Preoperative Workup and Investigations in Pediatric Cataract Surgery

  • Chirakshi Dhull
  • Sagnik Sen
  • Sudarshan Kumar Khokhar


Preoperative evaluation has a major role to play in the postoperative outcomes of cataract surgery in children. The age of detection, morphology of cataract, unilateral/bilateral, time of presentation, best-corrected distance visual acuity, presence of strabismus, nystagmus, and glaucoma all may predict the postoperative visual outcome of surgery [1]. The delay in presentation for surgery is generally associated with poor outcome.


  1. 1.
    Bonaparte LA, Trivedi RH, Ramakrishnan V, Wilson ME. Visual acuity and its predictors after surgery for bilateral cataracts in children. Eye (Lond). 2016;30:1229–33.CrossRefGoogle Scholar
  2. 2.
    Lin AA, Buckley EG. Update on pediatric cataract surgery and intraocular lens implantation. Curr Opin Ophthalmol. 2010;21:55–9.CrossRefGoogle Scholar
  3. 3.
    Spanou N, Alexopoulos L, Manta G, Tsamadou D, Drakos H, Paikos P. Strabismus in pediatric lens disorders. J AAPOS. 2011;48:163–6.Google Scholar
  4. 4.
    Gole G. Visual acuity assessment in children. Clin Exp Ophthalmol. 1989;17:1–2.Google Scholar
  5. 5.
    Anker S, Atkinson J, Braddick O, Ehrlich D, Hartley T, Nardini M, et al. Identification of infants with significant refractive error and strabismus in a population screening program using noncycloplegic videorefraction and orthoptic examination. Invest Ophthalmol Vis Sci. 2003;44:497–504.CrossRefGoogle Scholar
  6. 6.
    Kaya A. Preoperative usage of ultrasound biomicroscopy in pediatric cataract. Arq Bras Oftalmol. 2016;79:62.Google Scholar
  7. 7.
    Khokhar S, Jose CP, Sihota R, Midha N. Unilateral congenital cataract: clinical profile and presentation. J Pediatr Ophthalmol Strabismus. 2018;55(2):107–12. doi:10.3928/01913913-20170703-11change numbers accordingly.Google Scholar
  8. 8.
    Qi Y, Zhang YF, Zhu Y, Wan MG, Du SS, Yue ZZ, et al. Prognostic factors for visual outcome in traumatic cataract patients. J Ophthalmol. 2016;2016:1748583.CrossRefGoogle Scholar
  9. 9.
    Wilson ME, Trivedi RH. Axial length measurement techniques in pediatric eyes with cataract. Saudi J Ophthalmol. 2012;26:13–7.CrossRefGoogle Scholar
  10. 10.
    Gordon R.A., Donzis P.B. Refractive development of the human eye. Arch Ophthalmol. 1985;103:785–9.CrossRefGoogle Scholar
  11. 11.
    Vasavada AR, Raj SM, Nihalani B. Rate of axial growth after congenital cataract surgery. Am J Ophthalmol. 2004;138:915–24.CrossRefGoogle Scholar
  12. 12.
    Capozzi P, Morini C, Piga S, Cuttini M, Vadalà P. Corneal curvature and axial length values in children with congenital/infantile cataract in the first 42 months of life. Invest Ophthalmol Vis Sci. 2008;49:4774–8.CrossRefGoogle Scholar
  13. 13.
    Ehlers N, Sorensen T, Bramsen T, Poulsen EH. Central corneal thickness in newborns and children. Acta Ophthalmol. 1976;54:285–90.CrossRefGoogle Scholar
  14. 14.
    Trivedi RH, Wilson ME. Keratometry in pediatric eyes with cataract. Arch Ophthalmol. 2008;126:38–42.CrossRefGoogle Scholar
  15. 15.
    Flitcroft DI, Knight-Nanan D, Bowell R, Lanigan B, O’Keefe M. Intraocular lenses in children: changes in axial length, corneal curvature, and refraction. Br J Ophthalmol. 1999;83:265–9.CrossRefGoogle Scholar
  16. 16.
    Pavlin CJ, Harasiewicz K, Sherar MD, Foster FS. Clinical use of ultrasound biomicroscopy. Ophthalmology. 1991;98:287–95.CrossRefGoogle Scholar
  17. 17.
    Silverman RH. High-resolution ultrasound imaging of the eye – a review. Clin Exp Ophthalmol. 2009;37:54–67.CrossRefGoogle Scholar
  18. 18.
    Xiang D, Chen L, Hu L, Song S, Xie W, Long J. Image features of lens opacity in pediatric cataracts using ultrasound biomicroscopy. J AAPOS. 2016;20(6):519–22.CrossRefGoogle Scholar
  19. 19.
    Gupta V, Jha R, Srinivasan G, Dada T, Sihota R. Ultrasound biomicroscopic characteristics of the anterior segment in primary congenital glaucoma. J AAPOS. 2007;11:546–50.CrossRefGoogle Scholar
  20. 20.
    Kucukevcilioglu M, Hurmeric V, Ceylan OM. Preoperative detection of posterior capsule tear with ultrasound biomicroscopy in traumatic cataract. J Cataract Refract Surg. 2013;39:289–91.CrossRefGoogle Scholar
  21. 21.
    Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21:1361–7.CrossRefGoogle Scholar
  22. 22.
    Hirata M, Tsujikawa A, Matsumoto A, Hangai M, Ooto S, Yamashiro K, et al. Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4971–8.CrossRefGoogle Scholar
  23. 23.
    Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148:445–50.CrossRefGoogle Scholar
  24. 24.
    Pang Y, Goodfellow GW, Allison C, Block S, Frantz KA. A prospective study of macular thickness in amblyopic children with unilateral high myopia. Invest Ophthalmol Vis Sci. 2011;52:2444–9.CrossRefGoogle Scholar
  25. 25.
    Paroli MP, Spinucci G, Fabiani C, Pivetti-Pezzi P. Retinal complications of juvenile idiopathic arthritis-related uveitis: a microperimetry and optical coherence tomography study. Ocul Immunol Inflamm. 2010;18:54–9.CrossRefGoogle Scholar
  26. 26.
    Baikoff G, Lutun E, Wei J, Ferraz C. Contact between 3 phakic intraocular lens models and the crystalline lens: an anterior chamber optical coherence tomography study. J Cataract Refract Surg. 2004;30:2007–12.CrossRefGoogle Scholar
  27. 27.
    Wilson ME, Pandey SK, Thakur J. Paediatric cataract blindness in the developing world: surgical techniques and intraocular lenses in the new millennium. Br J Ophthalmol. 2003;87:14–9.CrossRefGoogle Scholar
  28. 28.
    Magli A, Forte R, Carelli R, Rombetto L, Magli G. Long-term outcomes of primary intraocular lens implantation for unilateral congenital cataract. Semin Ophthalmol. 2016;31:548–53.PubMedGoogle Scholar
  29. 29.
    Dahan E, Drusedau MU. Choice of lens and dioptric power in pediatric pseudophakia. J Cataract Refract Surg. 1997;23(Suppl 1):618–23.CrossRefGoogle Scholar
  30. 30.
    Prost ME. IOL calculations in cataract operations in children. Klin Ocz. 2004;106:691–4.Google Scholar
  31. 31.
    Enyedi LB, Peterseim MW, Freedman SF, Buckley EG. Refractive changes after pediatric intraocular lens implantation. Am J Ophthalmol. 1998;126:772–81.CrossRefGoogle Scholar
  32. 32.
    Zhang Z, Thomas LW, Leu SY, Carter S, Garg S. Refractive outcomes of intraoperative wavefront aberrometry versus optical biometry alone for intraocular lens power calculation. Indian J Ophthalmol. 2017;65:813–7.CrossRefGoogle Scholar
  33. 33.
    Vasavada V, Shah SK, Vasavada VA, Vasavada AR, Trivedi RH, Srivastava S, et al. Comparison of IOL power calculation formulae for pediatric eyes. Eye (Lond). 2016;30:1242–50.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chirakshi Dhull
    • 1
  • Sagnik Sen
    • 1
  • Sudarshan Kumar Khokhar
    • 1
  1. 1.Dr. Rajendra Prasad Centre for Ophthalmic SciencesAll India Institute of Medical SciencesNew DelhiIndia

Personalised recommendations