Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases

  • Ahmed Kenawy
  • Daniel Joe Dailin
  • Gaber Attia Abo-Zaid
  • Roslinda Abd Malek
  • Kugan Kumar Ambehabati
  • Khairun Hani Natasya Zakaria
  • R. Z. Sayyed
  • Hesham Ali El EnshasyEmail author
Part of the Microorganisms for Sustainability book series (MICRO, volume 13)


Plant growth-promoting rhizobacteria (PGPR) plays an essential role when it comes to protection of crop, promoting growth, and improvement on soil health status. There are some prevalent PGPR strains such as Pseudomonas, Bacillus, Azospirillum, Rhizobium, and Serratia species. The key mechanism of biocontrol by PGPR is the involvement of antibiotics production such as phenazine-1-carboxylic acid, 2,4-diacetyl phloroglucinol, oomycin, pyoluteorin, pyrrolnitrin, kanosamine, zwittermicin-A, and pantocin. The cascade of endogenous signals such as sensor kinases, N-acyl homoserine lactones, and sigma factors regulates the synthesis of antibiotics. The genes which are responsible for the synthesis of antibiotics are greatly conserved. The antibiotics of this PGPR belong to polyketides, heterocyclic nitrogenous compounds, and lipopeptides which have broad-spectrum action against several plant pathogens, affecting crop plants. Though antibiotics play a vibrant role in disease management, their role in biocontrol is questioned due to limitations of antibiotic production under natural environmental conditions. In addition to direct antipathogenic action, they also serve as determinants in prompting induced systemic resistance in the plant system.


PGPR Antibiotics Secondary metabolites Biocontrol Plant disease 


  1. Abdeljalil NOB, Vallance J, Gerbore J, Bruez E, Martins G (2016) Characterization of tomato-associated rhizobacteria recovered from various tomato-growing sites in Tunisia. J Plant Pathol Microbiol 7(351):2Google Scholar
  2. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. mBio 9(3):e02331–e02317PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abo-Zaid (2014) Scaling-up production of biocontrol agents from Pseudomonas spp. Faculty of Agriculture, Alexandria University, AlexandriaGoogle Scholar
  4. Adhya TK, Lal B, Mohapatra B, Paul D, Das S (2018) Advances in soil microbiology: recent trends and future prospects. Springer, SingaporeCrossRefGoogle Scholar
  5. Aino M, Maekawa Y, Mayama S, Kato H (1997) Biocontrol of bacterial wilt of tomato by producing seedlings colonized with endophytic antagonistic pseudomonads. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth promoting rhizobacteria, present status and future prospects. Nakanishi Printing, Sapporo, pp 120–123Google Scholar
  6. Akpa E, Jacques P, Wathelet B et al (2001) Influence of culture conditions on lipopeptide production by Bacillus subtilis. App Biochem Biotech 91:551–561CrossRefGoogle Scholar
  7. Al-Ani RA, Adhab MA, Mahdi MH, Abood HM (2012) Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Prot Sc 48(4)CrossRefGoogle Scholar
  8. Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J (2009) Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISMEJ 3:243–251CrossRefGoogle Scholar
  9. Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov. from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006PubMedCrossRefPubMedCentralGoogle Scholar
  10. Anderson AJ, Kim YC (2018) Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Prot 105:62–69CrossRefGoogle Scholar
  11. Arora NK, Tewari S, Singh R (2013a) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Plant-microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 411–438CrossRefGoogle Scholar
  12. Arora N, Tiwari S, Singh R (2013b) Comparative study of different carriers inoculated with nodule forming and free living plant growth promoting bacteria suitable for sustainable agriculture. Plant Pathol Microbiol 5:1–3Google Scholar
  13. Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085PubMedPubMedCentralGoogle Scholar
  14. Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol 45:1802–1807PubMedPubMedCentralGoogle Scholar
  15. Atta AM (2005) Molecular biodiversity and symbiosis of common bean rhizobia from Egyptian soils. MSc thesis, Institute of Graduate Studies and Research, Alexandria University, Alexandria, EgyptGoogle Scholar
  16. Atta F, Othman R, Sijam K, Saad M (2004) Characterization of beneficial properties of plant growth-promoting Rhizobacteria isolated from sweet potato rhizosphere. Afr J Microbiol Res 3:815–821Google Scholar
  17. Audenaert K, Pattery T, Cornelis P, Hofte M (2001) Mechanisms of Pseudomonas aeruginosa-induced pathogen resistance in plants. In: Chablain P, Cornelis P (eds) Pseudomonas 2001 Abstracts book. Vrije Universiteit Brusell, Brussels, p 36Google Scholar
  18. Audenaert K, Pattery T, Cornelis P, Höfte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: Role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact 15:1147–1156PubMedCrossRefGoogle Scholar
  19. Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bakker PA, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of induced systemic resistance in rhizobacteria-mediated biocontrol of plant diseases. Can J Plant Pathol 25:5–9CrossRefGoogle Scholar
  21. Bakker PA, Doornbos RF, Zamioudis C, Berendsen RL, Pieterse CMJ (2013) Induced Systemic Resistance and the rhizosphere microbiome. Plant Pathol J 29(2):136–143PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bangera MG, Thomashaw LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant-Microbe Interac 9:83–90CrossRefGoogle Scholar
  23. Bender CL, Scholz-Schroeder BK (2004) New insights into the biosynthesis, mode of action, and regulation of syringomycin, syringopeptin, and coronatine. In: Ramos JL (ed) Virulence and gene regulation. Springer, Boston, pp 125–158Google Scholar
  24. Bender CL, Alarcon-Chaidez F, Gross DC (1999) Pseudomonas syringae phytotoxins: Mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 63:266–292PubMedPubMedCentralGoogle Scholar
  25. Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051PubMedPubMedCentralCrossRefGoogle Scholar
  26. Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228CrossRefGoogle Scholar
  27. Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8(1):4360PubMedPubMedCentralCrossRefGoogle Scholar
  28. Caulier S, Gillis A, Colau G, Licciardi F, Liépin M, Desoignies N, Bragard C (2017) Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol 9:143CrossRefGoogle Scholar
  29. Caulier S, Gillis A, Colau G, Licciardi F, Liépin M, Desoignies N, Bragard C (2018) Versatile antagonistic activities of soil-borne bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Front Microbiol 9:143PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM (2013) Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog 9:e1003101PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cha JY, Lee DG, Lee JS, Oh JI, Baik HS (2012) GacA directly regulates expression of several virulence genes in Pseudomonas syringae pv. tabaci 11528. Biochem Biophys Res Com 417(2):665–672PubMedCrossRefPubMedCentralGoogle Scholar
  32. Chang CJ (1981) The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas aureofaciens. J Antibiot 24:555–566CrossRefGoogle Scholar
  33. Chang PC, Blackwood AC (1969) Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa. Canad J Plant Pathol 72:581–583Google Scholar
  34. Chen M, Cao H, Peng H, Hu H, Wang W, Zhang X (2014) Reaction kinetics for the biocatalytic conversion of phenazine-1-carboxylic acid to 2-hydroxyphenazine. PLoS One 9:e98537PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chen L, Zou Y, She P, Wu Y (2015) Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res 172:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chin-A-Woeng TF, Bloemberg GV, Mulders IH, Dekkers LC, Lugtenb BJ (2000) Root colonization by the phenazine-1-Carboxamide producing bacterium Pseudomonas chlororaphis PC3L1391 is essential for biocontrol of tomato foot and root rot. Am Phytopath Soci 13:1340–1345Google Scholar
  37. Constantinescu F (2001) Extraction and identification of antifungal metabolites produced by some B. subtilis strains, vol 31. Analele Institutului de Cercetari Pentru Cereale Protectia Plantelor, pp 17–23Google Scholar
  38. Cook RJ, Thomashaw LS, Weller DW, Fujimoto D, Majjola M, Bangera G, Kim D (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201PubMedCrossRefPubMedCentralGoogle Scholar
  39. Coy R (2017) Plant growth-promoting rhizobacteria (PGPR) mediate interactions between abiotic and biotic stresses in cool-and warm-season grassesGoogle Scholar
  40. Cuppels DA, Howell CR, Stipanovic RD, Stossel A, Stothers JB (1986) Biosynthesis of pyoluteorin: a mixed polyketide–tricarboxylic acid cycle origin demonstrated by [1,2-13C2] acetate incorporation. Zeitsch fur Naturfor 41:532–536Google Scholar
  41. Dasgupta D, Kumar A, Mukhopadhyay B, Sengupta TK (2015) Isolation of phenazine 1,6-di-carboxylic acid from Pseudomonas aeruginosa strain HRW.1-S3 and its role in biofilm-mediated crude oil degradation and cytotoxicity against bacterial and cancer cells. Appl Microbiol Biotechnol 99:8653–8665PubMedCrossRefPubMedCentralGoogle Scholar
  42. De Bruijn I, De Kock MJ, Yang M, De Waard P, Van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428PubMedCrossRefPubMedCentralGoogle Scholar
  43. De Bruijn I, De Kock MJ, De Waard P, Van Beek TA, Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190:2777–2789PubMedCrossRefPubMedCentralGoogle Scholar
  44. De la Torre-Zavala S, Aguilera S, Ibarra-Laclette E, Hernandez-Flores JL, Hernández-Morales A, Murillo J, Alvarez-Morales A (2011) Gene expression of Pht cluster genes and a putative non-ribosomal peptide synthetase required for phaseolotoxin production is regulated by GacS/GacA in Pseudomonas syringae pv. phaseolicola. Res Microbiol 162(5):488–498PubMedCrossRefPubMedCentralGoogle Scholar
  45. De Souza JT, De Boer M, De Waard P, Van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172PubMedPubMedCentralCrossRefGoogle Scholar
  46. Degefu T, Wolde-meskel E, Ataro Z, Fikre A, Amede T, Ojiewo C (2018) Groundnut (Arachis hypogaea L.) and cowpea (Vigna unguiculata L. Walp) growing in Ethiopia are nodulated by diverse rhizobia. Afr J Microbiol Res 12(9):200–217CrossRefGoogle Scholar
  47. Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J Bact 183:318–327PubMedCrossRefGoogle Scholar
  48. Delany I, Sheenan MM, Fenton A, Bardin S, Aarons S, O’Gara F (2000) Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology 146:537–543PubMedCrossRefGoogle Scholar
  49. Demanèche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P et al (2008) Antibiotic-resistant soil bacteria in transgenic plant fields. Proc Natl Acad Sci USA 105:3957–3962PubMedCrossRefGoogle Scholar
  50. Dempsey DA, Klessig DF (2012) SOS – too many signals for systemic acquired resistance? Trends Plant Sci 17(9):538–545PubMedCrossRefGoogle Scholar
  51. Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. In: The arabidopsis book, American Society of Plant Biologists 9:e0156PubMedPubMedCentralCrossRefGoogle Scholar
  52. Denance N, Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Plant Sci 4:1–12Google Scholar
  53. Duffy B (2003) Pathogen self-defense: Mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538PubMedCrossRefPubMedCentralGoogle Scholar
  54. Dwivedi D, Johri BN (2003) Antifungal from fluorescent pseudomonads: Biosynthesis and regulation. Curr Sci 85:1693–1703Google Scholar
  55. Elander RP, Mabe JA, Hamill RH, Gorman M (1968) Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas spp. Appl Environ Microbiol 16:753–758Google Scholar
  56. El-Banna N, Winkelmann G (1988) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–78CrossRefGoogle Scholar
  57. Elizabeth AS, Milner JL, Handelsman J (1999) Zwittermicin A biosynthetic cluster. Gene 237:430–411Google Scholar
  58. Emmert BAE, Klimowicz KA, Thomas GM, Handelsman J (2004) Genetics of zwittermicin A production by Bacillus cereus. Appl Environ Microbiol 70:104–113PubMedPubMedCentralCrossRefGoogle Scholar
  59. Evensen K, Hammer Y (1993) Physiological aspects of resistance to Botrytis cinerea. J Am Soc Horticul Sci 2:265–270Google Scholar
  60. Fernando WDG, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: Biocontrol and Biofertilizer. Springer, Dordrecht, pp 67–109Google Scholar
  61. Fernando W, Nakkeeran S, Zhang Y, Savchuk S (2018) Biological control of Sclerotinia sclerotiorum(lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107CrossRefGoogle Scholar
  62. Finkel OM, Castrillo G, Herrera-Paredes S, Salas-González I, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163PubMedPubMedCentralCrossRefGoogle Scholar
  63. Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides1. Annu Rev Microbiol 58:453–488PubMedCrossRefPubMedCentralGoogle Scholar
  64. Gaur R (2002) Diversity of 2,4-diacetylphloroglucinol and 1-aminocyclopropane 1-carboxylate deaminase producing rhizobacteria from wheat rhizosphere. PhD thesis, G.B. Pant University of Agriculture and Technology, PantnagarGoogle Scholar
  65. Gerard J, Lloyd R, Barsby T, Haden P, Kelly MT, Andersen RJ (1997) Massetolide A-H, antimycobacterial cyclic depsipeptides produced by two pseudomonads isolated from marine habitats. J Nat Prod 60:223–229PubMedCrossRefPubMedCentralGoogle Scholar
  66. Glick BR, Cheng Z, Czarny J, Duan J (2007) New perspectives and approaches in plant growth-promoting rhizobacteria research. In: Promotion of plant growth by ACC deaminase-producing soil bacteria. Springer, New York, pp 329–339Google Scholar
  67. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355–377PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2017) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiolo Res 206:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  69. Greenhagen BT, Shi K, Robinson H (2008) Crystal structure of the pyocyanin biosynthetic protein phzS. Biochemist 47:5281–5289CrossRefGoogle Scholar
  70. Grgurina I, Barca A, Cervigni S, Gallo M, Scaloni A, Pucci P (1994) Relevance of chlorine-substituent for the antifungal activity of syringomycin and syringotoxin, metabolites of the phytopathogenic bacterium Pseudomonas syringae pv. syringae. Experientia 50:130–133PubMedCrossRefPubMedCentralGoogle Scholar
  71. Guo S, Wang Y, Dai B, Wang W, Hu H, Huang X, Zhang X (2017) PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66. Appl Microbiol Biotechnol 101:7165–7175PubMedCrossRefPubMedCentralGoogle Scholar
  72. Guttenberger N, Blankenfeldt W, Breinbauer R (2017) Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products. Bioorg Med Chem S0968–S0896:31180–31844Google Scholar
  73. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefGoogle Scholar
  74. Haas D, Keel C (2003) Regulation of antibiotic production in root colonizing Pseudomonas spp., and relevance for biological control of plant disease. Annu Rev Phytopathol 79:117–153CrossRefGoogle Scholar
  75. Hamill RL, Elander RP, Mabe JA, Goreman M (1970) Metabolism of tryptophans by Pseudomonas aureofaciens V. Conversion of tryptophan to pyrrolnitrin. App EnvironMicrobiol 19:721–725Google Scholar
  76. Hammerschmidt R, Kuc J (1982) Lignification as a mechanism for induced systemic resistance in cucumber. Physiol Plant Pathol 20:61–71CrossRefGoogle Scholar
  77. Hammerschmidt R, Lamport DT, Muldoon EP (1984) Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiol Plant Pathol 24:43–47CrossRefGoogle Scholar
  78. Han S, Li D, Trost E, Mayer KF, Vlot AC, Heller W, Schmid M, Hartmann A, Rothballer M (2016) Systemic responses of barley to the 3-hydroxy-decanoyl-homoserine lactone producing plant beneficial endophyte Acidovorax radicis N35. Front Plant Sci 7:1868PubMedPubMedCentralGoogle Scholar
  79. Harrison LA, Letrendre L, Kovacevich P, Pierson EA, Weller DM (1993) Purification of an antibiotic effective against Gaumannomycesgraminis var tritici produced by a biocontrol agent, Pseudomonas aureofaciens. Soil Biol Biochem 25:215–221CrossRefGoogle Scholar
  80. Hass D, Defago G (2005) Biological control of soil born pathogens by fluorescent pseudomonads. Nature Rev Microbiol 3:307–319Google Scholar
  81. Hassan MN, Afghan S, Hafeez FY (2011) Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Manag Sci 67:1147–1154PubMedPubMedCentralGoogle Scholar
  82. Heilmann S, Krishna S, Kerr B (2015) Why do bacteria regulate public goods by quorum sensing? how the shapes of cost and benefit functions determine the form of optimal regulation. Front Microbiol 6:767PubMedPubMedCentralCrossRefGoogle Scholar
  83. Henriksen A, Anthoni U, Nielsen TH, Sorensen J, Christophersen C, Gajhede M (2000) Cyclic lipoundecapeptide tensin from Pseudomonas fluorescens strain 96.578. Acta Crystal 56:113–115Google Scholar
  84. Herbert RB, Holliman JH, Sheridan JB (1976) Biosynthesis of microbial phenazines: incorporation of shikimic acid. Tetrah Lett 8:639–642CrossRefGoogle Scholar
  85. Hildebrand PD, Braun PG, McRae KB, Lu X (1998) Role of the biosurfactant viscosin in broccoli head rot caused by a pectolytic strain of Pseudomonas fluorescens. Can J Plant Pathol 20:296–303CrossRefGoogle Scholar
  86. Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69(5):480–482CrossRefGoogle Scholar
  87. Huang R (2017) Not phenazine but pyrrolnitrin contributes to suppression of growth of the fungal phytopathogen Fusarium graminearum in a novel biocontrol agent Pseudomonas chlororaphis strain G05. Master thesis. Ludong University, Yantai, ChinaGoogle Scholar
  88. Huang L, Chen MM, Wang W et al (2011) Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Appl Microbiol Biotechnol 89:169–177PubMedCrossRefPubMedCentralGoogle Scholar
  89. Janisiewicz WJ, Roitman J (1988) Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia. Phytopathology 78:1697–1700CrossRefGoogle Scholar
  90. Jin XJ, Peng HS, Hu HB, Huang XQ, Wang W, Zhang XH (2016) iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3. Sci Rep 6:27393PubMedPubMedCentralCrossRefGoogle Scholar
  91. Ju M, Wang D, Pierson L, Pierson E (2018) Disruption of MiaA provides insights into the regulation of phenazine biosynthesis under suboptimal growth conditions in Pseudomonas chlororaphis 30-84. Microbiol 163:94–108Google Scholar
  92. Kang BR, Anderson AJ, Kim YC (2018) Hydrogen cyanide produced by Pseudomonas chlororaphis o6 exhibits nematicidal activity against Meloidogyne hapla. Plant Pathol J 34:35–43PubMedPubMedCentralGoogle Scholar
  93. Kenawy AMA (2016) characterization of two udp glycosyltransferase genes from hybrid poplar, MSc thesis, Faculty of Forestry, The University of British Columbia, Vancouver, CanadaGoogle Scholar
  94. Kessmann H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryal J (1994) Induction of systemic acquired disease resistance in plants by chemicals. Annual Rev Phytopathol 32:439–459CrossRefGoogle Scholar
  95. Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75:1144–1155CrossRefGoogle Scholar
  96. Khan N, Maymon M, Hirsch AM (2017) Combating Fusarium infection using bacillus-based antimicrobials. Microorganisms 5(4):75PubMedCentralCrossRefGoogle Scholar
  97. Kim SD (2012) Colonizing ability of Pseudomonas fl fluorescent 2112, among collections of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens spp. in pea rhizosphere. J Microbiol Biotechnol 22:763–770PubMedCrossRefPubMedCentralGoogle Scholar
  98. Koornneef A, Pieterse CMJ (2008) Cross talk in defense signaling. Plant Physiol 146(3):839–844PubMedPubMedCentralCrossRefGoogle Scholar
  99. Korenblum E, De Araujo LV, CR G˜a et al (2012) Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate-reducing bacteria. BMC Microbiol 12:252PubMedPubMedCentralCrossRefGoogle Scholar
  100. Kraus J, Loper JE (1995) Characterization of a genomic locus required for the production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. App Environ Microbiol 61:849–854Google Scholar
  101. Kumar A, Vandana RS, Singh M, Pandey KD (2015) Plant growth promoting rhizobacteria (PGPR). A promising approach to disease management.Microbes and environmental management. Studium Press, New Delhi, pp 195–209Google Scholar
  102. Landa BB, Montes-Borrego M, Navas-Cortés JA (2013) Use of PGPR for controlling soilborne fungal pathogens: assessing the factors influencing its efficacy. In: Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg, pp 259–292CrossRefGoogle Scholar
  103. Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 Contributes to the Biological Control of Bacterial Canker of Tomato. Phyto Pathol 102:967–973CrossRefGoogle Scholar
  104. Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lee JH, Ma KC, Ko SJ, Kang BR, Kim IS, Kim YC (2011) Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr Microbiol 62:746–751PubMedCrossRefPubMedCentralGoogle Scholar
  106. Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027CrossRefGoogle Scholar
  107. Leeman M, den Ouden FM, Van-Pelt JA, Dirkx FP, Steijl H, Bakker PA, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155CrossRefGoogle Scholar
  108. Leisinger T, Margraff R (1979) Secondary metabolites of fluorescent pseudomonads. Microbiol Rev 43:422–442PubMedPubMedCentralGoogle Scholar
  109. Li X, Gu GQ, Chen W, Gao LJ, Wu XH, Zhang LQ (2018) The outer membrane protein OprF and the sigma factor SigX regulate antibiotic production in Pseudomonas fluorescens 2P24. Microbiol Res 206:159–167PubMedCrossRefPubMedCentralGoogle Scholar
  110. Lin T, Chen C, Chang L, Tschen GS, Liu S (1999) Functional and transcriptional analyses of a fengycin synthetase gene, fenc, from Bacillus subtilis. J Bact 181:5060–5067PubMedPubMedCentralGoogle Scholar
  111. Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017) Selection and assessment of plant growth promoting rhizobacteria (PGPR) for biological control of multiple plant diseases. Phytopathology 107:928–936PubMedCrossRefPubMedCentralGoogle Scholar
  112. Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as an alternative to chemical crop protectors from pathogens (Review). Appl Biochem Microbiol 47:333–345CrossRefGoogle Scholar
  113. Marsden AE, Intile PJ, Schulmeyer KH, Simmons-Patterson ER, Urbanowski ML, Wolfgang M C, Yahr TL (2016)Vfr directly activates exsA transcription to regulate expression of the Pseudomonas aeruginosa type III secretion system. J Bacteriol 198(9):1442–1450PubMedPubMedCentralCrossRefGoogle Scholar
  114. Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Défago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195CrossRefGoogle Scholar
  115. Maurhofer M, Keel C, Haas D, Défago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping off of cress but not of cucumber. Euro J Plant Pathol 100:221–232CrossRefGoogle Scholar
  116. Mavrodi DV, Ksenzenko VN, Bonsall RF, Cook RJ, Boronin AM, Thomashaw LS (1998) A seven-gene locus for the synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bact 180:2541–2548PubMedPubMedCentralGoogle Scholar
  117. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bact 183:6454–6465PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mavrodi DV, Blankenfeldt W, Thomashow LS (2006) Phenazine compounds in fluorescent Pseudomonas spp biosynthesis and regulation. Annu Rev Phytopathol 44:417–445PubMedCrossRefPubMedCentralGoogle Scholar
  119. Mazzola M, de Bruijn I, Cohen MF, Raaijmakers JM (2009) Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Appl Environ Microbiol 75:6804–6811PubMedPubMedCentralCrossRefGoogle Scholar
  120. McSpadden Gardener BB (2007) Diversity and ecology of biocontrol Pseudomonas in agricultural systems. Phytopathology 97:221–226PubMedCrossRefPubMedCentralGoogle Scholar
  121. Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:473050PubMedPubMedCentralCrossRefGoogle Scholar
  122. Meyer SLF, Halbrendt JM, Carta LK, Skantar AM, Liu T, Abdelnabby HME, Vinyard BT (2009) Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. J Nematol 41:274–280Google Scholar
  123. Meyer SL, Everts KL, Gardener BM, Masler EP, Abdelnabby HM, Skantar AM (2016) Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon. J Nematol 48(1):43Google Scholar
  124. Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112PubMedPubMedCentralCrossRefGoogle Scholar
  125. Morollo AA, Bauerle R (1993) Characterization of composite aminodeoxychorismate synthase and lyase activities of anthranilate synthase. Proc Nati Acad Sci USA 90:9983–9987Google Scholar
  126. Nandi M, Selin C, Brassinga AKC, Belmonte MF, Fernando WD, Loewen PC, De Kievit TR (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10:e0123184PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nassef AAM (1995) Selection of efficient strains of Rhizobium leguminosarum with special traits and studying their serological relationship. PhD thesis, Faculty of Agriculture, Ain Shames University, Cairo, EgyptGoogle Scholar
  128. Nassem M, Dandekar T (2012) The role of auxin-cytokinin antagonism in plant pathogen interactions. PLoS Pathog 8:1–4Google Scholar
  129. Nesme J, Simonet P (2015) The soil resistome: a critical review of antibiotic resistance origins, ecology, and dissemination potential in telluric bacteria. Environ Microbiol 17(4):913–930PubMedCrossRefPubMedCentralGoogle Scholar
  130. Nestorovich EM, Sugawara E, Nikaido H, Bezrukov SM (2006) Pseudomonas aeruginosa porin OprF properties of the channel. J Biol Chem 281(24):16230–16237Google Scholar
  131. Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69(2):861–868PubMedPubMedCentralCrossRefGoogle Scholar
  132. Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423PubMedPubMedCentralCrossRefGoogle Scholar
  133. Nielsen T, Nybroe O, Koch B, Hansen M, Sorensen J (2003) Genes involved in cyclic lipopeptide production are important for seed and straw colonization by Pseudomonas sp. strain DSS73. Appl Environ Microbiol 8:4112–4116Google Scholar
  134. Nielsen TH, Nybroe O, Koch B, Hansen M, Sorensen J (2005) Genes involved in cyclic lipopeptide production are important for seed and straw colonization by Pseudomonas sp. strain DSS73. Appl Environ Microbiol 71:4112–4116PubMedPubMedCentralCrossRefGoogle Scholar
  135. Nowak-Thompsan B, Chancey N, Wing JS, Gould SJ, Loper JE (1999) Characterization of a pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bact 181:2166–2174Google Scholar
  136. Nybroe O, Sorensen J (2004) Production of cyclic lipopeptides by fluorescent pseudomonads. In: Ramos JL (ed) Biosynthesis of macromolecules and molecular metabolism. Kluwer Academic Publishers, New York, pp 147–172Google Scholar
  137. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125CrossRefGoogle Scholar
  138. Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: Predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76CrossRefGoogle Scholar
  139. Peer RV, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 81:728–734CrossRefGoogle Scholar
  140. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563PubMedCrossRefPubMedCentralGoogle Scholar
  141. Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529PubMedCrossRefPubMedCentralGoogle Scholar
  142. Pierson LS, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670PubMedPubMedCentralCrossRefGoogle Scholar
  143. Pierson LS, Wood DW, Pierson EA, Chancey ST (1998) N-acyl homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: current knowledge and future work. Euro J Plant Pathol 104:1–9CrossRefGoogle Scholar
  144. Pieters CM, Van Loon LC (1999) Salicylic acid-independent plant defense pathways. Trends Plant Sci 4:52–58CrossRefGoogle Scholar
  145. Prabhukarthikeyan SR, Raguchander T (2016) Antifungal metabolites of Pseudomonas fluorescens against Pythium aphanidermatum. J Pure Appl Microbiol 10(1):579–585Google Scholar
  146. Qing-xia Z, Ling-ling H, Hai-huan S, Yun-hui T, Xi-jun C, JI Zhao-lin J, Feng-quan L (2016) Cloning of pyrrolnitrin synthetic gene cluster prn and prnA functional analysis from antagonistic bacteria FD6 against peach brown rot. Acta Horticult Sini 43:1473–1481Google Scholar
  147. Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol producing Pseudomonas spp. intake all decline soils. Mol Plant Microbe Interact 11:144–152CrossRefGoogle Scholar
  148. Raaijmakers JM, Bruijn ID, De Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19:699–710PubMedCrossRefPubMedCentralGoogle Scholar
  149. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062PubMedCrossRefGoogle Scholar
  150. Rane MR, Sarode PD, Chaudhari BL, Chincholkar SB (2007) Detection, isolation and identification of phenazine-1-carboxylic acid produced by biocontrol strains of Pseudomonas aeruginosa. J Sci & Indus Res 66:627–631Google Scholar
  151. Ranjbar Sistani N, Kaul HP, Desalegn G, Wienkoop S (2017) Rhizobium impacts on seed productivity, quality, and protection of Pisum sativum upon disease stress caused by Didymella pinodes: phenotypic, proteomic, and metabolomic traits. Front Plant Sci 8:1961PubMedPubMedCentralCrossRefGoogle Scholar
  152. Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D (2018) Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol 9:203PubMedPubMedCentralCrossRefGoogle Scholar
  153. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E.,Pérez-García, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20(4): 430–440PubMedCrossRefPubMedCentralGoogle Scholar
  154. Sana TG, Soscia C, Tonglet CM, Garvis S, Bleves S (2013) Divergent control of two types VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS One 8(10):e76030PubMedPubMedCentralCrossRefGoogle Scholar
  155. Sansinenea E, Ortiz A (2012) Zwittermicin a: a promising aminopolyol antibiotic from biocontrol bacteria. Curr Orga Chem 16:1–10CrossRefGoogle Scholar
  156. Sarhan EAD, Shehata HS (2014) Potential plant growth-promoting activity of Pseudomonas spp. and Bacillus spp. as biocontrol agents against damping-off in alfalfa. Plant Pathol J 13:8–17CrossRefGoogle Scholar
  157. Sasse J, Martinoia E, Northen T (2017) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41PubMedCrossRefPubMedCentralGoogle Scholar
  158. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519CrossRefGoogle Scholar
  159. Seydlova G, Cabala R, Svobodova J (2011) Biomedical engineering, trends, research, and technologies. In: Surfactin-novel solutions for global issues. In Tech, Rijeka, pp 306–330Google Scholar
  160. Shanmugaiah V, Mathivanan N, Varghes B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711PubMedCrossRefPubMedCentralGoogle Scholar
  161. Sharma S, Kumar V, Tripathi RB (2017) Isolation of phosphate solubilizing microorganism (PSMs) from the soil. J Microbiol Biotechnol Res 1:90–95Google Scholar
  162. Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: the importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35:1615–1623CrossRefGoogle Scholar
  163. Silo-suh LA, Stab VE, Raffel SR, Handelsman J (1998) Target range of Zwittermicin A, an Aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37:6–11PubMedCrossRefPubMedCentralGoogle Scholar
  164. Singh R, Ray P (2014) Quorum sensing-mediated regulation of staphylococcal virulence and antibiotic resistance. Future Microbiol 9(5):669–681PubMedCrossRefPubMedCentralGoogle Scholar
  165. Smirnov VV, Kiprianova EA (1990) Bacteria of Pseudomonas genus. Naukova Dumka, Kiev, pp 100–111Google Scholar
  166. Smitha K, Mohan R, Devadason A, Raguchander T (2017) Exploiting novel rhizosphere Bacillus species to suppress the root rot and wilt pathogens of chickpea. Afr J Microbiol Res 9:1098–1104Google Scholar
  167. Song JS, Jeon JH, Lee JH, Jeong SH, Jeong BC (2005) Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison Seamount (south of Lihir Island, Papua New Guinea). J Microbiol 43:172–178PubMedPubMedCentralGoogle Scholar
  168. Sorensen D, Nielsen TH, Christophersen C, Sorensen J, Gajhede M (2001) Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr 57:1123–1124Google Scholar
  169. Steller S, Sokoll A, Wilde C, Bernhard F, Franke P. Vater J (2004) Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemist 43:11331–11343PubMedCrossRefPubMedCentralGoogle Scholar
  170. Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270PubMedCrossRefPubMedCentralGoogle Scholar
  171. Taguchi F, Ichinose Y (2013) Virulence factor regulator (V fr) controls virulence-associated phenotypes in Pseudomonas syringae pv. tabaci 6605 by a quorum sensing-independent mechanism. Mol Plant Pathol 14(3):279–292PubMedCrossRefPubMedCentralGoogle Scholar
  172. Tambong JT, Hofte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Euro J Plant Pathol 107:511–521CrossRefGoogle Scholar
  173. Tazawa J, Watanabe K, Yoshida H, Sato M, Homma Y (2000) Simple method of detection of the strains of fluorescent Pseudomonas spp. producing antibiotics, pyrrolnitrin and phloroglucinol. Soil Micro 54:61–67Google Scholar
  174. Tenuta M, Beauchamp EG (2003) Nitrous oxide production from granular nitrogen fertilizers applied to a silt loam soil. Can J Soil Sci 83(5):521–532CrossRefGoogle Scholar
  175. Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bact 170:3499–3508PubMedCrossRefGoogle Scholar
  176. Thrane C, Nielsen TH, Nielsen MN, Olsson S, Sorensen J (2000) Viscosinamide producing Pseudomonas fluorescens DR54 exerts biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146PubMedCrossRefPubMedCentralGoogle Scholar
  177. Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 17:731–742CrossRefGoogle Scholar
  178. Tripathi RK, Gottliep D (1969) Mechanism of action of the antifungal antibiotic pyrrolnitrin. J Bact 100:310–318PubMedPubMedCentralGoogle Scholar
  179. Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. J Bact 183:6265–6273PubMedCrossRefPubMedCentralGoogle Scholar
  180. Turner JM, Messenger AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microbial Physiol 27:211–275CrossRefGoogle Scholar
  181. Ulloa-Ogaz AL, Muñoz-Castellanos LN, Nevárez-Moorillón GV (2015) Biocontrol of phytopathogens: antibiotic production as a mechanism of control. The battle against microbial pathogens: basic science, technological advances, and educational programmes. Formatex Research Center, Badajoz, pp 305–309Google Scholar
  182. Uzair B, Kausar R, Bano SA, Fatima S, Badshah M, Habiba U, Fasim F (2018) Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. Biomed Res Int 2018:6147380Google Scholar
  183. Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119(3):243–254CrossRefGoogle Scholar
  184. Van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483CrossRefGoogle Scholar
  185. Van Pee KH, Salcher O, Lingens F (1980) Formation of pyrrolnitrin and 3-(2-amino- 3-chlorophenyl) pyrrolefrom 7-chlorotryptophan. Angew Chem Int Ed Engl 19:828–929Google Scholar
  186. Veena DR, Priya HR, Raheesa MK, Joythi D (2014) Soilborne diseases in crop plants and their management. J Agric Allied Sci 3(2):12–18Google Scholar
  187. Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C, Molin S et al (2006) Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA 103:171–176PubMedCrossRefPubMedCentralGoogle Scholar
  188. Venturi V, Keel C (2016) Signaling in the Rhizosphere. Trends Plant Sci 21(3):187–198PubMedCrossRefPubMedCentralGoogle Scholar
  189. Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG (2017) Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol 8:446PubMedPubMedCentralCrossRefGoogle Scholar
  190. Verhage A, Vlaardingerbroek I, Raaymakes C, Dam N, Dicke M, Wees S, Pieterse CM (2010) Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front Plant Sci 2:47. Scholar
  191. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martinez-Romero E (1999) Diversity of rhizobia associated with Amorphae fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Intl J Syst Bacteriol 49:51–65CrossRefGoogle Scholar
  192. Wang X, Wang C, Ji C, Li Q, Zhang J, Song X, Jun Kang S, Liu Z, Liu X (2018) Isolation and characterization of antagonistic bacteria with the potential for biocontrol of soil-borne wheat diseases. bioRxiv preprint first posted online May. 18, 2018Google Scholar
  193. Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348PubMedPubMedCentralCrossRefGoogle Scholar
  194. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Bankhead SB, Molar RA, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20PubMedCrossRefPubMedCentralGoogle Scholar
  195. Wienberg ED (1970) Biosynthesis of secondary metabolites: roles of trace elements. Adv Microbial Physiol 4:1–44Google Scholar
  196. Xiaoguang L, Xiaoli Y, Yang Y, Stephan H, Shao G, Kok Gan C, Miguel C, Kexiang G (2018) Functional identification of the prnABCD operon and its regulation in Serratia plymuthica. Appl Microbiol Biotechnol 102:3711–3721CrossRefGoogle Scholar
  197. Yu JM, Wang D, Pierson LS, Pierson EA (2018) Effect of producing different phenazines on bacterial fitness and biological control in Pseudomonas chlororaphis 30–84. Plant Pathol J34:44–58Google Scholar
  198. Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168CrossRefGoogle Scholar
  199. Zhang Q, Ji Y, Xiao Q, Chng S, Tong Y, Chen X, Liu F (2016) Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescensFD6. Microbiol Res 188:106–112PubMedCrossRefPubMedCentralGoogle Scholar
  200. Zhang X, Zhang R, Gao J, Wang X, Fan F, Ma X et al (2017) Thirty one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem 104:208–217CrossRefGoogle Scholar
  201. Zhang L, Shi Y, Wu Z, Tan G (2018) Characterization of response regulator GacA involved in phaseolotoxin production, hypersensitive response and cellular processes in Pseudomonas syringae pv. actinidiae A18. Physiol Mol Plant Pathol 103:137–142CrossRefGoogle Scholar
  202. Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f sp. spinaciae. J Basic Microbiol 54:448–456PubMedCrossRefPubMedCentralGoogle Scholar
  203. Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, Bai X, Zuo Y, Hu Z, Zhang F (2018a) Bacillaceae-derived peptide antibiotics since 2000. Peptides 101:10–16PubMedCrossRefPubMedCentralGoogle Scholar
  204. Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, Feng S, Bai X, Zuo Y, Li P (2018b) Actinobacteria-derived peptide antibiotics since 2000. Peptides 103:48–59PubMedCrossRefPubMedCentralGoogle Scholar
  205. Zhou L, Jiang HX, Sun S, Yang DD, Jin KM, Zhang W, He YW (2016) Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. World J Microbiol Biotech 32:50CrossRefGoogle Scholar
  206. Zihalirwa Kulimushi, P., Argüelles Arias, A., Franzil, L., Steels, S., Ongena, M. (2017).Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucor variabilis.Front Microbiol 8: 850Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ahmed Kenawy
    • 1
  • Daniel Joe Dailin
    • 2
    • 3
  • Gaber Attia Abo-Zaid
    • 1
  • Roslinda Abd Malek
    • 2
  • Kugan Kumar Ambehabati
    • 2
    • 3
  • Khairun Hani Natasya Zakaria
    • 2
  • R. Z. Sayyed
    • 4
  • Hesham Ali El Enshasy
    • 1
    • 2
    • 5
    Email author
  1. 1.City of Scientific Research and Technological Applications (SRTA-City)New Borg Arab-AlexandriaEgypt
  2. 2.Institute of Bioproduct Development (IBD)Universiti Teknologi Malaysia (UTM)SkudaiMalaysia
  3. 3.Department of MicrobiologyPSGVP Mandal’s ASC CollegeShahadaIndia
  4. 4.Department of MicrobiologyPSGVP Mandal’s Arts, Science and Commerce CollegeShahadaIndia
  5. 5.Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations