Tandem Trimer Pyrrole-Imidazole Polyamide Probes Targeting 18 Base Pairs in Human Telomere Sequences

  • Yusuke KawamotoEmail author
Part of the Springer Theses book series (Springer Theses)


The binding of molecules to specific DNA sequences is important for imaging genome DNA and for studying gene expression. Increasing the number of base pairs targeted by these molecules would provide greater specificity. N-methylpyrrole–N-methylimidazole (Py–Im) polyamides are one type of such molecules and can bind to the minor groove of DNA in a sequence-specific manner without causing denaturation of DNA. Our recent work has demonstrated that tandem hairpin Py–Im polyamides conjugated with a fluorescent dye can be synthesized easily and can serve as new probes for studying human telomeres under mild conditions. Herein, to improve their selectivities to telomeres by targeting longer sequences, we designed and synthesized a fluorescent tandem trimer Py–Im polyamide probe, comprising three hairpins and two connecting regions (hinges). The new motif bound to 18 bp dsDNA in human telomeric repeats (TTAGGG)n, the longest sequence for specific binding reported for Py–Im polyamides. We compared the binding affinities and the abilities to discriminate mismatch, the UV–visible absorption and fluorescence spectra, and telomere staining in human cells between the tandem trimer and a previously developed tandem hairpin. We found that the tandem trimer Py–Im polyamide probe has higher ability to recognize telomeric repeats and stains telomeres in chemically fixed cells with lower background signal.


Pyrrole−imidazole polyamides Tandem trimer polyamides Solid-phase peptide synthesis Telomere Cellular imaging 


  1. 1.
    Blackburn EH (2010) Angew Chem Int Ed 49:7405–7421CrossRefGoogle Scholar
  2. 2.
    (a) Nandakumar J, Cech TR (2013) Nat Rev Mol Cell Biol 14:69–82. (b) Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Nat Chem 5:182–186. (c) Doksani Y, Wu JY, de Lange T, Zhuang X (2013) Cell 155:345–356Google Scholar
  3. 3.
    Zakian VA (2012) Exp Cell Res 318:1456–1460CrossRefGoogle Scholar
  4. 4.
    Smogorzewska A, de Lange T (2004) Annu Rev Biochem 73:177–208CrossRefGoogle Scholar
  5. 5.
    Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, de Lange T (2000) Mol Cell Biol 20:1659–1668CrossRefGoogle Scholar
  6. 6.
    (a) Boutorine AS, Novopashina DS, Krasheninina OA, Nozeret K, Venyaminova AG (2013) Molecules 18:15357–15397. (b) Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke H (1996) J Hum Mol Genet 5:685–691Google Scholar
  7. 7.
    (a) Trauger JW, Baird EE, Dervan PB (1996) Nature 382:559–561. (b) White S, Szewczyk JW, Turner JM, Baird EE, Dervan PB (1998) Nature 391:468–471. (c) Dervan PB (2001) Bioorg Med Chem 9:2215–2235. (d) Dervan PB, Edelson BS (2003) Curr Opin Struc Biol 13:284–299. (e) Dervan PB, Doss RM, Marques MA (2005) Curr Med Chem: Anti-Cancer Agents 5:373–387. (f) Blackledge MS, Melander C (2013) Bioorg Med Chem 21:6101–6114Google Scholar
  8. 8.
    (a) Herman DM, Baird EE, Dervan PB (1998) J Am Chem Soc 120:1382–1391. (b) Swalley SE, Eldon E, Baird EE, Dervan PB (1999) J Am Chem Soc 121:1113–1120Google Scholar
  9. 9.
    Wurtz NR, Turner JM, Baird EE, Dervan PB (2001) Org Lett 3:1201–1203CrossRefGoogle Scholar
  10. 10.
    (a) Trauger JW, Baird EE, Mrksich M, Dervan PB (1996) J Am Chem Soc 118:6160–6166. (b) Trauger JW, Baird EE, Dervan PB (1998) J Am Chem Soc 120:3534–3535Google Scholar
  11. 11.
    (a) Mrksich M, Parks ME, Dervan PB (1994) J Am Chem Soc 116:7983–7988. (b) de Clairac RPL, Geierstanger BH, Mrksich M, Dervan PB, Wemmer DE (1997) J Am Chem Soc 119:7909–7916Google Scholar
  12. 12.
    (a) Herman DM, Turner JM, Baird EE, Dervan PB (1999) J Am Chem Soc 121:1121–1129. (b) Chenoweth DM, Dervan PB (2010) J Am Chem Soc 132:14521–14529. (c) Morinaga H, Bando T, Takagaki T, Yamamoto H, Hashiya K, Sugiyama H (2011) J Am Chem Soc 133:18924–18930. (d) Li BC, Montgomery DC, Puckett JW, Dervan PB (2013) J Org Chem 78:124–133Google Scholar
  13. 13.
    (a) Bando T, Sugiyama H (2006) Acc Chem Res 39:935–944. (b) Xiao X, Yu P, Lim HS, Sikder D, Kodadek T (2007) Angew Chem Int Ed 46:2865–2868. (c) Jordan L, Meier JL, Yu AS, Korf I, Segal DJ, Dervan PB (2012) J Am Chem Soc 134:17814–17822. (d) Vaijayanthi T, Bando T, Pandian GN, Sugiyama H (2012) Chem BioChem 13:2170–2185. (e) Singh I, Wendeln C, Clark AW, Cooper JM, Ravoo BJ, Burley GA (2013) J Am Chem Soc 135:3449–3457. (f) Pandian GN, Taniguchi J, Junetha S, Sato S, Han L, Saha A, Anandhkumar C, Bando T, Nagase H, Vaijayanthi T, Taylor RD, Sugiyama H (2014) Sci Rep 4:3843Google Scholar
  14. 14.
    (a) Weyermann P, Dervan PB (2002) J Am Chem Soc 124:6872–6876. (b) Poulin-Kerstien AT, Dervan PB (2003) J Am Chem Soc 125:15811–15821. (c) Yamamoto M, Bando T, Morinaga H, Kawamoto Y, Hashiya K, Sugiyama H (2014) Chem Eur J 20:752–759Google Scholar
  15. 15.
    (a) Herman DM, Baird EE, Dervan PB (1999) Chem Eur J 5:975–983. (b) Kers I, Dervan PB (2002) Bioorg Med Chem 10:3339–3349. (c) Schaal TD, Mallet WG, McMinn DL, Nguyen NV, Sopko MM, John S, Parekh BS (2003) Nucleic Acids Res 31:1282–1291. (d) Sasaki S, Bando T, Minoshima M, Shinohara K, Sugiyama H (2008) Chem Eur J 14:864–870Google Scholar
  16. 16.
    Maeshima K, Janssen S, Laemmli UK (2001) EMBO J 20:3218–3228CrossRefGoogle Scholar
  17. 17.
    (a) Kawamoto Y, Bando T, Kamada F, Li Y, Hashiya K, Maeshima K, Sugiyama H (2013) J Am Chem Soc 135:16468–16477. (b) Hirata A, Nokihara K, Kawamoto Y, Bando T, Sasaki A, Ide S, Maeshima K, Kasama T, Sugiyama H (2014) J Am Chem Soc 136:11546–11554. (c) Yamamoto M, Bando T, Kawamoto Y, Taylor R, Hashiya K, Sugiyama H (2014) Bioconjugate Chem 25:552–559. (d) Taylor RD, Kawamoto Y, Hashiya K, Bando T, Sugiyama H ( 2014) Chem Asian J 9:2527–2533Google Scholar
  18. 18.
    Rucker VC, Dunn AR, Sharma S, Dervan PB, Gray HB (2004) J Phys Chem B 108:7490–7494CrossRefGoogle Scholar
  19. 19.
    Lacy ER, Le NM, Price CA, Lee M, Wilson WD (2002) J Am Chem Soc 124:2153–2163CrossRefGoogle Scholar
  20. 20.
    Minoshima M, Bando T, Sasaki S, Fujimoto J, Sugiyama H (2008) Nucleic Acids Res 36:2889–2894CrossRefGoogle Scholar
  21. 21.
    (a) Maeshima K, Laemmli UK (2003) Dev Cell 4:467–480. (b) Maeshima K, Yahata K, Sasaki Y, Nakatomi R, Tachibana T, Hashikawa T, Imamoto F, Imamoto N (2006) J Cell Sci 119:4442–4451Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations