Advertisement

In-silico Methods of Drug Design: Molecular Simulations and Free Energy Calculations

  • Fortunatus Chidolue Ezebuo
  • Prem P. Kushwaha
  • Atul K. Singh
  • Shashank Kumar
  • Pushpendra Singh
Chapter

Abstract

The main aim of in silico drug design approaches is to take the best chemical substances to wet laboratory investigation through the reduction of cost and last stage attrition. In silico drug design approaches can utilize natural products and their semi-synthetic derivatives as starting material for discovery/design of small molecule drugs. The application of computers and computational approaches help in all areas of drug discovery and create the core of structure-based drug design.

Notes

Acknowledgments

We would like to thank Central University of Punjab, Bathinda, Punjab, (India) and Director in-charge, National Institute of Pathology, New Delhi (India) for supporting this study with infrastructural requirements. This study was also supported by a Centenary-Post Doctoral Research Fellowship Grant-in-Aid from the Indian Council of Medical Research (ICMR), Government of India awarded to PS.

Conflict of Interest

The authors declare that no financial or commercial conflict of interest.

References

  1. Acevedo O, Ambrose Z, T Flaherty P, Aamer H, Jain P, V Sambasivarao S. Identification of HIV inhibitors guided by free energy perturbation calculations. Curr Pharm Des. 2012;18(9):1199–216.CrossRefGoogle Scholar
  2. Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006;26(5):531–68.PubMedCrossRefGoogle Scholar
  3. Barlow DH, Nock M, Hersen M. Single case experimental designs: strategies for studying behavior for change. Boston: Pearson/Allyn and Bacon; 2009.Google Scholar
  4. Bleicher KH, Böhm H-J, Müller K, Alanine AI. A guide to drug discovery: hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov. 2003;2(5):369.PubMedCrossRefGoogle Scholar
  5. Borhani DW, Shaw DE. The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des. 2012;26(1):15–26.PubMedCrossRefGoogle Scholar
  6. Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol. 2009;5(11):789–96.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brandsdal BO, Österberg F, Almlöf M, Feierberg I, Luzhkov VB, Åqvist J. Free energy calculations and ligand binding. Adv Protein Chem. 2003;66:123–58.. ElsevierPubMedCrossRefGoogle Scholar
  8. Buntrock RE. ChemOffice ultra 7.0. J Chem Inf Comput Sci. 2002;42(6):1505–6.PubMedCrossRefGoogle Scholar
  9. Carlsson J, Åqvist J. Calculations of solute and solvent entropies from molecular dynamics simulations. Phys Chem Chem Phys. 2006;8(46):5385–95.PubMedCrossRefGoogle Scholar
  10. Changeux JP, Edelstein S. Conformational selection or induced fit? 50 years of debate resolved. F1000 Biol Rep. 2011;3:1–15.Google Scholar
  11. Chen J, Brooks CL III, Khandogin J. Recent advances in implicit solvent-based methods for biomolecular simulations. Curr Opin Struct Biol. 2008;18(2):140–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS. Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol. 2011;21(2):150–60.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chodera JD, Pande VS. The social network (of protein conformations). Proc Nat Acad Sci. 2011;108(32):12969–70.CrossRefGoogle Scholar
  14. de Amorim HL, Caceres RA, Netz PA. Linear interaction energy (LIE) method in lead discovery and optimization. Curr Drug Targets. 2008;9(12):1100–5.Google Scholar
  15. Damale MG, Harke SN, Kalam Khan FA, Shinde DB, Sangshetti JN. Recent advances in multidimensional QSAR (4D-6D): a critical review. Mini Rev Med Chem. 2014;14(1):35–55.PubMedCrossRefGoogle Scholar
  16. Debnath AK. Pharmacophore mapping of a series of 2, 4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex dihydrofolate reductase. J Med Chem. 2002;45(1):41–53.PubMedCrossRefGoogle Scholar
  17. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006;20(10–11):647–71.PubMedCrossRefGoogle Scholar
  18. Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery. BMC Biol. 2011;9(1):71.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen MY, et al. Comparative protein structure modeling using Modeller. Curr Protocol Bioinforma. 2006;15(1):5.6. 1–5.6. 30.CrossRefGoogle Scholar
  20. Ferreira L, dos Santos R, Oliva G, Andricopulo AJM. Molecular docking and structure-based drug design strategies. Molecules. 2015;20(7):13384–421.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Genheden S, Ryde U. A comparison of different initialization protocols to obtain statistically independent molecular dynamics simulations. J Comput Chem. 2011;32(2):187–95.CrossRefGoogle Scholar
  22. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449–61.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Guner OF. Pharmacophore perception, development, and use in drug design. La Jolla: International University Line; 2000. p. 29.Google Scholar
  24. Harvey MJ, De Fabritiis G. High-throughput molecular dynamics: the powerful new tool for drug discovery. Drug Discov Today. 2012;17(19–20):1059–62.PubMedCrossRefGoogle Scholar
  25. Homeyer N, Stoll F, Hillisch A, Gohlke H. Binding free energy calculations for lead optimization: assessment of their accuracy in an industrial drug design context. J Chem Theory Comput. 2014;10(8):3331–44.PubMedCrossRefGoogle Scholar
  26. Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2010;51(1):69–82.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Iman M, Saadabadi A, Davood A. Molecular docking analysis and molecular dynamics simulation study of ameltolide analogous as a sodium channel blocker. Turk J Chem. 2015;39(2):306–16.CrossRefGoogle Scholar
  28. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicability domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim. 2005;33(5):445.PubMedCrossRefGoogle Scholar
  29. Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303(5665):1813–8.PubMedCrossRefGoogle Scholar
  30. Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S. A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J Med Chem. 2005;48(17):5437–47.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935.PubMedCrossRefGoogle Scholar
  32. Klabunde T, Hessler G. Drug design strategies for targeting G-protein-coupled receptors. Chembiochem. 2002;3(10):928–44.PubMedCrossRefGoogle Scholar
  33. Kuntz ID. Structure-based strategies for drug design and discovery. Science. 1992;257(5073):1078–82.PubMedCrossRefGoogle Scholar
  34. Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6(7):357–66.PubMedCrossRefGoogle Scholar
  35. Lill MA. Multi-dimensional QSAR in drug discovery. Drug Discov Today. 2007;12(23–24):1013–7.PubMedCrossRefGoogle Scholar
  36. Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41.PubMedCrossRefGoogle Scholar
  37. Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010;38(suppl_2):W609–14.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Marchand-Geneste N, Watson KA, Alsberg BK, King RD. New approach to pharmacophore mapping and QSAR analysis using inductive logic programming. Application to thermolysin inhibitors and glycogen phosphorylase B inhibitors. J Med Chem. 2002;45(2):399–409.PubMedCrossRefGoogle Scholar
  39. Medina-Franco JL, López-Vallejo F, Kuck D, Lyko F. Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers. 2011;15(2):293–304.PubMedCrossRefGoogle Scholar
  40. Meng X-Y, Zhang H-X, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146–57.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Michel J, Essex JW. Prediction of protein–ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput Aided Mol Des. 2010;24(8):639–58.PubMedCrossRefGoogle Scholar
  42. Mobley DL, Dill KA. Binding of small-molecule ligands to proteins:“what you see” is not always “what you get”. Structure. 2009;17(4):489–98.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mortier A, Faria JP, Correia CM, Santerne A, Santos NC. BGLS: a Bayesian formalism for the generalised Lomb-Scargle periodogram. Astron Astrophys. 2015;573:1–6.CrossRefGoogle Scholar
  44. Nair PC, Malde AK, Drinkwater N, Mark AE. Missing fragments: detecting cooperative binding in fragment-based drug design. ACS Med Chem Lett. 2012;3(4):322–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Nair PC, Malde AK, Mark AE. Using theory to reconcile experiment: the structural and thermodynamic basis of ligand recognition by phenylethanolamine N-methyltransferase (PNMT). J Chem Theory Comput. 2011;7(5):1458–68.PubMedCrossRefGoogle Scholar
  46. Nair PC, Miners JO. Molecular dynamics simulations: from structure function relationships to drug discovery. In Silico Pharmacol. 2014;2(1):1–4.Google Scholar
  47. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Raut R, Beesetti H, Tyagi P, Khanna I, Jain SK, Jeankumar VU, et al. A small molecule inhibitor of dengue virus type 2 protease inhibits the replication of all four dengue virus serotypes in cell culture. Virol J. 2015;12(1):16.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Senn HM, Thiel W. QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl. 2009;48(7):1198–229.PubMedCrossRefGoogle Scholar
  50. Singh P, Bast F. Multitargeted molecular docking study of plant-derived natural products on phosphoinositide-3 kinase pathway components. Med Chem Res. 2014;23(4):1690–700.CrossRefGoogle Scholar
  51. Singh P, Bast F. High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res. 2015a;24(6):2694–708.CrossRefGoogle Scholar
  52. Singh P, Bast F. Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Investig New Drugs. 2015b;33(3):575–93.CrossRefGoogle Scholar
  53. Singh P, Bast F. Screening of multi-targeted natural compounds for receptor tyrosine kinases inhibitors and biological evaluation on cancer cell lines, in silico and in vitro. Med Oncol. 2015c;32(9):233.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Singh P, Bast F, Singh R. Natural compounds targeting transforming growth factor-β: in silico and in vitro study. Elect J Biol. 2016;13:6–13.Google Scholar
  55. Singh P, Kumar S, Bast F. Natural compounds are smart players in context to anticancer potential of receptor tyrosine kinases: an in silico and in vitro advancement. In: Wei DQ, Ma Y, Cho W, Xu Q, Zhou F, editors. Translational bioinformatics and its application. Dordrecht: Springer; 2017. p. 177–202.CrossRefGoogle Scholar
  56. Tao H, Chu ZT, Warshel A. Quantitative studies of ligand-receptor interactions: a rapid evaluation of binding free energies of endothiapepsin to its inhibitors. Pac Symp Biocomput. 1996:752–5.Google Scholar
  57. Thomsen R, Christensen MH. MolDock: a new technique for high-accuracy molecular docking. J Med Chem. 2006;49(11):3315–21.PubMedCrossRefGoogle Scholar
  58. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–18.CrossRefGoogle Scholar
  59. Vogt AD, Di Cera E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry. 2012;51(30):5894–902.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Verma J, Khedkar VM, Coutinho EC. 3D-QSAR in drug design-a review. Curr Top Med Chem. 2010;10(1):95–115.PubMedCrossRefGoogle Scholar
  61. Zhang M-Q, Wilkinson B. Drug discovery beyond the ‘rule-of-five’. Curr Opin Biotechnol. 2007;18(6):478–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Fortunatus Chidolue Ezebuo
    • 1
  • Prem P. Kushwaha
    • 2
  • Atul K. Singh
    • 2
  • Shashank Kumar
    • 2
  • Pushpendra Singh
    • 3
  1. 1.Department of Biochemistry, College of Natural and Applied SciencesChrisland UniversityAbeokutaNigeria
  2. 2.Department of Biochemistry and Microbial SciencesCentral University of PunjabBathindaIndia
  3. 3.Tumor Biology LaboratoryNational Institute of PathologyNew DelhiIndia

Personalised recommendations