Advertisement

Multi-objective Optimization Algorithms

  • Qing-Hua WuEmail author
  • Jiehui Zheng
  • Zhaoxia Jing
  • Xiaoxin Zhou
Chapter
Part of the Energy Systems in Electrical Engineering book series (ESIEE)

Abstract

In the LSIES, multiple benefits of different operating interests are taken into consideration. Hence, the planning and operation of LSIES are formulated as multi-objective optimization problems, which should be tackled using the multi-objective optimization algorithms. This chapter presents three multi-objective optimization algorithms, i.e., the multi-objective group search optimizer with adaptive covariance and Lévy flights (MGSO-ACL), multi-objective group search optimizer with adaptive covariance and chaotic search (MGSOACC), and multi-objective evolutionary predator and prey strategy (EPPS). Simulation studies conducted on benchmark functions are also carried out to investigate the performance of these algorithms. In later chapters, these algorithms are employed to deal with the planning and operating problems of LSIES.

Keywords

Multi-objective optimization algorithms Non-dominated sorted genetic algorithm Multi-objective group search optimizer Multi-objective evolutionary predator and prey strategy 

References

  1. Aragón V, Esquivel S, Coello CC (2015) An immune algorithm with power redistribution for solving economic dispatch problems. Inf Sci 295:609–632MathSciNetCrossRefGoogle Scholar
  2. Auger A, Hansen N (2012) Tutorial CMA-ES: evolution strategies and covariance matrix adaptation. In: GECCO (Companion), pp 827–848Google Scholar
  3. Basu M (2008) Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II. Int J Electric Power Energy Syst 30(2):140–149CrossRefGoogle Scholar
  4. Basu M (2011) Economic environmental dispatch using multi-objective differential evolution. Appl Soft Comput 11(2):2845–2853CrossRefGoogle Scholar
  5. Chakraborty S, Ito T, Senjyu T, Saber AY (2012) Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm. Int J Electric Power Energy Syst 43(1):1072–1080CrossRefGoogle Scholar
  6. Chen WN, Zhang J, Lin Y, Chen N, Zhan ZH, Chung HSH, Li Y, Shi YH (2013) Particle swarm optimization with an aging leader and challengers. IEEE Trans Evol Comput 17(2):241–258CrossRefGoogle Scholar
  7. Chung C, Yu H, Wong KP (2011) An advanced quantum-inspired evolutionary algorithm for unit commitment. IEEE Trans Power Syst 26(2):847–854CrossRefGoogle Scholar
  8. Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247CrossRefGoogle Scholar
  9. Civicioglu P (2013a) Artificial cooperative search algorithm for numerical optimization problems. Inf Sci 229:58–76zbMATHCrossRefGoogle Scholar
  10. Civicioglu P (2013b) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144MathSciNetzbMATHCrossRefGoogle Scholar
  11. Civicioglu P, Besdok E (2013) A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315–346CrossRefGoogle Scholar
  12. Conover WJ, Conover W (1980) Practical Nonparametric Statistics. Wiley, New YorkzbMATHGoogle Scholar
  13. Das S, Suganthan P (2010) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata, IndiaGoogle Scholar
  14. de Athayde Costa e Silva M, Klein CE, Mariani VC, dos Santos Coelho L (2013) Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem. Energy 53(0):14–21CrossRefGoogle Scholar
  15. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197CrossRefGoogle Scholar
  16. Deb K, Saxena DK (2005) On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Kangal report 2005011Google Scholar
  17. Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRefGoogle Scholar
  18. Dixon AFG (1959) An experimental study of the searching behaviour of the predatory coccinellid beetle Adalia decempunctata. J Animal Ecol 28(2):259–281CrossRefGoogle Scholar
  19. Durillo JJ, Nebro AJ, Coello Coello CA, Garcia-Nieto J, Luna F, Alba E (2010) A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE Trans Evol Comput 14(4):618–635zbMATHCrossRefGoogle Scholar
  20. Gent MR, Lamont JW (1971) Minimum emission dispatch. IEEE Trans Power Appar Syst 90(6):2650–2660CrossRefGoogle Scholar
  21. Glotić A, Zamuda A (2015) Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution. Appl Energy 141:42–56CrossRefGoogle Scholar
  22. Guo CX, Zhan JP, Wu QH (2012) Dynamic economic emission dispatch based on group search optimizer with multiple producers. Electric Power Syst Res 86:8–16CrossRefGoogle Scholar
  23. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11(1):1–18CrossRefGoogle Scholar
  24. Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. In: 1996 Proceedings of IEEE International Conference on Evolutionary Computation. IEEE, pp 312–317Google Scholar
  25. He S, Wu QH, Saunders J (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Trans Evol Comput 13(5):973–990CrossRefGoogle Scholar
  26. Hota P, Barisal A, Chakrabarti R (2010) Economic emission load dispatch through fuzzy based bacterial foraging algorithm. Int J Electric Power Energy Syst 32(7):794–803CrossRefGoogle Scholar
  27. Jia DL, Zheng GX, Khan MK (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181:3175–3187CrossRefGoogle Scholar
  28. Juste K, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459CrossRefGoogle Scholar
  29. Kazarlis SA, Bakirtzis A, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11(1):83–92CrossRefGoogle Scholar
  30. Lee C, Liu C, Mehrotra S, Shahidehpour M (2014) Modeling transmission line constraints in two-stage robust unit commitment problem. IEEE Trans Power Syst 29(3):1221–1231CrossRefGoogle Scholar
  31. Li C, Yang S, Nguyen TT (2012) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Syst Man Cybern Part B Cybern 42(3):627–646CrossRefGoogle Scholar
  32. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRefGoogle Scholar
  33. Liao TJ, Stutzle T (2013) Benchmark results for a simple hybrid algorithm on the CEC 2013 benchmark set for real-parameter optimization. In: Proceedings of IEEE congress on evolutionary computation, pp 1938–1944Google Scholar
  34. Loshchilov I (2013) CMA-ES with restarts for solving CEC 2013 benchmark problems. In: Proceedings of IEEE congress on evolutionary computation, pp 369–376Google Scholar
  35. Murugan P, Kannan S, Baskar S (2009) Application of NSGA-II algorithm to single-objective transmission constrained generation expansion planning. IEEE Trans Power Syst 24(4):1790–1797CrossRefGoogle Scholar
  36. Mustard D (1964) Numerical integration over the n-dimensional spherical shell. Math Comput 18(88):578–589MathSciNetzbMATHGoogle Scholar
  37. Niknam T, Narimani MR, Aghaei J, Azizipanah-Abarghooee R (2012) Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Gener Transm Distrib 6(6):515–527CrossRefGoogle Scholar
  38. O’Brien WJ, Evans BI, Howick GL (1986) A new view of the predation cycle of a planktivorous fish, white crappie (pomoxis annularis). Can J Fish Aquat Sci 43(10):1894–1899CrossRefGoogle Scholar
  39. Omran MGH, Clerc M (2011) Standard particle swarm optimisation, http://www.particleswarm.info/
  40. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417CrossRefGoogle Scholar
  41. Rao PN, Rao KP, Nanda J (1982) An e-coupled fast load flow method. In: Mahalanabis AK (ed) Theory and application of digital control, pp 601–606. PergamonGoogle Scholar
  42. Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL (2007) Honeybees perform optimal scale-free searching flights when attempting to locate a food source. J Exp Biol 210(21):3763–3770CrossRefGoogle Scholar
  43. Roy PK (2013) Solution of unit commitment problem using gravitational search algorithm. Int J Electric Power Energy Syst 53:85–94CrossRefGoogle Scholar
  44. Saxena DK, Duro JA, Tiwari A, Deb K, Zhang Q (2013) Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput 17(1):77–99CrossRefGoogle Scholar
  45. Sayah S, Hamouda A, Bekrar A (2014) Efficient hybrid optimization approach for emission constrained economic dispatch with nonsmooth cost curves. Int J Electric Power Energy Syst 56:127–139CrossRefGoogle Scholar
  46. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713CrossRefGoogle Scholar
  47. Simopoulos DN, Kavatza SD, Vournas CD (2006) Unit commitment by an enhanced simulated annealing algorithm. IEEE Trans Power Syst 21(1):68–76CrossRefGoogle Scholar
  48. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359MathSciNetzbMATHCrossRefGoogle Scholar
  49. Strogatz SH (2014) Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview PressGoogle Scholar
  50. Talatahari S, Azar BF, Sheikholeslami R, Gandomi A (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17:1312–1319MathSciNetzbMATHCrossRefGoogle Scholar
  51. Ting T, Rao M, Loo C (2006) A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Trans Power Syst 21(1):411–418CrossRefGoogle Scholar
  52. Varadarajan M, Swarup KS (2008) Solving multi-objective optimal power flow using differential evolution. IET Gener Transm Distrib 2(5):720–730CrossRefGoogle Scholar
  53. Venkatesh P, Gnanadass R, Padhy NP (2003) Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints. IEEE Trans Power Syst 18(2):688–697CrossRefGoogle Scholar
  54. Viana EM, de Oliveira EJ, Martins N, Pereira JLR, de Oliveira LW (2013) An optimal power flow function to aid restoration studies of long transmission segments. IEEE Trans Power Syst 28(1):121–129CrossRefGoogle Scholar
  55. Viswanathan GM, Buldyrev SV, Havlin S, Luz MGED, Raposo EP, Stanley HE (1999) Optimizing the success of random searches. Nature 401(6756):911–914CrossRefGoogle Scholar
  56. Wang LF, Singh CN (2008) Balancing risk and cost in fuzzy economic dispatch including wind power penetration based on particle swarm optimization. Electric Power Syst Res 78(8):1361–1368CrossRefGoogle Scholar
  57. Wang H, Yao X (2016) Objective reduction based on nonlinear correlation information entropy. Soft Comput 20(6):2393–2407CrossRefGoogle Scholar
  58. Wu QH, Lu Z, Li MS, Ji TY (2008) Optimal placement of facts devices by a group search optimizer with multiple producer. In: 2008 evolutionary computation (IEEE World Congress on Computational Intelligence), CEC 2008. IEEE (2008), pp 1033–1039Google Scholar
  59. Wu QH, Liao HL (2013) Function optimisation by learning automata. Inf Sci 220:379–398MathSciNetCrossRefGoogle Scholar
  60. Yang XS (2010) Firefly algorithm, levy flights and global optimization. In: Research and development in intelligent systems XXVI. Springer, London, pp 209–218Google Scholar
  61. Yang L, Jian J, Zhu Y, Dong Z (2015) Tight relaxation method for unit commitment problem using reformulation and lift-and-project. IEEE Trans Power Syst 30:13–23CrossRefGoogle Scholar
  62. Zhan ZH, Zhang J, Li Y, Chung HH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 39(6):1362–1381CrossRefGoogle Scholar
  63. Zhao B, Guo CX, Bai BR, Cao YJ (2006) An improved particle swarm optimization algorithm for unit commitment. Int J Electric Power Energy Syst 28(7):482–490CrossRefGoogle Scholar
  64. Zhao C, Wang J, Watson JP, Guan Y (2013) Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Trans Power Syst 28(3):2708–2717CrossRefGoogle Scholar
  65. Zheng JH, Chen JJ, Wu QH, Jing ZX (2015) Multi-objective optimization and decision making for power dispatch of a large-scale integrated energy system with distributed DHCs embedded. Appl Energy 154:369–379CrossRefGoogle Scholar
  66. Zheng H, Jian J, Yang L, Quan R (2015) A deterministic method for the unit commitment problem in power systems. Comput Oper Res 1:1–7CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Qing-Hua Wu
    • 1
    Email author
  • Jiehui Zheng
    • 1
  • Zhaoxia Jing
    • 2
  • Xiaoxin Zhou
    • 3
  1. 1.School of Electric Power EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Electric Power EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.China Electric Power Research InstituteBeijingChina

Personalised recommendations