Advertisement

Soft Actuators pp 455-502 | Cite as

IPMC Actuation Mechanisms and Multi-physical Modeling

  • Zicai ZhuEmail author
  • Hualing Chen
  • Longfei Chang
Chapter

Abstract

This chapter mainly introduces physical deformation theory of IPMC actuator. At first a series of comparative experiments focused on water content and polymer backbones of IPMC were designed and performed to disclose the actuation mechanisms of relaxation and slow anode deformation. Then a multi-physical model was set up which emphasized on water-related transport process and various eigen stresses. Through numerical analysis, inter-coupling between cation and water, pressure and hydration effects were investigated on the transport process. And in contrast to hydrostatic pressure, osmotic pressure and electrostatic stress and their properties with cation and water concentrations were analyzed to explain IPMC deformation evolvement with water content. Finally, model simplification was discussed for deformation prediction in engineering application.

Keywords

IPMC Relaxation deformation Electrical transport Eigen stress Continuum micromechanics 

Supplementary material

Video 28.1

IPMC shows a large negative relaxation (AVI 120604 kb)

Video 28.2

IPMC shows a zero relaxation (AVI 120604 kb)

Video 28.3

IPMC shows a positive relaxation (AVI 120604 kb)

Video 28.4

IPMC shows no relaxation (AVI 120604 kb)

References

  1. 1.
    Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles – a review. Smart MaterStruct 7(6):R15–R30CrossRefGoogle Scholar
  2. 2.
    Shahinpoor M, Kim KJ (2001) Ionic polymer-metal composites: I. Fundamentals. Smart Mater Struct 10(4):819–833CrossRefGoogle Scholar
  3. 3.
    Bar-Cohen Y, Leary S, Yavrouian A, Oguro K, Tadokoro S, Harrison J, Smith J, Su J (2000) Challenges to the application of IPMC as actuators of planetary mechanisms. Proc SPIE 3987:140–146CrossRefGoogle Scholar
  4. 4.
    Shahinpoor M, Kim KJ (2005) Ionic polymer–metal composites: IV. Industrial and medical applications. Smart Mater Struct 14(1):197–214CrossRefGoogle Scholar
  5. 5.
    Mirfakhrai T, Madden JDW, Baughman RH (2007) Polymer artificial muscles. Mater Today 10(4):30–38CrossRefGoogle Scholar
  6. 6.
    Calvert P (2009) Hydrogels for soft machines. Adv Mater 21(7):743–756CrossRefGoogle Scholar
  7. 7.
    Zhu Z, Asaka K, Chang L, Takagi K, Chen H (2013) Physical interpretation of deformation evolvement with water content of ionic polymer-metal composite actuator. J Appl Phys 114(18):184902CrossRefGoogle Scholar
  8. 8.
    Li JY, Nemat-Nasser S (2000) Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane. Mech Mater 32(5):303–314CrossRefGoogle Scholar
  9. 9.
    Nemat-Nasser S (2002) Micromechanics of actuation of ionic polymer-metal composites. J Appl Phys 92(5):2899–2915CrossRefGoogle Scholar
  10. 10.
    Gennes PG d, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518CrossRefGoogle Scholar
  11. 11.
    Tadokoro S, Yamagami S, Takamori T, Oguro K (2000) Modeling of Nafion-Pt composite actuators (ICPF) by ionic motion. Proc SPIE 3987:92–102CrossRefGoogle Scholar
  12. 12.
    Asaka K, Oguro K (2000) Bending of polyelectrolyte membrane platinum composites by electric stimuli: part II. Response kinetics. J Electroanal Chem 480(1–2):186–198CrossRefGoogle Scholar
  13. 13.
    Yamaue T, Mukai H, Asaka K, Doi M (2005) Electrostress diffusion coupling model for polyelectrolyte gels. Macromolecules 38(4):1349–1356CrossRefGoogle Scholar
  14. 14.
    Enikov ET, Seo GS (2005) Analysis of water and proton fluxes in ion-exchange polymer–metal composite (IPMC) actuators subjected to large external potentials. Sens Actuators A 122(2):264–272CrossRefGoogle Scholar
  15. 15.
    Zhu Z, Chang L, Asaka K, Wang Y, Chen H, Zhao H, Li D (2014) Comparative experimental investigation on the actuation mechanisms of ionic polymer–metal composites with different backbones and water contents. J Appl Phys 115(12):124903CrossRefGoogle Scholar
  16. 16.
    Chang L, Chen H, Zhu Z, Li B (2012) Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite. Smart Mater Struct 21(6):065018CrossRefGoogle Scholar
  17. 17.
    Zhu Z, Chen H, Wang Y, Luo B, Chang L, Li B (2011) NMR study on the mechanisms of ionic polymer-metal composites deformation with water content. Europhys Lett 96:27005CrossRefGoogle Scholar
  18. 18.
    Okada T, Xie G, Gorseth O, Kjelstrup S, Nakamura N, Arimura T (1998) Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim Acta 43(24):3741–3747CrossRefGoogle Scholar
  19. 19.
    Zhu Z, Chen H, Chang L, Li B (2011) Dynamic model of ion and water transport in ionic polymer-metal composites. AIP Adv 1(4):040702CrossRefGoogle Scholar
  20. 20.
    See supplementary material at  https://doi.org/10.1063/1.4818412 for the details of the equivalent blocking stress (Part A), the electrostatic stress(Part B), the equation simplification (Part C) and the dynamic transport process of the cation and water (Part D)CrossRefGoogle Scholar
  21. 21.
    Wallmersperger T, Akle BJ, Leo DJ, Kroplin B (2008) Electrochemical response in ionic polymer transducers: an experimental and theoretical study. Compos Sci Technol 68(5):1173–1180CrossRefGoogle Scholar
  22. 22.
    Pugal D, Kim KJ, Aabloo A (2011) An explicit physics-based model of ionic polymer-metal composite actuators. J Appl Phys 110(8):084904CrossRefGoogle Scholar
  23. 23.
    Zhu Z, Asaka K, Chang L, Takagi K (2013) Multiphysics of ionic polymer–metal composite actuator. J Appl Phys 114:084902CrossRefGoogle Scholar
  24. 24.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  25. 25.
    Gong Y, Tang C-y, Tsui C-p, Fan J (2009) Modelling of ionic polymer–metal composites by a multi-field finite element method. Int J Mech Sci 51:741–751CrossRefGoogle Scholar
  26. 26.
    Toi Y, Kang SS (2005) Finite element analysis of two-dimensional electrochemical–mechanical response of ionic conducting polymer–metal composite beams. Comput Struct 83(31–32):2573–2583CrossRefGoogle Scholar
  27. 27.
    Park JK, Jones PJ, Sahagun C, Page KA, Hussey DS, Jacobson DL, Morgan SE, Moore RB (2010) Electrically stimulated gradients in water and counterion concentrations within electroactive polymer actuators. Soft Matter 6(7):1444–1452CrossRefGoogle Scholar
  28. 28.
    Porfiri M (2009) Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Phys Rev E 79(4):041503CrossRefGoogle Scholar
  29. 29.
    Choi P, Datta R (2003) Sorption in proton-exchange membranes an explanation of Schroeder’s paradox. J Electrochem Soc 150(12):E601–E607CrossRefGoogle Scholar
  30. 30.
    Evans CE, Noble RD, Nazeri-Thompson S, Nazeri B, Koval CA (2006) Role of conditioning on water uptake and hydraulic permeability of Nafion® membranes. J Membr Sci 279(1–2):521–528CrossRefGoogle Scholar
  31. 31.
    Salehpoor K, Shahinpoor M, Razani A (1998) Role of ion transport in actuation of ionic polymeric-platinum composite (IPMC) artificial muscles. SPIE Smart Struct Mater 3330:50–58Google Scholar
  32. 32.
    Bonomo C, Fortuna L, Giannone P, Graziani S (2006) A circuit to model the electrical behavior of an ionic polymer-metal composite. IEEE TransCircuits Syst I 53(2):338–350CrossRefGoogle Scholar
  33. 33.
    Asaka K, Nakabo Y, Mukai T, Luo ZW (2003). In Sice Annual Conference (2003), vol. 1–3, pp 1666–1669Google Scholar
  34. 34.
    Zhu Z, Wang Y, Liu Y, Asaka K, Sun X, Chang L, Lu P (2016) Application-oriented simplification of actuation mechanism and physical model for ionic polymer-metal composites. J Appl Phys 120:034901CrossRefGoogle Scholar
  35. 35.
    Pugal D, Kim KJ, Punning A, Kasemagi H, Kruusmaa M, Aabloo A (2008) A self-oscillating ionic polymer-metal composite bending actuator. J Appl Phys 103:084908CrossRefGoogle Scholar
  36. 36.
    Wallmersperger T, Leo DJ, Kothera CS (2007) Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J Appl Phys 101:024912CrossRefGoogle Scholar
  37. 37.
    Zhu Z, Chang L, Takagi K, Wang Y, Chen H, Li D (2014) Water content criterion for relaxation deformation of Nafion based ionic polymer metal composites doped with alkali cations. Appl Phys Lett 105(5):054103CrossRefGoogle Scholar
  38. 38.
    Wang Y, Chen H, Wang Y, Zhu Z, Li D (2014) Effect of dehydration on the mechanical and physicochemical properties of gold- and palladium-Ionomeric Polymer-Metal Composite (IPMC) actuators. Electrochim Acta 129:450–458CrossRefGoogle Scholar
  39. 39.
    Zhu Z, Horiuchi T, Kruusamae K, Chang L, Asaka K (2016) Influence of ambient humidity on the voltage response of ionic polymer–metal composite sensor. J Phys Chem B 120:3215–3225CrossRefGoogle Scholar
  40. 40.
    Zhao H (2011) Diffuse-charge dynamics of ionic liquids in electrochemical systems. Phys Rev E 84:051504CrossRefGoogle Scholar
  41. 41.
    Pugal D, Solin P, Aabloo A, Kim KJ (2013) IPMC mechanoelectrical transduction: its scalability and optimization. Smart Mater Struct 22:125029CrossRefGoogle Scholar
  42. 42.
    Fotsing YK, Tan X (2012) Bias-dependent impedance model for ionic polymer-metal composites. J Appl Phys 111:124907CrossRefGoogle Scholar
  43. 43.
    Farinholt KM, Leo DJ (2008) Modeling the electrical impedance response of ionic polymer transducers. J Appl Phys 104:014512CrossRefGoogle Scholar
  44. 44.
    Chang L, Asaka K, Zhu Z, Wang Y, Chen H, Li D (2014) Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite. J Appl Phys 115(24):244901CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shaanxi Key Lab of Intelligent Robots, School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Institute of Industry and Equipment TechnologyHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations