Advertisement

Compact HTS Filter Design Based on Controllable Multimode Resonator

  • Haiwen LiuEmail author
  • Baoping Ren
  • Xuehui Guan
  • Pin Wen
  • Tao Zuo
Chapter

Abstract

In order to improve the filter compactness and simplify its basic structure, a lot of scholars in this field have proposed many efficient methods for filter design. In this respect, structures with flexibly controllable modes are favourable in multi-band or wideband design. Symmetry structures analyzed with even- and odd-mode method are widely used to achieve independent modes controllability. The most commonly used symmetry structure that using even-odd mode analysis is stub-loaded resonator (SLR).

References

  1. 1.
    J.Y. Lee, J.H. Cho, S.W. Yun, New compact bandpass filter using microstrip λ/4 resonators with open stub inverter. IEEE Microw. Guided Wave Lett. 10(12), 526–527 (2000)CrossRefGoogle Scholar
  2. 2.
    S. Amari, K. Hamed, Y. Antar, New elliptic microstrip lambda/4-resonator filters, in Asia-Pacific Microwave Conference (2001), pp. 755–758Google Scholar
  3. 3.
    L. Zhu, M. Menzel, Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator. IEEE Microw. Wirel. Compon. Lett. 13(1), 16–18 (2003)CrossRefGoogle Scholar
  4. 4.
    C. Liao, P. Chi, C. Chang, Microstrip realization of generalized Chebyshev filters with box-like coupling schemes. IEEE Trans. Microw. Theory Tech. 55(1), 147–153 (2007)CrossRefGoogle Scholar
  5. 5.
    X.Y. Zhang, J.X. Chen, Q. Xue, Dual-band bandpass filters using stub-loaded resonators. IEEE Microw. Wirel. Compon. Lett. 17(8), 583–585 (2007)CrossRefGoogle Scholar
  6. 6.
    M. Makimoto, S. Yamashita, Bandpass filter using parallel coupled stripline stepped impedance resonators. IEEE Trans. Microw. Theory Tech. 28(12), 1413–1417 (1980)CrossRefGoogle Scholar
  7. 7.
    M. Makimoto, S. Yamashita, Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators. IEEE Trans. Microw. Theory Tech. 45(7), 1078–1085 (1997)CrossRefGoogle Scholar
  8. 8.
    C.L. Hsu, C.W. Chang, J.T. Kuo, Design of dual-band microstrip rat race coupler with circuit miniaturization, in IEEE/MTT-S International Microwave Symposium (2007) pp. 177–180Google Scholar
  9. 9.
    J.T. Kuo, E. Shih, Microstrip impedance resonator bandpass filter with an extended optimal rejection bandwidth. IEEE Microw. Theory Tech. 51(5), 1554–1559 (2003)CrossRefGoogle Scholar
  10. 10.
    J.T. Kuo, C.Y. Tsai, Periodic stepped-impedance ring resonator (PSIRR) bandpass filter with a miniaturized area and desirable upper stopband characteristics. IEEE Microw. Theory Tech. 54(3), 1107–1112 (2006)CrossRefGoogle Scholar
  11. 11.
    L.M. Wang, C.H. Hsieh, C.C. Chang, Cross-coupled narrowband filter for the frequency range of 2.1 GHz using YBCO resonators with artificial magnetic pinning lattices. IEEE Trans. Appl. Supercond. 15(2), 1040–1043 (2005)CrossRefGoogle Scholar
  12. 12.
    A.L.C. Serrano, F.S. Correra, T.-P. Vuong, P. Ferrari, Synthesis methodology applied to a tunable patch filter with independent frequency and bandwidth control. IEEE Trans. Microw. Theory Tech. 60(3), 484–493 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Amari, U. Rosenberg, J. Bornemann, Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling. IEEE Trans. Microw. Theory Tech. 50(8), 1969–1978 (2002)CrossRefGoogle Scholar
  14. 14.
    S.B. Zhang, L. Zhu, Compact and high-selectivity microstrip bandpass filters using triple-/quad-mode stub-loaded resonators. IEEE Microw. Wirel. Compon. Lett. 21(10), 522–524 (2011)CrossRefGoogle Scholar
  15. 15.
    J.S. Hong, H. Shaman, Y.H. Chun, Dual-mode microstrip open-loop resonators and filters. IEEE Trans. Microw. Theory Tech. 55, 1764–1770 (2007)CrossRefGoogle Scholar
  16. 16.
    J.S. Hong, M.J. Lancaster, Microstrip Filter for RF/Microwave Applications (Chap. 8) (Wiley, New York, 2001)CrossRefGoogle Scholar
  17. 17.
    S. Amari, U. Rosenberg, J. Bornemann, Adaptive synthesis and design of resonator filters with source/load-multiresonator coupling. IEEE Trans. Microw. Theory Tech. 50, 1969–1978 (2002)CrossRefGoogle Scholar
  18. 18.
    A.L.C. Serrano, F.S. Correra, T.P. Vuong, P. Ferrari, Synthesis methodology applied to a tunable patch filter with independent frequency and bandwidth control. IEEE Trans. Microw. Theory Tech. 60, 484–493 (2012)CrossRefGoogle Scholar
  19. 19.
    J.Y. Wu, W.H. Tu, Design of quad-band bandpass filter with multiple transmission zeros. Electron. Lett. 47, 502–503 (2011)CrossRefGoogle Scholar
  20. 20.
    C.-F. Chen, T.-Y. Huang, R.-B. Wu, Miniaturized microstrip quasi-elliptical bandpass filters using slotted resonators, in Proceedings of IEEE MTT-S International Microwave Symposium Digest (2006, June), pp. 1185–1188Google Scholar
  21. 21.
    L.M. Wang, S.M. Chiou, M.L. Chu et al., Cross-coupled YBCO filters with spurious suppression using tap-connection technique and skew-symmetric feeds. IEEE Trans. Appl. Supercond. 17(2), 894–897 (2007)CrossRefGoogle Scholar
  22. 22.
    J.S. Hong, H. Shaman, Y.H. Chun, Dual-mode microstrip openloop resonators and filters. IEEE Trans. Microw. Theory Techn. 55(8), 1765–1770 (2007)CrossRefGoogle Scholar
  23. 23.
    H.W. Liu, J.H. Lei, X.X. Guan, L. Sun, Y.S. He, Compact triple-band high-temperature superconducting filter using multimode stubloaded resonator for ISM, WiMAX, and WLAN applications. IEEE Trans. Appl. Supercond. 23(6) (2013). Art. no. 1502406Google Scholar
  24. 24.
    H.W. Liu, P. Wen, Y.L. Zhao, B.P. Ren, X.M. Wang, X.H. Guan, Dual-band superconducting bandpass filter using quadruple-mode resonator. IEEE Trans. Appl. Supercond. 24(2) (2014). Art. no. 4901204Google Scholar
  25. 25.
    H. Ishii, T. Kimura, N. Kobayashi, Z.W. Ma, S. Ohshima, Development of UWB HTS bandpass filters with microstrip stubs-loaded three-mode resonator. IEEE Trans. Appl. Supercond. 23(3) (2013, June). Art. no. 1500204Google Scholar
  26. 26.
    L.-M. Wang, M.-C. Chang, S.-F. Li, J.-W. Liou, C.-Y. Shiau, C.-I.G. Hsu, C.H. Lee, Quarter-wavelength stepped-impedance YBCO resonators for miniaturized dual-band high-Tc superconducting filters. IEEE Trans. Appl. Supercond. 19(3), 895–898 (2009)CrossRefGoogle Scholar
  27. 27.
    C.-I.G. Hsu, L.-M. Wang, L.-S. Chen, C.-H. Lee, Crosscoupled YBCO BPFs with wide upper stopband using quarter-wavelength stepped-impedance resonators. Chin. J. Phys. 45(2), 273–280 (2007)Google Scholar
  28. 28.
    S.-Z. Li, J.-D. Huang, Q.-D. Meng, L. Sun, Q. Zhang, F. Li, A.-S. He, X.-Q. Zhang, C.-G. Li, H. Li, Y.-S. He, A 12-pole narrowband highly selective high-temperature superconducting filter for the application in the third-generation wireless communications. IEEE Trans. Microw. Theory Tech. 55(4), 754–759 (2007)CrossRefGoogle Scholar
  29. 29.
    J.-B. Thomas, Cross-coupling in coaxial cavity filters—a tutorial overview. IEEE Trans. Microw. Theory Tech. 51(4), 1368–1376 (2003)CrossRefGoogle Scholar
  30. 30.
    R.-J. Pratap, D. Staiculescu, S. Pinel, J. Laskar, G.-S. May, Modeling and sensitivity analysis of circuit parameters for flip-chip interconnects using neural network. IEEE Trans. Adv. Packag. 28(1), 71–78 (2005)CrossRefGoogle Scholar
  31. 31.
    Y.C. Chang, C.H. Kao, M.H. Weng, R.Y. Yang, Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN applications. IEEE Microw. Wireless. Compon. Lett. 19(12), 780–782 (2009)CrossRefGoogle Scholar
  32. 32.
    C.H. Kim, K. Chang, Independently controllable dual-band bandpass filters using asymmetric stepped-impedance resonators. IEEE Trans. Microw. Theory Tech. 59(12), 3037–3047 (2011)CrossRefGoogle Scholar
  33. 33.
    W.Y. Chen, M.H. Weng, S.J. Chang, H. Kuan, Y.H. Su, A new tri-band bandpass filter for GSM, WIMAX and ultra-wideband responses by using asymmetric stepped impedance resonators. Prog. Electromagn. Res. 124, 365–381 (2012)CrossRefGoogle Scholar
  34. 34.
    H.W. Wu, R.Y. Yang, A new quad-band bandpass filter using asymmetric stepped impedance resonators. IEEE Microw. Wirel. Compon. Lett. 21(4), 203–205 (2011)CrossRefGoogle Scholar
  35. 35.
    C.H. Kim, K. Chang, Wide-stopband bandpass filters using asymmetric stepped-impedance resonators. IEEE Microw. Wirel. Compon. Lett. 23(2), 69–71 (2013)CrossRefGoogle Scholar
  36. 36.
    J.S. Hong, M.J. Lancaster, Microstrip Filters for RF/Microwave Applications (Wiley, New York, 2001)CrossRefGoogle Scholar
  37. 37.
    Y.C. Chang, C.H. Kao, M.H. Weng, R.Y. Yang, Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband. IEEE Microw. Wirel. Compon. Lett. 18(12), 770–772 (2008)CrossRefGoogle Scholar
  38. 38.
    EM User’s Manual, Version 11.25, Sonnet Software, Inc. (2002)Google Scholar
  39. 39.
    S.C. Weng, K.W. Hsu, W.H. Tu, Switchable and high-isolation diplexer with wide stopband. IEEE Microw. Wirel. Compon. Lett. 24(6), 373–375 (2014)CrossRefGoogle Scholar
  40. 40.
    J.T. Kuo, S.P. Chen, M. Jiang, parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses. IEEE Microw. Wirel. Compon. Lett. 13(10), 440–442 (2003)CrossRefGoogle Scholar
  41. 41.
    X. Lai, C.-H. Liang, H. Di, B. Wu, Design of tri-band filter based on stub loaded resonator and DGS resonator. IEEE Microw. Wirel. Compon. Lett. 20(5), 265–267 (2010)CrossRefGoogle Scholar
  42. 42.
    C.M. Tsai, S.Y. Lee, C.C. Tsai, Performance of a planar filter using a 0 feed structure. IEEE Trans. Microw. Theory Techn. 50(10), 2362–2367 (2002)CrossRefGoogle Scholar
  43. 43.
    X.L. Lu, B. Wei, B.S. Cao, X.B. Guo, X.P. Zhang, X.K. Song, Y. Heng, Z. Xu, Design of a high-order dual-band superconducting filter with controllable frequencies and bandwidths. IEEE Trans. Appl. Supercond. 24(2), 1500205 (2014)Google Scholar
  44. 44.
    H.W. Liu, B.P. Ren, X.H. Guan, P. Wen, Y. Wang, Quad-band high-temperature superconducting bandpass filter using quadruple- mode square ring loaded resonator. IEEE Trans. Microw. Theory Tech. 62(12), 2931–2941 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Li, S.S. Huang, J.Z. Zhao, Design of a compact and high selectivity tri-band bandpass filter using asymmetric stepped impedance resonators. Prog. Electromagn. Lett. 44, 81–86 (2014)CrossRefGoogle Scholar
  46. 46.
    C.Y. Hsu, C.Y. Chen, H.R. Chuang, Microstrip dual-band bandpass filter design with closely specified passbands. IEEE Trans. Microw. Theory Tech. 61(1), 98–106 (2013)CrossRefGoogle Scholar
  47. 47.
    Q. Liu, Y. Liu, J. Shen, S. Li, C. Yu, Y. Lu, Wideband single-layer 90 phase shifter using stepped impedance open stub and coupled-line with weak coupling. IEEE Microw. Wirel. Compon. Lett. 24(3), 176–178 (2014)CrossRefGoogle Scholar
  48. 48.
    A. Torabi, K. Forooraghi, Miniature harmonic-suppressed microstrip bandpass filter using a triple-mode stub-loaded resonator and spur lines. IEEE Microw. Wirel. Compon. Lett. 21(5), 255–257 (2011)CrossRefGoogle Scholar
  49. 49.
    W.H. Tu, K. Chang, Compact microstrip bandstop filter using open stub and spurline. IEEE Microw. Wirel. Compon. Lett. 15(4), 268–270 (2005)CrossRefGoogle Scholar
  50. 50.
    J. Ai, Y.H. Zhang, K.D. Xu, D.T. Li, Y. Fan, Miniaturized quint-band bandpass filter based on multi-mode resonator and λ/4 resonators with mixed electric and magnetic coupling. IEEE Microw. Wirel. Compon. Lett. 26(5), 343–345 (2016)CrossRefGoogle Scholar
  51. 51.
    S.B. Zhang, L. Zhu, Synthesis design of dual-band bandpass filters with λ/4 stepped-impedance resonators. IEEE Trans. Microw. Theory Tech. 61(5), 1812–1819 (2013)CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Haiwen Liu
    • 1
    Email author
  • Baoping Ren
    • 2
  • Xuehui Guan
    • 3
  • Pin Wen
    • 4
  • Tao Zuo
    • 5
  1. 1.Xi’an Jiaotong UniversityXi’anChina
  2. 2.East China Jiaotong UniversityNanchangChina
  3. 3.East China Jiaotong UniversityNanchangChina
  4. 4.East China Jiaotong UniversityNanchangChina
  5. 5.China Electronics Technology Group CorporationHefeiChina

Personalised recommendations