossRefGoogle Scholar
  259. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100.  https://doi.org/10.1126/science.1203980CrossRefPubMedGoogle Scholar
  260. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663.  https://doi.org/10.1111/1574-6976.12028CrossRefPubMedGoogle Scholar
  261. Mendoza A, Leija A, Martinez-Romero E, Hernandez G, Mora J (1995) The enhancement of ammonium assimilation in Rhizobium elti prevents nodulation of Phaseolus vulgaris. Mol Plant-Microbe Interact 8:584–592PubMedCrossRefGoogle Scholar
  262. Mendoza A, Valderrama B, Leija A, Mora J (1998) NifA-dependent expression of glutamate dehydrogenase in Rhizobium etli modifies nitrogen partitioning during symbiosis. Mol Plant-Microbe Interact 11:83–90PubMedCrossRefGoogle Scholar
  263. Mendoza EKM, Violante HGM, Inocencio CM, Salcedo GO, Madrigal HC, Portugal VO, Pérez MVA (2012) Effects of Bacillus subtilis extracts on weed seed germination of Sorghum halepense and Amaranthus hybridus. Afr J Microbiol Res 6:1887–1892Google Scholar
  264. Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266.  https://doi.org/10.1146/annurev-phyto-082712-102314CrossRefPubMedGoogle Scholar
  265. Meng Q, Hanson LE, Douches D, Hao JJ (2013) Managing scab diseases of potato and radish caused by Streptomyces spp. using Bacillus amyloliquefaciens BAC03 and other biomaterials. Biol Control 67(3):373–379CrossRefGoogle Scholar
  266. Miller GA, Suzuki N, Ciftci-yilmaz SU, Mittler RO (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33(4):453–467PubMedCrossRefGoogle Scholar
  267. Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem (Tokyo) 123:1112–1118CrossRefGoogle Scholar
  268. Miransari M (2013) Soil microbes and the availability of soil nutrients. Acta Physiol Plant 35:3075–3084.  https://doi.org/10.1007/s11738-013-1338-2CrossRefGoogle Scholar
  269. Mishra P, Bisht S, Mishra S, Selvakumar G, Bisht J, Gupta H (2012) Coinoculation of Rhizobiumleguminosarum-PR1 with a cold-tolerant Pseudomonas sp. improves iron acquisition, nutrient uptake and growth of field pea (Pisum sativum L.). J Plant Nutr 35(2):243–256.  https://doi.org/10.1080/01904167.2012.636127CrossRefGoogle Scholar
  270. Mittler R, Shulaev V, Lam E (1995) Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7:29–42PubMedPubMedCentralCrossRefGoogle Scholar
  271. Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469.  https://doi.org/10.1071/FP02231CrossRefGoogle Scholar
  272. Moiseyev GP, Beintema JJ, Fedoreyeva LI, Yakovlev GI (1994) High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases. Planta 193:470–472PubMedCrossRefGoogle Scholar
  273. Morgan JAW, Sergeant M, Ellis D, Ousley M, Jarrett P (2001) Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67:2062–2069.  https://doi.org/10.1128/AEM.67.5.2062-2069.2001CrossRefPubMedPubMedCentralGoogle Scholar
  274. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250PubMedCrossRefGoogle Scholar
  275. Muratoglu H, Kati H, Demibag Z (2009) High insecticidal activity of Leclercia adecarboxylata isolated from Leptinotarsa decemlineata (Col.: Chrysomelidae). Afr J Biotechnol 8:7111–7115Google Scholar
  276. Murkute A, Sharma S, Singh S (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76CrossRefGoogle Scholar
  277. Naseem M, Dandekar T (2012) The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog 8(11):e1003026PubMedPubMedCentralCrossRefGoogle Scholar
  278. Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67(2):149–156CrossRefGoogle Scholar
  279. Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125CrossRefGoogle Scholar
  280. Nishino T, Murao S, Wada H (1984) Mechanism of inactivation of pyridoxal phosphate-linked aspartate transaminase by gostatin. J Biochem 95:1283–1288PubMedCrossRefGoogle Scholar
  281. Nishiwaki H, Nakashima K, Ishida C, Kawamura T, Matsuda K (2007) Cloning, functional characterization, and mode of action of a novel insecticidal poreforming toxin, sphaericolysin, produced by Bacillus sphaericus. Appl Environ Microbiol 73:3404–3411.  https://doi.org/10.1128/AEM.00021-07CrossRefPubMedPubMedCentralGoogle Scholar
  282. Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in A. thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542PubMedCrossRefGoogle Scholar
  283. Niu D, Wang X, Wang Y, Song X, Wang J, Guo J, Zhao H (2016) Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signaling pathway. Biochem Biophys Res Commun 469:120–125PubMedCrossRefGoogle Scholar
  284. Norman MA, Patten KD, Gurusiddaiah S (1994) Evaluation of a phytotoxin(s) from Pseudomonas syringae for weed control in cranberries. Hortic Sci 29:1475–1477Google Scholar
  285. Nurnberger T, Kemmerling B (2009) Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. In: Parker J (ed) Molecular aspects of plant disease resistance, Annual plant reviews, 34. Wiley, Oxford, pp 16–47Google Scholar
  286. Okubara PA, Kang JH, Howe GA (2016) Belowground signaling and defence in host–Pythium interactions. In: Belowground defence strategies in plants. Springer, Cham, pp 171–193CrossRefGoogle Scholar
  287. Olander LP, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 4:404–419Google Scholar
  288. Oldroyd GED (2013) Speak, friend, and enter: signaling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263PubMedCrossRefGoogle Scholar
  289. Olesen JE, Hansen PK, Berntsen J, Christensen S (2004) Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crop Res 89:263–280CrossRefGoogle Scholar
  290. Oliveira EJ, Rabinovitch L, Monnerat RG, Passos LK, Zahner V (2004) Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl Environ Microbiol 70:6657–6664.  https://doi.org/10.1128/AEM.70.11.6657-6664.2004CrossRefPubMedPubMedCentralGoogle Scholar
  291. Onaga G, Wydra K (2016) Advances in plant tolerance to biotic stresses. In: Abdurakhmonov IY (ed) Plant genomics.  https://doi.org/10.5772/64351Google Scholar
  292. Ortiz-Marquez JCF, Do Nascimento M, Curatti L (2014) Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. Metab Eng 23:154–164PubMedCrossRefGoogle Scholar
  293. Osbrink LAW, Williams KS, Connick WJ Jr, Wright MS, Lax AR (2001) Virulence of bacteria associated with the Formosan subterranean termite (Isoptera: Rhinotermitidae) in New Orleans, LA. Environ Entomol 76:443–448CrossRefGoogle Scholar
  294. Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 89:170–180Google Scholar
  295. Pandey S, Bhandari HS, Hardy B (2007) Economic costs of drought and rice farmers’ coping mechanisms: a cross-country comparative analysis. International Rice Research Institute, Metro ManilaGoogle Scholar
  296. Pandey D, Rajendran SRCK, Gaur M, Sajeesh PK, Kumar A (2016) Plant defense signaling and responses against necrotrophic fungal pathogens. J Plant Growth Regul 35(4):1159–1174.  https://doi.org/10.1007/s00344-016-9600-7CrossRefGoogle Scholar
  297. Panke-Buisse K, Poole A, Goodrich J, Ley R, Kao-Kniffin J (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989.  https://doi.org/10.1038/ismej.2014.196CrossRefPubMedGoogle Scholar
  298. Park J, Radhakrishnan R, Kang S, Lee I (2015) IAA producing Enterobacter sp. I-3 as a potent bioherbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian J Microbiol 55:207–212PubMedPubMedCentralCrossRefGoogle Scholar
  299. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6(10):763–775PubMedCrossRefGoogle Scholar
  300. Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65(13):1879–1893PubMedCrossRefGoogle Scholar
  301. Patil VS (2014) Isolation, characterization and identification of rhizospheric bacteria with the potential for biological control of Sida acuta. J Environ Res Dev 8:411–417Google Scholar
  302. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220CrossRefGoogle Scholar
  303. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS III, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878.  https://doi.org/10.1038/nbt1110CrossRefPubMedGoogle Scholar
  304. Pérez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38(3):460–470CrossRefGoogle Scholar
  305. Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klessig DF, Martienssen R, Mattsson O, Jensen AB, Mundy J (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120.  https://doi.org/10.1016/S0092-8674(00)00213-0CrossRefPubMedGoogle Scholar
  306. Phour M (2012) Biological control of Phalaris minor in wheat (Triticum aestivum L.) using rhizosphere bacteria. M.Sc. thesis, Chaudhary Charan Singh Haryana Agricultural University, Hisar, HaryanaGoogle Scholar
  307. Pieterse CM, Van Wees SC, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10(9):1571–1580PubMedPubMedCentralCrossRefGoogle Scholar
  308. Pieterse CMJ, Ton J, van Loon LC (2002) Cross-talk between plant defence signaling pathways: boost or burden? Agri Biotech Net 3:1–18Google Scholar
  309. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521PubMedPubMedCentralCrossRefGoogle Scholar
  310. Pimentel D (2011) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC, Boca RatonCrossRefGoogle Scholar
  311. Pontigo S, Godoy K, Jiménez H, Gutierrez-Moraga A, Mora MDLL, Cartes P (2017) Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si up- take and antioxidant performance in ryegrass plants. Front Plant Sci 8:642PubMedPubMedCentralCrossRefGoogle Scholar
  312. Pshibytko N, Zenevich L, Kabashnikova L (2006) Changes in the photosynthetic apparatus during Fusarium wilt of tomato. Russ J Plant Physiol 53(1):25–31CrossRefGoogle Scholar
  313. Quail JW, Ismail N, Pedras MSC, Boyetchko SM (2002) Pseudophomins A and B, a class of cyclic lipodepsipeptides isolated from a Pseudomonas species. Acta Crystallogr Sect C: Cryst Struct Commun 58:268–271CrossRefGoogle Scholar
  314. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424PubMedCrossRefGoogle Scholar
  315. Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2, 4- diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root colonizing P. fluorescens strain Q8r1-96. Appl Environ Microbiol 67:2545–2554PubMedPubMedCentralCrossRefGoogle Scholar
  316. Raaijmakers JM, Weller AM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl Environ Microbiol 63(3):881–887PubMedPubMedCentralGoogle Scholar
  317. Raaijmakers JM, Brunijn I, Nybrow O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062.  https://doi.org/10.1111/j.1574-6976.2010.00221.xCrossRefPubMedPubMedCentralGoogle Scholar
  318. Raj SN, Chaluvaraju G, Amruthesh KN, Shetty HS, Reddy MS, Kloepper JW (2003) Induction of growth promotion and resistance against downy mildew on pearl millet (Pennisetum glaucum) by rhizobacteria. Plant Dis 87(4):380–384PubMedCrossRefGoogle Scholar
  319. Rakshiya YS, Verma MK, Sindhu SS (2016) Efficacy of antagonistic soil bacteria in the management of subterranean termites (Isoptera). Res Environ Life Sci 9:949–955Google Scholar
  320. Ramadan EM, AbdelHafez AA, Hassan EA, Saber FM (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10:486–504CrossRefGoogle Scholar
  321. Ramegowda V, Senthil-Kumar M (2015) The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176:47–54PubMedCrossRefGoogle Scholar
  322. Ramette A, Moënne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381.  https://doi.org/10.1111/j.1574-6941.2005.00052.xCrossRefPubMedGoogle Scholar
  323. Ramzan M, Tabassum B, Nasir IA, Khan A, Tariq M, Awan MF, Shahid N, Rao AQ, Bhatti MU, Toufiq N, Husnain T (2016) Identification and application of biocontrol agents against Cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions. Biotechnol Equipm 30(3):469–478Google Scholar
  324. Rasmann S, Turlings TCJ (2016) Root signals that mediate mutualistic interactions in the rhizosphere. Curr Opin Plant Biol 32:62–68PubMedCrossRefGoogle Scholar
  325. Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164.  https://doi.org/10.1094/PHYTO.1998.88.11.1158CrossRefPubMedGoogle Scholar
  326. Rayapuram C, Baldwin IT (2007) Increased SA in NPR1-silenced plants antagonizes JA and JA-dependent direct and indirect defenses in herbivore-attacked Nicotiana attenuata in nature. Plant J 52:700–715.  https://doi.org/10.1111/j.1365-313X.2007.03267.xCrossRefPubMedGoogle Scholar
  327. Raza W, Ling N, Yang L, Huang Q, Shen Q (2016a) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:248–256Google Scholar
  328. Raza W, Yousaf S, Rajer FU (2016b) Plant growth promoting activity of volatile organic compounds produced by biocontrol strains. Sci Lett 4(1):40–43Google Scholar
  329. Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641–649PubMedCrossRefGoogle Scholar
  330. Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu Rev Phytopathol 43:395–436PubMedCrossRefGoogle Scholar
  331. Rivers DB, Vann CN, Zimmack HL, Dean DH (1991) Mosquitocidal activity of Bacillus laterosporus. J Invertebr Pathol 58:444–447.  https://doi.org/10.1016/0022-2011(91)90191-RCrossRefPubMedGoogle Scholar
  332. Rizhsky L, Mittler R (2001) Inducible expression of bacterioopsin in transgenic tobacco and tomato plants. Plant Mol Biol 46:313–323PubMedCrossRefGoogle Scholar
  333. Roberts T, Murrell KD, Marks S (1994) Economic losses caused by foodborne parasitic diseases. Parasitol Today 10(11):419–423PubMedPubMedCentralCrossRefGoogle Scholar
  334. Rodrıguez H, Gonzalez T, Selman G (2001) Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J Biotechnol 84(2):155–161PubMedCrossRefGoogle Scholar
  335. Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556.  https://doi.org/10.1104/pp.108.127613CrossRefPubMedPubMedCentralGoogle Scholar
  336. Ruiu L, Delrio G, Ellar DJ, Floris I, Paglietti B, Rubino S, Satta A (2006) Lethal and sub-lethal effects of Brevibacillus laterosporus on the housefly (Musca domestica). Entomologia Experimentalis et Applicata 118:137–144.  https://doi.org/10.1111/j.1570-7458.2006.00370.xCrossRefGoogle Scholar
  337. Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044PubMedCrossRefGoogle Scholar
  338. Ryan PR, Delhaise E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560PubMedCrossRefGoogle Scholar
  339. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321(1–2):363–383CrossRefGoogle Scholar
  340. Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026.  https://doi.org/10.1104/pp.103.026583CrossRefPubMedPubMedCentralGoogle Scholar
  341. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272CrossRefGoogle Scholar
  342. Salam A (2008) Production, prices, and emerging challenges in the Pakistan cotton sector. Cotton-Textile-Apparel Sectors of Pakistan, p 22Google Scholar
  343. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131(1):15–26CrossRefGoogle Scholar
  344. Sanghera GS, Wani SH, Singh G, Kashyap PL, Singh NB (2011) Designing crop plants for biotic- stresses using a transgenic approach. Int J Plant Res 24:1–25Google Scholar
  345. Santoro MV, Bogino PC, Nocelli N, Cappellari LR, Giordano WF, Banchio E (2016) Analysis of plant growth promoting effects of Fluorescent Pseudomonas strains isolated from Mentha piperita rhizosphere and effects of their volatile organic compounds on essential oil composition. Front Microbiol 7:1085):1–1085)17CrossRefGoogle Scholar
  346. Sarwar M, Kremer RJ (1995) Enhanced suppression of plant growth through production of L-tryptophan-derived compounds by deleterious rhizobacteria. Plant Soil 172(2):261–269CrossRefGoogle Scholar
  347. Sasikala C, Ramana CV, Rao PR (1994) 5-aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnol Prog 10:451–459CrossRefGoogle Scholar
  348. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Springer, BerlinCrossRefGoogle Scholar
  349. Sayed MHE, Aziz ZKA, Abouzaid AM (2014) Efficacy of extracellular metabolite produced by Streptomyces levis strain LX-65 as a potential herbicidal agent. J Am Sci 10:169–180Google Scholar
  350. Schacht T, Unger C, Pich A, Wydra K (2011) Endo- and exopolygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts. Plant Physiol Biochem 49:377–387PubMedCrossRefGoogle Scholar
  351. Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395PubMedCrossRefGoogle Scholar
  352. Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van den Elzen PJM, Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and β-1, 3-glucanases exhibit antifungal activity. Plant Physiol 101:857–863PubMedPubMedCentralCrossRefGoogle Scholar
  353. Sellami S, Jamoussi K, Dabbeche E, Jaoua S (2011) Increase of the Bacillus thuringiensis secreted toxicity against lepidopteron larvae by homologous expression of the vip3LB gene during sporulation stage. Curr Microbiol 63:289–294PubMedCrossRefGoogle Scholar
  354. Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224CrossRefGoogle Scholar
  355. Sergeant M, Baxter L, Jarrett P, Shaw E, Ousley M, Winstanley C, Alun J, Morgan W (2006) Identification, typing and insecticidal activity of Xenorhabdus isolates from entomopathogenic nematodes in United Kingdom soil and characterization of the xpt toxin loci. Appl Environ Microbiol 72:5895–5907.  https://doi.org/10.1128/AEM.00217-06CrossRefPubMedPubMedCentralGoogle Scholar
  356. Sergeeva E, Shah S, Glick BR (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol 22:277–282CrossRefGoogle Scholar
  357. Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka E, WangPruski G, Faure D, Reiter B, Glick BR, Nowak J (2005) Burkholderia phytofirmans sp. Nov., a novel plant-associated bacterium with plant beneWcial properties. Int J Syst Evol Microbiol 55:1187–1192PubMedCrossRefGoogle Scholar
  358. Sevim A, Demirbag Z, Demirturk I (2010) A new study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and their insecticidal activities. Turk J Agric For 34:333–342Google Scholar
  359. Sezen K, Demir I, Demirbag Z (2005) Investigations on bacteria as a potential biological control agent of summer chafer Amphimallon solstitiale L. (Coleoptera: Scarabaeidae). J Microbiol 43:463–468PubMedGoogle Scholar
  360. Sforza R, Jones W (2007) Potential for classical biocontrol of silverleaf nightshade in the Mediterranean Basin. EPPO Bull 37:156–162CrossRefGoogle Scholar
  361. Shaharoona B, Arshad M, Zahir ZA (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975CrossRefGoogle Scholar
  362. Sharifi R, Ryu CM (2016) Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, Alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front Microbiol 7:196):1–196)10CrossRefGoogle Scholar
  363. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296PubMedCrossRefGoogle Scholar
  364. Shigo AL, Gregory GF, Campana RJ, Dudzik KR, Zimel DM (1986) Patterns of starch reserves in healthy and diseased American elms. Can J For Res 16(2):204–210CrossRefGoogle Scholar
  365. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214PubMedPubMedCentralCrossRefGoogle Scholar
  366. Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41(9):1768–1774CrossRefGoogle Scholar
  367. Shohael A, Ali M, Yu K, Hahn E, Islam R, Paek K (2006) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in the bioreactor. Process Biochem 41(5):1179–1185CrossRefGoogle Scholar
  368. Sindhu SS, Dadarwal KR (1985) Protoplast formation and regeneration in Rhizobium and Azospirrilum. Curr Sci 54:344–346Google Scholar
  369. Sindhu SS, Dadarwal KR (1993) Broadening of host range infectivity in cowpea miscellany Rhizobium by protoplast fusion. Indian J Exp Biol 31:521–528Google Scholar
  370. Sindhu SS, Sehrawat A (2017) Rhizosphere microorganisms: application of plant beneficial microbes in biological control of weeds. In: Microorganisms for the green revolution. Springer, Singapore, pp 391–430CrossRefGoogle Scholar
  371. Sindhu SS, Malik DK, Dadarwal KR (2003) Enhancing the potential of biological nitrogen fixation by genetic manipulations of diazotrophic bacteria for sustainable agriculture. In: Singh RP, Jaiswal PK (eds) Plant genetic engineering: volume 1. Application and limitations. Sci Tech Publishers, LCC, Houston, pp 199–228Google Scholar
  372. Sindhu SS, Jangu OP, Sivaramaiah N (2009a) Genetic engineering of diazotrophic bacteria to improve nitrogen fixation for sustainable agriculture. In: Sayyed RZ, Patil AS (eds) Biotechnology emerging trends. Scientific Publishers, Jodhpur, pp 73–112Google Scholar
  373. Sindhu SS, Verma MK, Mor S (2009b) Molecular genetics of phosphate solubilization in rhizosphere bacteria and its role in plant growth promotion. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes and crop productivity. Nova Science Publishers, New York, pp 199–228Google Scholar
  374. Sindhu SS, Sehrawat A, Sharma R, Dahiya A (2016) Biopesticides: use of rhizospheric bacteria for biological control of plant pathogens. Defense Life Sci J 1:135–148CrossRefGoogle Scholar
  375. Sindhu SS, Sehrawat A, Sharma R, Khandelwal A (2017) Biological control of insect pests for sustainable agriculture. In: Adhya TK (ed) Advances in soil microbiology: recent trends and future prospects, microorganisms for sustainability. Springer Nature, Singapore Pte Ltd, pp 189–218CrossRefGoogle Scholar
  376. Sindhu SS, Khandelwal A, Phour M, Sehrawat A (2018) Bioherbicidal potential of rhizosphere microorganisms for ecofriendly weeds management. In: Meena VS, Mishra PK, Bisht JK, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Vol 2; applications in crop production and protection. Springer Nature, Singapore Pte Ltd, pp 331–376Google Scholar
  377. Singer S (1996) The utility of morphological group II Bacillus. Adv Appl Microbiol 42:219–261PubMedCrossRefGoogle Scholar
  378. Singh S (2007a) Role of management practices on control of isoproturon resistant little seed conary grass (Phalaris minor) in India. Weed Technol 21:339–346CrossRefGoogle Scholar
  379. Singh Y (2007b) Isolation and identification of bacteria having pathogenic interactions with termites (Isoptera). M.Sc. thesis submitted to CCS Haryana Agricultural University, Hisar, p 104Google Scholar
  380. Singh VK, Upadhyay RS (2014) Fusaric acid-induced cell death and changes in the oxidative metabolism of Solanum lycopersicum L. Bot Stud 55(1):1–11CrossRefGoogle Scholar
  381. Singh S, Tripathi DK, Singh S, Sharma S, Dubey NK, Chauhan DK, Vaculík M (2017) Toxicity of aluminum on various levels of plant cells and organism: a review. Environ Exp Bot 137:177–193CrossRefGoogle Scholar
  382. Sitrit Y, Barak Z, Kapulnik Y, Oppenheim AB, Chet I (1993) Expression of Serratia marcescens chitinase gene in Rhizobium meliloti during symbiosis on alfalfa roots. Mol Plant-Microbe Interact 6:293–298CrossRefGoogle Scholar
  383. Soares WL, Porto MFS (2009) Estimating the social cost of pesticide use: an assessment from acute poisoning in Brazil. Ecol Econ 68:2721–2728CrossRefGoogle Scholar
  384. Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY (2014) Screening of plant growth-promoting rhizobacteria as an elicitor of systemic resistance against gray leaf spot disease in pepper. Appl Soil Ecol 73:1–8CrossRefGoogle Scholar
  385. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438PubMedPubMedCentralCrossRefGoogle Scholar
  386. Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15(3):760–770PubMedPubMedCentralCrossRefGoogle Scholar
  387. Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847.  https://doi.org/10.1073/pnas.0708139104CrossRefPubMedPubMedCentralGoogle Scholar
  388. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:1–660CrossRefGoogle Scholar
  389. Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30CrossRefGoogle Scholar
  390. Sundaramoorthy S, Balabaskar P (2013) Evaluation of combined efficacy of Pseudomonas fluorescens and Bacillus subtilis in managing tomato wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol). Plant Pathol J 12(4):154–161.  https://doi.org/10.3923/ppj.2013.154.161CrossRefGoogle Scholar
  391. Svábová L, Lebeda A, Kitner M, Sedlárová M, Petrivalsky M, Dostálová R, Griga M et al (2011) Comparison of the effects of Fusarium solani filtrates in vitro and in vivo on the morphological characteristics and peroxidase activity in pea cultivars with different susceptibility. J Plant Pathol 93(1):19–30Google Scholar
  392. Swarupa V, Ravishankar K, Rekha A (2014) Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239(4):735–751PubMedCrossRefGoogle Scholar
  393. Takai R, Isogai A, Takayama S, Che F (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant-Microbe Interact 21:1635–1642PubMedCrossRefGoogle Scholar
  394. Tateno A (2000) Herbicidal composition for the control of annual bluegrass. U.S. Patent No 6162763A. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  395. Tatum L (1971) The southern corn leaf blight epidemic. Science 171:1113–1116PubMedCrossRefGoogle Scholar
  396. Templeton GE (1988) Biological control of weeds. Am J Altern Agric 3:69–72CrossRefGoogle Scholar
  397. Thomashow LS, Weller DM (1988) Role of phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508PubMedPubMedCentralCrossRefGoogle Scholar
  398. Thomma BP, Penninckx IA, Cammue BP, Broekaert WF (2001) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68.  https://doi.org/10.1016/S0952-7915(00)00183-7CrossRefPubMedGoogle Scholar
  399. Timms-Wilson TM, Ellis RJ, Renwick A, Rhodes DJ, Mavrodi DV, Weller DM, Thomashow LS, Bailey MJ (2000) Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances the efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant-Microbe Interact 13(12):1293–1300PubMedCrossRefGoogle Scholar
  400. Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12(11):951–959PubMedCrossRefGoogle Scholar
  401. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK, Rai AK (2015) Silicon-mediated alleviation of Cr (VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser-induced breakdown spectroscopy, and anatomical changes. Ecotoxicol Environ Saf 113:133–144CrossRefGoogle Scholar
  402. Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81PubMedCrossRefGoogle Scholar
  403. Uchiumi T, Oowada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima T, Saeki K, Oomori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda S, Soy K, Abe M, Minamisawa K (2004) Expression islands clustered on symbiosis island of Mesorhizobium loti genome. J Bacteriol 186:2439–2448PubMedPubMedCentralCrossRefGoogle Scholar
  404. Udayashankar AC, Nayaka SC, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59(2):114–122CrossRefGoogle Scholar
  405. Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656PubMedPubMedCentralGoogle Scholar
  406. Ulloa-Ogaz AL, Munoz-Castellanos LN, Nevarez-Morillon GV (2015) Biocontrol of phytopathogens: antibiotic production as a mechanism of control, the battle against microbial pathogens. In: Mendez Vilas A (ed) Basic science, Technological advance and educational programs 1, pp 305–309Google Scholar
  407. Ulstrup JC, Figenschou KJ (1972) Frequency of hepatitis-B infections. Lancet 300(7785):1035CrossRefGoogle Scholar
  408. van Loon LC, Bakker PAHM (2006) Root associated bacteria inducing systemic resistance. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Dordrecht, pp 269–316CrossRefGoogle Scholar
  409. van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205CrossRefGoogle Scholar
  410. van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Report 12:245–264CrossRefGoogle Scholar
  411. van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483CrossRefGoogle Scholar
  412. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162.  https://doi.org/10.1146/annurev.phyto.44.070505.143425CrossRefPubMedGoogle Scholar
  413. Variyar PS, Limaye A, Sharma A (2004) Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). Agric Food Chem 52(11):3385–3388CrossRefGoogle Scholar
  414. Vega FE, Kaya HK (2012) Insect pathology. Academic, New YorkGoogle Scholar
  415. Venturi V, Fuqua C (2013) Chemical signaling between plants and plant-pathogenic bacteria. Annu Rev Phytopathol 51:17–37PubMedCrossRefGoogle Scholar
  416. Verhage A, van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154(2):536–540PubMedPubMedCentralCrossRefGoogle Scholar
  417. Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679PubMedCrossRefGoogle Scholar
  418. Walters DR, Newton AC, Lyon GD (2005) Induced resistance: helping plants to help themselves. Biologist 52:28–33Google Scholar
  419. Wang D, Pajerowska-Mukhtar K, Hendrickson Culler A, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790.  https://doi.org/10.1016/j.cub.2007.09.025CrossRefPubMedGoogle Scholar
  420. Wang C, Yang W, Wang C, Gu C, Niu D, Liu H, Wang Y, Guo J (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth promoting rhizobacterium strains. PLoS One 7:e52565PubMedPubMedCentralCrossRefGoogle Scholar
  421. Wang M, Ling N, Dong X, Liu X, Shen Q, Guo S (2014) Effect of fusaric acid on the leaf physiology of cucumber seedlings. Eur J Plant Pathol 138(1):103–112CrossRefGoogle Scholar
  422. Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8:404–418PubMedCrossRefGoogle Scholar
  423. Ware GW, Whitacre DM (2004) An introduction to herbicides, 2nd ednGoogle Scholar
  424. Watrous J, Roach P, Alexandrov T, Heath B, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci U S A 109:1743–1752.  https://doi.org/10.1073/pnas.1203689109CrossRefGoogle Scholar
  425. Weissmann R, Uggla C, Gerhardson B (2003) Field performance of a weed-suppressing Serratia plymuthica strain applied with conventional spraying equipment. Biol Control 48:725–742Google Scholar
  426. Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256PubMedPubMedCentralCrossRefGoogle Scholar
  427. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348.  https://doi.org/10.1146/annurev.phyto.40.030402.110010CrossRefPubMedPubMedCentralGoogle Scholar
  428. Whipps JM, Lynch JM (1986) The influence of the rhizosphere on crop productivity. In: Advances in microbial ecology. Springer, New York, pp 187–244CrossRefGoogle Scholar
  429. Wilkinson VM, Gould G (1996) Food irradiation: a reference guide. Woodhead Publishing in Science and Technology, Cambridge, p 180Google Scholar
  430. Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:12975PubMedPubMedCentralCrossRefGoogle Scholar
  431. Xu Y, Chang PFL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085PubMedPubMedCentralCrossRefGoogle Scholar
  432. Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101(9):1024–1031PubMedCrossRefGoogle Scholar
  433. Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333PubMedPubMedCentralCrossRefGoogle Scholar
  434. Yang L, Huang H (2014) Roles of small RNAs in plant disease resistance. J Integr Plant Biol 56:962–970PubMedCrossRefGoogle Scholar
  435. Yang L, Tang R, Zhu J, Liu H, Mueller-Roeber B, Xia H, Zhang H (2008) Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana. Plant Mol Biol 66(4):329–343PubMedCrossRefGoogle Scholar
  436. Yang M, Ding G, Shi L, Xu F, Meng J (2011) Detection of QTL for phosphorus efficiency at vegetative stage in Brassica napus. Plant Soil 339:97–111CrossRefGoogle Scholar
  437. Yang P, Sun ZX, Liu SY, Lu HX, Zhou Y, Sun M (2013) Combining antagonistic endophytic bacteria in different growth stages of cotton for control of Verticillium wilt. Crop Prot 47:17–23CrossRefGoogle Scholar
  438. Yordanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51(2):93–101CrossRefGoogle Scholar
  439. Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536PubMedPubMedCentralGoogle Scholar
  440. Yuan Y, Zhong S, Li Q, Zhu Z, Lou Y, Wang L, Wang J, Wang M, Li Q, Yang D, He Z (2007) Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J 5:313–324.  https://doi.org/10.1111/j.1467-7652.2007.00243.xCrossRefPubMedGoogle Scholar
  441. Zachow C, Jahanshah G, de Bruijn I, Song C, Ianni F, Pataj Z, Gerhardt H, Pianet I, Lämmerhofer M, Berg G, Gross H (2015) The novel lipopeptide poaeamide of the endophyte Pseudomonas poae RE∗ 1-1-14 is involved in pathogen suppression and root colonization. Mol Plant-Microbe Interact 28(7):800–810PubMedCrossRefGoogle Scholar
  442. Zaidi A, Wani PA, Khan MS (2012) Bioremediation: a natural method for the management of the polluted environment. In: Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 101–114CrossRefGoogle Scholar
  443. Zdor R, Alexander C, Kremer R (2005) Weed suppression by deleterious rhizobacteria is affected by formulation and soil properties. Commun Soil Sci Plant Anal 36:1289–1299CrossRefGoogle Scholar
  444. Zermane N, Souissi T, Kroschel J, Sikora R (2007) Biocontrol of broom rape (Orobanche crenata Forsk. and Orobanche foetida Poir.) by Pseudomonas fluorescens isolate Bf7-9 from the faba bean rhizosphere. Biocontrol Sci Tech 17:487–497CrossRefGoogle Scholar
  445. Zhang J, Hodgman TC, Krieger L, Schnetter W, Schairer HU (1997) Cloning and analysis of the cry gene from Bacillus popilliae. J Bacteriol 179:4336–4341PubMedPubMedCentralCrossRefGoogle Scholar
  446. Zhang ZJ, Li HZ, Zhou WJ, Takeuchi Y, Yoneyama K (2006) Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regul 49:27–34Google Scholar
  447. Zhang T, Shi ZQ, Hu LB, Cheng LG, Wang F (2008) Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World J Microbiol Biotechnol 24(6):783CrossRefGoogle Scholar
  448. Zhu C, Ruan L, Peng D, Yu Z, Sun M (2006) Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Lett Appl Microbiol 42(2):109–114PubMedCrossRefGoogle Scholar
  449. Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413PubMedCrossRefGoogle Scholar
  450. Zidack NK, Quimby PC (2002) Formulation of bacteria for biological control using the stabilizing method. Biocontrol Sci Tech 12:67–74CrossRefGoogle Scholar
  451. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760PubMedCrossRefGoogle Scholar
  452. Zvereva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:257–259CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Satyavir S. Sindhu
    • 1
  • Ruchi Sharma
    • 1
  1. 1.Department of MicrobiologyCCS Haryana Agriculture UniversityHisarIndia

Personalised recommendations