Drug Resistance in Plasmodium sp. and Novel Antimalarial Natural Products-Emerging Trends

  • Aswathy Narayanan
  • Kirthana M. V. Sindhe
  • Laxmi Shanker RaiEmail author


Malaria is one of the major infectious diseases which continues to be a serious threat in the developing countries. The burden of malaria is getting even worse, because of increase in parasite resistance to the current antimalarial drugs. The resistance to insecticides by mosquitoes has also diminished the hope of malaria eradication in endemic areas. New drugs with unique structure and mechanism of action are immediate needs to treat malaria. The rapid spread of malaria parasite, resistant towards the efficacious artemisinin combination therapy has forced the antimalarial drug discovery programs to identify unique drug targets as well as safe, affordable, and effective new natural antimalarial agents that can compete with synthetic ones. Till date, natural compounds have provided the most effective antimalarials, such as quinine and artemisinin. This raises the possibility that plants might be the sources for more potential antimalaria products. The advantage of natural compounds for the development of drugs derives from their innate affinity for biological receptors, often affordable and accessible for developing countries. The ethnopharmacological approach in natural antimalarial discovery has led to identification of novel lead compounds against malaria. In this book chapter, we review the advancement in discovery of anti-malarial compounds isolated from natural resources.


Malaria Plasmodium Antimalarial plants Natural products Traditional medicines Alkaloids 



A.N acknowledges the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore. K.S acknowledges Department of Medicine, University of California. L.S.R acknowledges Institut Pasteur.


  1. Ateba JET, Toghueo RMK, Awantu AF, Mba’ning BM, Gohlke S, Sahal D, Rodrigues-Filho E, Tsamo E, Boyom FF, Sewald N, Lenta BN. Antiplasmodial properties and cytotoxicity of endophytic fungi from Symphonia globulifera (Clusiaceae). J Fungi. 2018;4(2):E70.CrossRefGoogle Scholar
  2. Baba MS, Zin NM, Hassan ZAA, Latip J, Pethick F, Hunter IS, et al. In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J Microbiol. 2015;53(12):847–55.CrossRefGoogle Scholar
  3. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, et al. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii. Nature. 2002;419(6906):512–9.CrossRefGoogle Scholar
  4. Carvalho LH, Rocha EMM, Raslan DS, Oliveira AB, Krettli AU. In vitro activity of natural and synthetic naphthoquinones against erythrocytic stages of Plasmodium falciparum. Braz J Med Biol Res. 1988;21:485–7.PubMedGoogle Scholar
  5. Cassera MB, Gozzo FC, D’Alexandri FL, et al. The methylerythritol phosphate pathway is functionally active in all intraerythrocytic stages of Plasmodium falciparum. J Biol Chem. 2004;279(50):51749–59.CrossRefGoogle Scholar
  6. Challand S, Willcox M. A clinical trial of the traditional medicine Vernonia amygdalina in the treatment of uncomplicated malaria. J Altern Complement Med. 2009;15(11):1231–7.CrossRefGoogle Scholar
  7. Chen M, Theander TG, Christensen BS, Hviid L, Zhai L, Kharazmi A. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection. Antimicrob Agents Chemother. 1994;38:1470–5.CrossRefGoogle Scholar
  8. Chinsembu KC. Plants as antimalarial agents in Sub-Saharan Africa. Acta Trop. 2015;152:32–48.CrossRefGoogle Scholar
  9. Ducker-Eshun G, Jaroszewski JW, Asomaning WA, Oppong-Boachie F, Brøgger Christensen S. Antiplasmodial constituents of Cajanus cajan. Phytother Res. 2004;18:128–30.CrossRefGoogle Scholar
  10. Ferreira M, Cantrell C, Wedge D, Gonçalves V, Jacob M, Khan S, Rosa CA, Rosa L. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil. Mem Inst Oswaldo Cruz. 2017;112:692–7.CrossRefGoogle Scholar
  11. Ghosh JK, Shaool D, Guillaud P, Ciceron L, Mazier D, Kustanovich I, et al. Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem. 1997;272:31609–16.CrossRefGoogle Scholar
  12. Ginsburg H, Deharo E. A call for using natural compounds in the development of new antimalarial treatments – an introduction. Malar J. 2011;10(Suppl 1):S1.CrossRefGoogle Scholar
  13. Grellier P, Ramiaramanana L, Millerioux V, Deharo E, Schrével J, Frappier F, Trigalo F, Bodo B, Pousset J-L. Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from Cryptolepis sanguinolenta. Phytother Res. 1996;10:317–21.CrossRefGoogle Scholar
  14. Holz GG Jr. Lipids and the malarial parasite. Bull WHO. 1977;55(2–3):237–48.PubMedGoogle Scholar
  15. Jang CS, Fu FY, Wang CY, Huang KC, Lu G, Chou TC. Ch’ang Shan, a Chinese antimalarial drug. Science. 1946;103(2663):59.CrossRefGoogle Scholar
  16. Jiménez-Díaz MB, Mulet T, Viera S, Gómez V, Garuti H, Ibáñez J, Alvarez-Doval A, Shultz LD, Martínez A, Gargallo-Viola D, Angulo-Barturen I. Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-scid IL2Rgammanull mice engrafted with human erythrocytes. Antimicrob Agents Chemother. 2009;53(10):4533–6.CrossRefGoogle Scholar
  17. Jonckers THM, van Miert S, Cimanga K, Bailly C, Colson P, De PauwGillet MC, van den Heuvel H, Claeys M, Lemière F, Esmans EL, Rozenski J, Quirijnen L, Maes L, Dommisse R, Lemière GL, Vlietinck A, Pieter L. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. J Med Chem. 2002;45:3497–508.CrossRefGoogle Scholar
  18. Kaur K, Jain M, Kaur T, Jain R. Antimalarials from nature. Bioorg Med Chem. 2009;17:3229–56.CrossRefGoogle Scholar
  19. Kaushik N, Murali TS, Sahal D, Suryanarayanan T. A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta Parasitol. 2014;59:745–57.CrossRefGoogle Scholar
  20. Kimura EA, Couto AS, Peres VJ, Casal OL, Katzin AM. N-linked glycoproteins are related to schizogony of the intraerythrocytic stage in Plasmodium falciparum. J Biol Chem. 1996;271(24):14452–61.CrossRefGoogle Scholar
  21. Likhitwitayawuid K, Angerhofer CK, Cordell GA, Pezzuto JM. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from Stephania erects. J Nat Prod. 1993;56:30–8.CrossRefGoogle Scholar
  22. MacKinnon S, Durst T, Arnason JT. Antimalarial activity of tropical Meliaceae extracts and Gedunin derivatives. J Nat Prod. 1997;60(4):336–41.CrossRefGoogle Scholar
  23. Mesia M, Cimanga RK, Dhooge L, Cos P, Apers S, Totte J, Tona GL, Pieters L, Vlietinck A, Maes L. Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. J Ethnopharmacol. 2010;131(1):10–6.CrossRefGoogle Scholar
  24. Mizuno Y, Makioka A, Kawazu S, Kano S, Kawai S, Akaki M, Aikawa M, Ohtomo H. Effect of jasplakinolide on the growth, invasion, and actin cytoskeleton of Plasmodium falciparum. Parasitol Res. 2002;88(9):844–8.CrossRefGoogle Scholar
  25. Mueller MS, Runyambo N, Wagner I, Borrmann S, Dietz K, Heide L. Randomized controlled trial of a traditional preparation of Artemisia annua L. (Annual Wormwood) in the treatment of malaria. Trans R Soc Trop Med Hyg. 2004;98(5):318–21.CrossRefGoogle Scholar
  26. Muhammad I, Bedir E, Khan SI, Tekwani BL, Khan AI, Takamatsu S, Pelletier J, Walker L. A new antimalarial quassinoid from Simaba orinocensis. J Nat Prod. 2004;67(5):772–7.CrossRefGoogle Scholar
  27. Nilanonta C, Isaka M, Kittakoop P, Palittapongarnpim P, Kamchonwongpaisan S, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y. Antimycobacterial and antiplasmodial cyclodepsipeptides from the insect pathogenic fungus Paecilomyces tenuipes BCC 1614. Planta Med. 2000;66:756–8.CrossRefGoogle Scholar
  28. Oketch-Rabah HA, Dossaji SF, Christensen SB, Frydenvang K, Lemmich E, Cornett C, Olsen CE, Chen M, Kharazmi A, Theander T. Antiprotozoal compounds from Asparagus africanus. J Nat Prod. 1997;60(10):1017–22.CrossRefGoogle Scholar
  29. Oksman-Caldentey KM, Inzé D. Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci. 2004;9:433–40.CrossRefGoogle Scholar
  30. Olepu S, Suryadevara PK, Rivas K, et al. 2-Oxo-tetrahydro-1,8-naphthyridines as selective inhibitors of malarial protein farnesyltransferase and as anti-malarials. Bioorg Med Chem Lett. 2008;18(2):494–7.CrossRefGoogle Scholar
  31. Pei Y, Tarun AS, Vaughan AM, Herman RW, Soliman JM, Erickson-Wayman A, Kappe SH. Plasmodium pyruvate dehydrogenase activity is only essential for the parasite’s progression from liver infection to blood infection. Mol Microbiol. 2010;75(4):957–71.CrossRefGoogle Scholar
  32. Pessi G, Ben Mamoun C. Pathways for phosphatidylcholine biosynthesis: targets and strategies for antimalarial drugs. Future Med Future Lipidol. 2006;1(2):173–80.CrossRefGoogle Scholar
  33. Pinheiro Luiz CS, Feitosa LM, Da Silviera FF, Boechat N. Current antimalarial therapies and advances in the development of semi-synthetic artemisinin derivatives. Ann Braz Acad Sci. 2018;90(1 Suppl. 2):1251–71.CrossRefGoogle Scholar
  34. Rochanakij S, Thebtaranonth Y, Yenjai C, Yuthavong Y. Nimbolide, a constituent of Azadirachta indica, inhibits Plasmodium falciparum in culture. Southeast Asian J Trop Med Public Health. 1985;16(1):66–72.PubMedGoogle Scholar
  35. Saxena S, Pant N, Jain DC, Bhakuni RS. Antimalarial agents from plant sources. Curr Sci. 2003;85:1314–29.Google Scholar
  36. Scherf A, Lopez-Rubio JJ, Riviere L. Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol. 2008;62:445–70.CrossRefGoogle Scholar
  37. Singh SB, Zink DL, Polishook JD, Dombrowski AW, Darkin-Rattray SJ, Schmatz DM, Goetz MA. Apicidins: novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett. 1996;37(45):8077–80.CrossRefGoogle Scholar
  38. Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S. Malaria diagnosis: a brief review. Korean J Parasitol. 2009;47(2):93–102.CrossRefGoogle Scholar
  39. Via HJ, Ben Mamoun C, Sherman IW. Plasmodium lipids: metabolism and function in molecular approaches to malaria. Washington, DC: ASM Press; 2005. p. 327–52.Google Scholar
  40. Wells TNC. Natural products as starting points for future antimalarial therapies: going back to our roots? Malar J. 2011;10(Suppl 1):S3.CrossRefGoogle Scholar
  41. Willcox ML, Graz B, Falquet J, Sidibé O, Forster M, Diallo D. Argemone mexicana decoction for the treatment of uncomplicated falciparum malaria. Trans R Soc Trop Med Hyg. 2007;101(12):1190–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Aswathy Narayanan
    • 1
  • Kirthana M. V. Sindhe
    • 2
  • Laxmi Shanker Rai
    • 3
    Email author
  1. 1.Molecular Biology and Genetics UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.Department of MedicineUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of MycologyInstitut PasteurParisFrance

Personalised recommendations