Food Allergy pp 179-194 | Cite as

Food Allergy and the Microbiota: Implications for Probiotic Use in Regulating Allergic Responses

  • Linglin Fu
  • Bobby J. Cherayil
  • Haining Shi
  • Yanbo Wang
  • Yang Zhu


The gastrointestinal tract is colonized with an enormous number of microorganisms, which play a critical role in shaping the development and function of host innate as well as adaptive immune responses. Evidence from both epidemiologic investigations and experiments in animal models indicates that abnormalities in microbiota composition (dysbiosis) can influence the development of allergic disorders via effects on immune function. Correction of these abnormalities by the use of probiotics or prebiotics, therefore, could have therapeutic or preventive potential. Probiotics can have positive effects on health that contribute to nutrition, modulation of inflammatory and hypersensitivity responses, and prevention of intestinal infections. This chapter will review developments in our understanding of the gut microbiota and probiotics in relation to food allergies.


  1. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y et al (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341PubMedCrossRefPubMedCentralGoogle Scholar
  2. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K (2013) Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature 500:232–236PubMedCrossRefPubMedCentralGoogle Scholar
  3. Bashir MEH, Louie S, Shi HN, Nagler-Anderson C (2004) Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol 172:6978–6987PubMedCrossRefPubMedCentralGoogle Scholar
  4. Basson A, Trotter A, Rodriguez-Palacios A, Cominelli F (2016) Mucosal interactions between genetics, diet, and microbiome in inflammatory bowel disease. Front Immunol 2:290Google Scholar
  5. Berni Canani R, Di Costanzo M, Bedogni G, Amoroso A, Cosenza L, Di Scala C, Granata V, Nocerino R (2017) Extensively hydrolyzed casein formula containing Lactobacillus rhamnosus GG reduces the occurrence of other allergic manifestations in children with cow’s milk allergy: 3-year randomized controlled trial. J Allergy Clin Immunol 139:1906–1913.e1904PubMedCrossRefPubMedCentralGoogle Scholar
  6. Björkstén B (2005) Genetic and environmental risk factors for the development of food allergy. Curr Opin Allergy Clin Immunol 5:249–253PubMedCrossRefPubMedCentralGoogle Scholar
  7. Boyce JA et al (2010) Guidelines for the diagnosis and management of food allergy in the United States: report of the NIAID-sponsored expert panel. J Allergy Clin Immunol 126:S1–S58PubMedPubMedCentralCrossRefGoogle Scholar
  8. Cahenzli J, Köller Y, Wyss M, Geuking MB, McCoy KD (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14:559–570PubMedPubMedCentralCrossRefGoogle Scholar
  9. Carroll KN, Gebretsadik T, Griffin MR et al (2007) Maternal asthma and maternal smoking are associated with increased risk of bronchiolitis during infancy. Pediatrics 119:1104–1112PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 3113:1126–1130CrossRefGoogle Scholar
  11. Chen CC, Louie S, Shi HN, Walker WA (2005) Preinoculation with the probiotic Lactobacillus acidophilus early in life effectively inhibits murine Citrobacter rodentium colitis. Pediatr Res 58:1185–1191PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chu DK, Llop-Guevara A, Walker TD, Flader K, Goncharova S, Boudreau JE, Moore CL, Seunghyun In T, Waserman S, Coyle AJ, Kolbeck R, Humbles AA, Jordana M (2013) IL-33, but not thymic stromal lymphopoietin or IL-25, is central to mite and peanut allergic sensitization. J Allergy Clin Immunol 131:187–200.e181–188PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cookson. LJPaWOCM (2010) Genomic approaches to understanding asthma. Genome Res 10:1280–1287Google Scholar
  14. Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446PubMedPubMedCentralCrossRefGoogle Scholar
  15. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y et al (2007) A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764PubMedPubMedCentralCrossRefGoogle Scholar
  16. Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR (2016) Regulation of immune cell function by short-chain fatty acids. Transl Immunol 5:e7Google Scholar
  17. Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ (2008a) Adaptive Foxp31 regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29:114–126PubMedCrossRefPubMedCentralGoogle Scholar
  18. Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ (2008b) Adaptive Foxp3þ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29:114–126PubMedCrossRefPubMedCentralGoogle Scholar
  19. Eggesbø M, Botten G, Stigum H, Nafstad P, Magnus P (2003) Is delivery by cesarean section a risk factor for food allergy? J Allergy Clin Immunol 112:420–426PubMedCrossRefPubMedCentralGoogle Scholar
  20. Esterhazy D, Loschko J, London M, Jove V, Oliveira TY, Mucida D (2016) Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T65 cells and tolerance. Nat Immunol 1715:545–555CrossRefGoogle Scholar
  21. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250–1257PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D et al (2016) Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med 22:1187–1191PubMedPubMedCentralCrossRefGoogle Scholar
  23. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–450PubMedCrossRefPubMedCentralGoogle Scholar
  24. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C et al. 2009(2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31:677–689PubMedPubMedCentralCrossRefGoogle Scholar
  25. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, Glickman JN, Glimcher LH (2007) Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 13:33–45CrossRefGoogle Scholar
  26. Goto Y, Uematsu S, Kiyono H (2016) Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol 17:1244e51CrossRefGoogle Scholar
  27. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512e519CrossRefGoogle Scholar
  28. Hall JA, Grainger JR, Spencer SP, Belkaid Y (2011) The role of retinoic acid in tolerance and immunity. Immunity 35:13–22PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M et al (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18:538–546PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ho HE, Bunyavanich S (2018) Role of the microbiome in food allergy. Curr Allergy Asthma Rep 18:27PubMedCrossRefPubMedCentralGoogle Scholar
  31. Honda K, Littman DR (2012) The microbiome in infectious disease and inflammation. Annu Rev Immunol 30:759–795PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884PubMedCrossRefGoogle Scholar
  33. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hourihane JO, Dean TP, JO. W (1996) Peanut allergy in relation to heredity, maternal diet, and other atopic diseases: results of a questionnaire survey, skin prick testing, and food challenges. BMJ 313:518–521PubMedPubMedCentralCrossRefGoogle Scholar
  35. Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29:701–725PubMedCrossRefGoogle Scholar
  36. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jackson KD, Howie LD, Akinbami LJ (2013) Trends in allergic conditions among children: United States, 1997–2011. NCHS Data Brief 121:1–8Google Scholar
  38. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C et al (2014) Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut 63:559–566PubMedCrossRefGoogle Scholar
  39. Josefowicz SZ, Niec RE, Kim HY, Treuting P, Chinen T, Zheng Y et al (2012) Extra- thymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482:395e399CrossRefGoogle Scholar
  40. Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA, Pamer EG (2010) Bacterial flagellin stimulates toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis 201:534–543PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kinnebrew MA, Buffie CG, Diehl GE, Zenewicz LA, Leiner I, Hohl TM, Flavell RA, Littman DR, Pamer EG (2012) Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36:276–287PubMedPubMedCentralCrossRefGoogle Scholar
  42. Kiyono H, Fukuyama S (2004) NALT- versus Peyer’s-patch-mediated mucosal immunity. Nat Rev Immunol 4:699e710CrossRefGoogle Scholar
  43. Koplin JJ, Dharmage SC, Ponsonby A-L, Tang MLK, Lowe AJ, Gurrin LC et al (2012) Environmental and demographic risk factors for egg allergy in a population-based study of infants. Allergy 67:1415–1422PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 6:1219–1227PubMedCrossRefPubMedCentralGoogle Scholar
  45. Kurashima Y, Kiyono H (2017) Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol 35:119e47CrossRefGoogle Scholar
  46. Lambrecht BN, Hammad H, TACIsS (2014) The immunology of asthma. Nat Immunol 16:45–56CrossRefGoogle Scholar
  47. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio C-W, Santacruz N et al (2011) Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–254PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lavelle EC, Murphy C, O’Neill LA, Creagh EM (2010) The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis. Mucosal Immunol 3:17–28PubMedCrossRefPubMedCentralGoogle Scholar
  49. Lee JB, Chen CY, Liu B, Mugge L, Angkasekwinai P, Facchinetti V, Dong C, Liu YJ, Rothenberg ME, Hogan SP, Finkelman FD, Wang YH (2016) IL-25 and CD4(+) TH2 cells enhance type 2 innate lymphoid cell-derived IL-13 production, which promotes IgE-mediated experimental food allergy. J Allergy Clin Immunol 137:1216–1225.e1215PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848PubMedCrossRefPubMedCentralGoogle Scholar
  51. Licciardi PV, Wong S, Tang ML, Karagiannis TC (2010) Epigenome targeting by probiotic metabolites. Gut Pathog 2:24PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lio C-WJ, Hsieh CS (2011) Becoming self-aware: the thymic education of regulatory T cells. Curr Opin Immunol 23:213–219PubMedCrossRefPubMedCentralGoogle Scholar
  53. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379PubMedCrossRefPubMedCentralGoogle Scholar
  54. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118PubMedCrossRefPubMedCentralGoogle Scholar
  55. Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y et al (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343:1249288PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille J, Curotto de Lafaille M (2005) Oral tolerance in the absence of naturally occurring. Tregs J Clin Invest 115:1923–1933PubMedCrossRefPubMedCentralGoogle Scholar
  57. Murk W, Risnes KR, Bracken MB (2011) Prenatal or early-life exposure to antibiotics and risk of childhood asthma: a systematic review. Pediatrics 127:1125–1138PubMedCrossRefPubMedCentralGoogle Scholar
  58. Noval Rivas M, Burton OT, Wise P, Zhang YQ, Hobson SA, Garcia Lloret M, Chehoud C, Kuczynski J, DeSantis T, Warrington J, Hyde ER, Petrosino JF, Gerber GK, Bry L, Oettgen HC, Mazmanian SK, Chatila TA (2013) A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol 131:201–212PubMedCrossRefPubMedCentralGoogle Scholar
  59. Ohira H, Tsutsui W, Fujioka Y (2017) Are short chain fatty acids in gut microbiota defensive players for inflammation and atherosclerosis? J Atheroscler Thromb 24:660–672. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, Gaboriau-Routhiau V, Marques R, Dulauroy S, Fedoseeva M, Busslinger M, Cerf-Bensussan N, Boneca IG, Voehringer D, Hase K, Honda K, Sakaguchi S, Eberl G (2015) Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349:989–993PubMedCrossRefPubMedCentralGoogle Scholar
  61. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177PubMedPubMedCentralCrossRefGoogle Scholar
  62. Prescott SL, Pawankar R, Allen KJ, Campbell DE, Sinn JK, Fiocchi A, Ebisawa M, Sampson HA, Beyer K, Lee BW (2013) A global survey of changing patterns of food allergy burden in children. World Allergy Organ J 6:21PubMedPubMedCentralCrossRefGoogle Scholar
  63. Raciborski F, Tomaszewska A, Komorowski J, Samel-Kowalik P, Białoszewski A, Artur W et al (2012) The relationship between antibiotic therapy in early childhood and the symptoms of allergy in children aged 6–8 years—the questionnaire study results. Int J Occup Med Environ Health 25:470–480PubMedCrossRefPubMedCentralGoogle Scholar
  64. Renz H, Allen KJ, Sicherer SH, Sampson HA, Lack G, Beyer K, Oettgen HC (2018) Food Allergy Nat Rev Dis Prim 4:17098PubMedCrossRefPubMedCentralGoogle Scholar
  65. Riiser A (2015) The human microbiome, asthma, and allergy allergy asthma. Clin Immunol 11:35Google Scholar
  66. Rodriguez B, Prioult G, Bibiloni R, Nicolis I, Mercenier A, Butel MJ et al (2011) Germ-free status and altered caecal subdominant microbiota are associated with a high susceptibility to cow’s milk allergy in mice. FEMS Microbiol Ecol 76:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  67. Rodriguez B, Prioult G, Hacini-Rachinel F, Moine D, Bruttin A, Ngom-Bru C, Labellie C, Nicolis I, Berger B, Mercenier A, Butel MJ, Waligora-Dupriet AJ (2012) Infant gut microbiota is protective against cow’s milk allergy in mice despite immature ileal T-cell response. FEMS Microbiol Ecol 79:192–202PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13:21–38PubMedCrossRefPubMedCentralGoogle Scholar
  69. Salzman NH, Underwood MA, Bevins CL (2007) Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin Immunol 19:70–83PubMedCrossRefPubMedCentralGoogle Scholar
  70. Schiavi E, Barletta B, Butteroni C, Corinti S, Boirivant M, Di Felice G (2011) Oral therapeutic administration of a probiotic mixture suppresses established Th2 responses and systemic anaphylaxis in a murine model of food allergy. Allergy 66:499–508PubMedCrossRefPubMedCentralGoogle Scholar
  71. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248:1349e1356CrossRefGoogle Scholar
  72. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 4:e1002533CrossRefGoogle Scholar
  73. Sepp E, Julge K, Vasar M, Naaber P, Björksten B, Mikelsaar M (1997) Intestinal microflora of Estonian and Swedish infants. Acta Paediatr 86:956–961PubMedCrossRefPubMedCentralGoogle Scholar
  74. Siddiqui KRR, Powrie F (2008) CD1031 GALT DCs promote Foxp31 regulatory T cells. Mucosal Immunol 1(suppl):S34–S38PubMedCrossRefPubMedCentralGoogle Scholar
  75. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99:15451–15455PubMedPubMedCentralCrossRefGoogle Scholar
  76. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK et al (2014) Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci U S A 111:13145–13150PubMedPubMedCentralCrossRefGoogle Scholar
  77. Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE et al (2016) Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med 375:411–421PubMedPubMedCentralCrossRefGoogle Scholar
  78. Su C, Su L, Li Y, Long SR, Chang J, Zhang W, Walker WA, Xavier RJ, Cherayil BJ, Shi HN (2018) Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis. Mucosal Immunol 11:144–157PubMedCrossRefGoogle Scholar
  79. Sudo N, Sawamura S, Tanaka K, Aiba Y, Kubo C, Koga Y (1997) The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159:1739–1745PubMedGoogle Scholar
  80. Sun C-M, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR et al (2007) Smal intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J Exp Med 204:1775–1785PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sun W, Svendsen ER, Karmaus WJJ, Kuehr J, Forster J (2015) Early-life antibiotic use is associated with wheezing among children with high atopic risk: a prospective European study. J Asthma 52:647–652PubMedCrossRefPubMedCentralGoogle Scholar
  82. Takahashi I, Nakagawa I, Kiyono H, McGhee JR, Clements JD, Hamada S (1995) Mucosal T cells induce systemic anergy for oral tolerance. Biochem Biophys Res Commun 206:414e420CrossRefGoogle Scholar
  83. Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented flamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67:1992–2000PubMedPubMedCentralGoogle Scholar
  84. Tan J, McKenzie C, Vuillermin PJ, Goverse G, Vinuesa CG, Mebius RE, Macia L, Mackay CR (2016) Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep 15:2809–2824PubMedCrossRefPubMedCentralGoogle Scholar
  85. Tang ML, Ponsonby AL, Orsini F, Tey D, Robinson M, Su EL, Licciardi P, Burks W, Donath S (2015) Administration of a probiotic with peanut oral immunotherapy: a randomized trial. J Allergy Clin Immunol 135:737–744PubMedCrossRefPubMedCentralGoogle Scholar
  86. Thorburn AN, Macia L, Mackay CR (2014) Diet, metabolites, and “Western-lifestyle” inflammatory diseases. Immunity 40:833–842PubMedCrossRefPubMedCentralGoogle Scholar
  87. Tsai HJ, Kumar R, Pongracic J, Liu X, Story R, Yu Y, Caruso D, Costello J, Schroeder A, Fang Y, Demirtas H, Meyer KE, O’Gorman MR, Wang X (2009) Familial aggregation of food allergy and sensitization to food allergens: a family-based study. Clin Exp Allergy 39:101–109PubMedCrossRefPubMedCentralGoogle Scholar
  88. Tun HM, Konya T, Takaro TK et al (2017) Exposure to household furry pets influences the gut microbiota of infant at 3–4 months following various birth scenarios. Microbiome 5:40PubMedPubMedCentralCrossRefGoogle Scholar
  89. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449:804–810PubMedPubMedCentralCrossRefGoogle Scholar
  90. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 105:20858PubMedPubMedCentralCrossRefGoogle Scholar
  91. von Mutius E, Radon K (2008) Living on a farm: impact on asthma induction and clinical course. Immunol Allergy Clin N Am 28:631–647. - ix–xCrossRefGoogle Scholar
  92. Wannemuehler MJ, Kiyono H, Babb JL, Michalek SM, McGhee JR (1982) Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction. J Immunol 129:959–965PubMedPubMedCentralGoogle Scholar
  93. Waser M, Michels KB, Bieli C, Flöistrup H, Pershagen G, von Mutius E et al (2007) Inverse association of farm milk consumption with asthma and allergy in rural and suburban populations across Europe. Clin Exp Allergy 37:661–670PubMedCrossRefPubMedCentralGoogle Scholar
  94. Williams MR, Gallo RL (2015) The role of the skin microbiome in atopic dermatitis. Curr Allergy Asthma Rep 15:65PubMedCrossRefPubMedCentralGoogle Scholar
  95. Wu HJ, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3:4–14PubMedPubMedCentralCrossRefGoogle Scholar
  96. Zuercher AW, Weiss M, Holvoet S, Moser M, Moussu H, van Overtvelt L, Horiot S, Moingeon P, Nutten S, Prioult G, Singh A, Mercenier A (2012) Lactococcus lactis NCC 2287 alleviates food allergic manifestations in sensitized mice by reducing IL-13 expression specifically in the ileum. Clin Dev Immunol 2012:485750PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Linglin Fu
    • 1
  • Bobby J. Cherayil
    • 2
  • Haining Shi
    • 2
  • Yanbo Wang
    • 1
  • Yang Zhu
    • 3
  1. 1.School of Food Science and BiotechnologyZhejiang Gongshang UniversityHanghzouChina
  2. 2.Mucosal Immunology and Biology ResearchHarvard Medical SchoolCharlestownUSA
  3. 3.Bioprocess Engineering Group, Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands

Personalised recommendations