Radioecology and Substance Interaction with Nature

  • Arnab Banerjee
  • Manoj Kumar Jhariya
  • Dhiraj Kumar Yadav
  • Abhishek Raj
  • Ram Swaroop Meena


Radioactive substances have their origin since the inception of earth. The warming of earth surface still takes place through radioactive disintegration of radionuclides (Rn). Rn may often pose danger to human civilization due to their environmental fate. Proper knowledge regarding the origin, distribution, exposure and impact of radioactive substances has become the need of the hour in the form of radioecology. Among the 340 atoms of different naturally occurring nuclides, 70 species are radioactive substances. These substances are found throughout the environment including the human body. Human and other living organisms are often exposed to various levels of Rn through background concentration as well as through artificial radioactivity. It was observed that the growth of science and technology has made living organisms more vulnerable towards environmental radioactivity. Various historic events have taken place which created the urgency to have knowledge in radioecology. After the incidence of Chernobyl in 1986, an area of more than 4500 km2 was contaminated through various Rn. The impact of Rn was visualized at various levels and types of ecosystem as revealed from the Fukushima and Chernobyl disaster incidence. Hazards of radiation have necessitated to generate a baseline data of radioecological impacts on ecosystem. As per Spiers radium-226 is the most prevalent radioactive particle, and its value was 2.6–2.7, 0.2–0.3, 0.8–1.6, 1.3–1.7, 2.4–3.3, 0.8, 3.1–3.7, 0.9 and 0.6–0.9 picocuries per kilogram in various food commodities such as bread, milk, potato (Solanum tuberosum), vegetables, root vegetables, rice (Oryza sativa), eggs, fish and fresh meat. Originally, mobilization of Rn along with their impacts on various components of the environment becomes the central theme of radioecological studies. For safety and risk reduction, proper management of natural and artificial radioactivity is the essential prerequisite. For effective management, data should be procured through field-level studies as was revealed from Fukushima and Chernobyl incidents. Policy formulation and strategy buildup are required to address the issues of radiation hazards, and their adaptive measures through reducing the risk of exposure and overall public awareness are the most important aspect. Future research should be promoted in order to propagate the knowledge built within radioecological perspectives.


Food chain Radionuclides Radioecology Trophic level 







Concentration factor


Deoxyribonucleic acid




Nuclear power plant


Office de protection contre les rayonnements ionisants








Transfer factor


  1. Aarkrog A (1975) Radionuclide levels in mature grain related to radiostrontium content and time of direct contamination. Health Phys 28:557–562CrossRefPubMedGoogle Scholar
  2. Albert C, Marshall (2005) An analysis of uranium dispersal and health effects using a Gulf War Case Study. Sandia Report.
  3. Alirezazadeh N, Garshasbi H (2003) A survey of natural uranium concentrations in drinking water supplies in Iran. Iranian J Radiat Res 1(3):139–142Google Scholar
  4. Al-Masri MS, Mamish S, Budier Y (2003) Radionuclides and trace metals in eastern Mediterranean sea algae. J Environ Radioact 67:157–168CrossRefPubMedGoogle Scholar
  5. Andolina J, Guillitte O (1990) Radiocesium availability and retention sites in forest humus. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 135–142Google Scholar
  6. Anspaugh LR, Shinn JH, Phelps PL, Kennedy NC (1975) Resuspension and redistribution of plutonium in soils. Health Phys 29:571–582CrossRefPubMedGoogle Scholar
  7. Apsimon HM, Barker BM, Kayin S, Wilson JN (1992) Characterizing cloud processes and wet deposition in long-range transport models. In: Air pollution modeling and its applications. Plenum Press, New YorkGoogle Scholar
  8. Bachhuber H, Bunzl K, Schimmack W (1982) Spatial variability of fallout 137 Cs in the soil of a cultivated field. Environ Monit Assess 8:93–101CrossRefGoogle Scholar
  9. Banerjee A, Jhariya MK, Yadav DK, Raj A (2018) Micro-remediation of metals: a new frontier in bioremediation. In: Hussain C (ed) Handbook of environmental materials management. Springer, ISBN: 978-3-319-58538-3. Google Scholar
  10. Bansal V, Tyagi RK, Prasad R (1988) Determination of uranium concentration in domestic water samples by fission track method. J Radioanalyt Nucl Chem 125(2):439–443CrossRefGoogle Scholar
  11. Bergman R, Nylén T, Palo T, Lidström K (1991) The behaviour of radioactive caesium in a Boreal forest ecosystem. In: Moberg J (ed) The Chernobyl fallout in Sweden, Results from a research programme on environmental radiology. The Swedish Radiation Protection Project. Arprint, Lund/Stockholm, pp 425–456Google Scholar
  12. Bhardwaj R, van der Meer A, Das SK, de Bruin M, Gascon J, Wolterbeek HT, Serra-Crespo P (2017) Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects. Sci Rep 7:44242. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Block J, Pimpl M (1990) Cycling of radiocesium in two forest ecosystems in the state of Rhineland-Palatinate. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, p 450458Google Scholar
  14. Boikat U, Fink A, Black-Neuhaus J (1985) Cesium and Cobalt transfer from soil to vegetation on permanent pastures. Radiat Environ Biophys 24:287–301CrossRefPubMedGoogle Scholar
  15. Bolognini G, Nimis PL (1995) Un problema metodologico in radioecologia: l’ espressione della radiocontaminazione in piante vascolari. Atti XXVIII Congr. AIRP, Palermo, pp 415–422Google Scholar
  16. Bonnett PJP (1990) A review of the erosional behavior of radio nuclides in selected drainage basins. J Environ Radioact 11:251–266CrossRefGoogle Scholar
  17. Bossew P, Lettner H, Hubmer A, Erlinger C, Gastberger M (2007) Activity ratios of 137cs, 90sr and 239+240pu in environmental samples. J Environ Radioact 97:5–19CrossRefPubMedGoogle Scholar
  18. Bruckmann A, Wolters V (1994) Microbial immobilization and recycling of 137 Cs in the organic layers of forest ecosystems: relationship to environmental conditions, humification and invertebrate activity. Sci Total Environ 157:249–256CrossRefGoogle Scholar
  19. Bunzl K, Schimmack W, Kreutzer K, Schierl R (1989a) The migration of fallout 134 Cs, 137 Cs and 106 Ru from Chernobyl and of 137 Cs from weapons testing in a forest soil. Z Pflanzennähr Bodenk 152:39–44CrossRefGoogle Scholar
  20. Bunzl K, Schimmack W, Kreutzer K, Schierl R (1989b) Interception and retention of Chernobyl USSR-derived Cesium-134, Cesium-137 and Ruthenium 106 in a spruce stand. Sci Total Environ 78:77–78CrossRefPubMedGoogle Scholar
  21. Burris JE, Bailar JC III, Beck HL, Bouville A, Corso PS, Culligan PJ, Deluca PM Jr, Guilmette RA, Hornberger GM, Karagas M, Kasperson R, Klaunig JE, Mousseau T, Murphy SB, Shore RE, Stram DO, Tirmarche M, Waller L, Woloschak GE, Wong JJ (2012) Analysis of cancer risks in population near nuclear facilities: phase I. National Academies Press, Washington, DCGoogle Scholar
  22. Campbell JA (1983) Geochemical ocean sections study. In: Riley JP, Chesters R (eds) Chemical oceanography, vol 8. Academic, London, p 134Google Scholar
  23. Caput C, Camus H, Belot Y (1990) Observations on the behaviour of radiocesium in permanent pastures after the Chernobyl accident. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 283–291Google Scholar
  24. Chamberlin AC (1955) Aspects of travel and deposition of aerosols and vapour clouds. Atomic Energy Research Establishment, Harwell, England HP/R 1261Google Scholar
  25. Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733–1740CrossRefGoogle Scholar
  26. Cheng Y, Kiess AP, Herman JM, Pomper MG, Meltzer SJ, Abraham JM (2015) Phosphorus-32, a clinically available drug, inhibits cancer growth by inducing DNA double-strand breakage. PLoS One 10(6):e0128152. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chhabra AS (1966) Radium 226 in food and man in Bombay and Kerala State (India). Br J Radiol 39(458):141–146CrossRefGoogle Scholar
  28. Chino M, Nakayama H, Nagai H, Terada H, Katata G, Yamazawa H (2011) Preliminary estimation of release amounts of 131i and 137cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere. J Nucl Sci Technol 48:1129–1134CrossRefGoogle Scholar
  29. Clint G, Harrison A, Howard D (1990) The release of caesium137 from plant litters and the effects of microbial activity on this process. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides In natural and semi-natural environments. Elsevier, London/New York, pp 275–282Google Scholar
  30. Colgan PA, McGee EJ, Pearce J, Cruickshank JG, Mulvany NE, McAdam JH, Moss BW (1990) Behaviour of radiocaesium in organic soils – some preliminary results on soil-to-plant transfers from a semi-natural ecosystem in Ireland. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 341–354Google Scholar
  31. Coughtrey PJ, Kirton JA, Mitchell NG (1990) Caesium distribution and cycling in upland pastures of N. Wales and Cumbria. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 259–266Google Scholar
  32. Cox H, Hames M, Benrashid M (2015) Radium-223 for the management of bone metastases in castration-resistant prostate cancer. J Adv Pract Oncol 6(6):565–570PubMedPubMedCentralGoogle Scholar
  33. Cummings SL, Bankert L, Garret AR, Regnier JE (1969) Cs137 uptake by oat plants as related to the soil fixing capacity. Health Phys 17:145–148CrossRefPubMedGoogle Scholar
  34. D’Souza TJ, Fagniart E, Kirchmann R (1980) Effects of clay mineral type and organic matter on the uptake of radiocesium by pasture plants. Studiecentrum voor Kernenergie, BLG 538Google Scholar
  35. Dash A, Pillai MRA, Knapp FF (2015) Production of 177Lu for targeted radionuclide therapy: available options. Nucl Med Mol Imag 49(2):85–107. CrossRefGoogle Scholar
  36. Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017) Multi-function role as nutrient and scavenger off free radical in soil. Sustain MDPI (9):402. CrossRefGoogle Scholar
  37. Deutscher Wetterdienst (2011) Deutscherwetterdienst Zu Den Folgen Der Fukushima- Katastrophe Wetter Sorgt Fur Starke Verdunnung Der Radioaktiven Konzentration.
  38. Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594Google Scholar
  39. Dighton J, Boddy L (1989) Role of fungi in nitrogen, phosphorus and sulphur cycling in temperate forest ecosystems. In: Boddy L, Marchant R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 268–298Google Scholar
  40. Directorate of Radiological Protection and Human Health (2011) IRSN Report: Assessment on the 66th day of projected external doses for population living in the northwest fallout Zone of the Fukushima nuclear accident Report Drph/2011-10Google Scholar
  41. Dlugosz-Lisiecka M, Bem H (2012) Determination of the mean aerosol residence times in the atmosphere and additional 210po input on the base of simultaneous determination of 7be, 22na, 210pb, 210bi and 210po in urban air. J Radioanalyt Nucl Chem 293:135–140CrossRefGoogle Scholar
  42. Duvernet F (1989) Prévoir la trajectoire d’un nuage pollué: un pari gagné. La Recherche 20(215):1406–1408Google Scholar
  43. Earl S, Snavely ES Jr (1989) Radionuclide’s in produced water. a literature review. Arlington, 266 pGoogle Scholar
  44. Eisenbud M (1987) Environmental radioactivity, 3rd edn. Academic Press, Inc., OrlandoGoogle Scholar
  45. Ellis RE (1965) An appraisal of the current fall-out levels and their biological significance. Phys Med Biol 10(2):153CrossRefGoogle Scholar
  46. Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) Measurement of soil contamination by radionuclides due to the mulative external dose estimation. J Environ Radioact 111:18–27CrossRefPubMedGoogle Scholar
  47. Eriksson A (1991) Recent studies on the interception and the retention of caesium by grass, barley and peas. In: Moberg J (ed) The Chernobyl fallout in Sweden. Results from a research programme on environmental radiology. The Swedish Radiation Protection Project. Arprint, Lund/Stockholm, pp 323–342Google Scholar
  48. Eriksson A, Rosen K (1991) Transfer of caesium to hay grass and grain crops after Chernobyl. In: Moberg J (ed) The Chernobyl fallout in Sweden. Results from a research programme on environmental radiology. The Swedish Radiation Protection Project. Arprint, Lund/Stockholm, pp 291–304Google Scholar
  49. Evangeliou N, Balkanski Y, Cozic A, Hao WM, Mouillot F, Thonicke K, Paugam R, Zibtsev S, Mousseau TA, Wang R, Poulter B, Petkov A, Yue C, Cadule P, Koffi B, Kaiser JW, Moller AP (2015) Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecol Monogr 85(1):49–72CrossRefGoogle Scholar
  50. Evangeliou NS, Zibtsev V, Myroniuk M, Zhurba T, Hamburger A, Stohl Y, Balkanski R, Paugam, Mousseau TA, Moller AP, Kireev SI (2016) Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl nuclear power plant (CNPP) in 2015: an impact assessment. Sci Rep 6.
  51. Fairlie I (2014) A hypothesis to explain childhood cancers near nuclear power plants. J Environ Radioact 133:10–17CrossRefPubMedGoogle Scholar
  52. Faw RE, Shultis JK (1993) Radiological assessment: sources and exposures. Prentice-Hall, Englewood CliffsGoogle Scholar
  53. Feige B, Jahnke S, Niemann L (1988) Tschernobyl belastet uns weiter. Essener Univ Berichte 2:8–14Google Scholar
  54. Fertl WJ (1979) Gamma ray spectral data assists in complex formation evaluation. Log Analyst XX:3–37Google Scholar
  55. Filipovic-Vincekovic N, Barisic D, Masic N, Lulic S (1991) Distribution of Fallout radionuclides through soil surface layer. J Radioanalyt Nucl Chem 148(1):53–62CrossRefGoogle Scholar
  56. Fisenne IM, Welford GA (1986) Natural U concentration in soft tissues and bone of New York City residents. Health Phys 50:739–746CrossRefPubMedGoogle Scholar
  57. Fraiture A (1992) Introduction to the radioecology of forest ecosystems and survey of radioactive contamination in food products from forests. Commiss Eur Comm Rad Prot Rep 57:1–103Google Scholar
  58. Franic Z, Bauman A (1993) Radioactive contamination of the Adriatic Sea by 90sr and 137cs. Health Physiol 64:162–169CrossRefGoogle Scholar
  59. Franic Z, Petrinec B (2006) Marine radioecology and waste management in the Adriatic. Arch Ind Hyg Toxicol 57:347–352Google Scholar
  60. Frissel MJ, Noordijk H, van Bergejik KE (1990) The impact of extreme environmental conditions, as occurring in natural ecosystems, on the soil-to-plant transfer of radionuclides. Elsevier, London/New York, pp 40–47Google Scholar
  61. Gaare E (1987) The Chernobyl accident: can lichens be used to characterize a radiocesium contaminated range? Rangifer 7:46–50CrossRefGoogle Scholar
  62. Gallicchio R, Giacomobono S, Nardelli A, Pellegrino T, Simeon V, Gattozzi D, Maddalena F, Mainenti P, Storto G (2014) Palliative treatment of bone metastases with samarium-153 EDTMP at onset of pain. J Bone Miner Metab 32(4):434–440CrossRefPubMedGoogle Scholar
  63. Garb P (1995) Global Peace and Conflict Studies. University of California, Irvine, personal communication, July 26, 1995Google Scholar
  64. Garland JA, Pattenden NJ (1990) Resuspension and the Chernobyl accident. A preliminary review. Validation of Model predictions (VAMP) Joint Meeting. Dec. 1989. ViennaGoogle Scholar
  65. Garnier-Laplace J, Geras’kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton TG, Real A, Oudalova A (2013) Are radio sensitivity data derived from natural field conditions consistent with data from controlled exposures- a case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact 121:12–21CrossRefPubMedGoogle Scholar
  66. Gebauer G, Taylor AFS (1999) 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization. New Phytol 142:93–101CrossRefGoogle Scholar
  67. Gilbert ES, Sokolnikov ME, Preston DL, Schonfeld SJ, Schadilov AE, Vasilenko EK, Koshurnikova NA (2013) Lung cancer risks from plutonium: an updated analysis of data from the Mayak Worker Cohort. Radiat Res 179(3):332–342CrossRefPubMedPubMedCentralGoogle Scholar
  68. Giovani C, Bolognini G, Nimis PL (1994) Bryophytes as indicators of radioactive deposition in northeastern Italy. Sci Total Environ 157:35–43CrossRefGoogle Scholar
  69. Goldsmith SJ (2017) Radioactive iodine therapy of differentiated thyroid carcinoma: redesigning the paradigm. Mol Imag Radiol Ther 26(Suppl 1):74–79. CrossRefGoogle Scholar
  70. Grabowski P, Dgligo ZM, Szajerski P, Bem H (2010) A comparison of selected natural radionuclide concentrations in the thermal groundwater MsZcZonow and Cieplice with deep well water from LodZ city, Poland. Nucleonika 55:181–185Google Scholar
  71. Guillitte O, Koziol M, Debauche A, Andolina J (1990) Plantcover influence on the spatial distribution of radiocaesium deposits in forest ecosystems. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 441–449Google Scholar
  72. Guillitte O, Melin J, Wallberg L (1994) Biological pathways of radionuclides originating from the Chernobyl fallout in a Boreal forest ecosystem. Sci Total Environ 157:207–215CrossRefPubMedGoogle Scholar
  73. Gupta N, Devgan A, Bansal I, Olsavsky TD, Li S, Abdelbaki A, Kumar Y (2017) Usefulness of radium-223 in patients with bone metastases. Proceedings (Baylor University. Medical Center 30(4):424–426CrossRefPubMedGoogle Scholar
  74. Hanson WC, Eberhardt LL (1971) Cycling and compartimentalizing of radionuclides in northern Alaskan lichen communities. SAEC, COO-2122-5. Memorial Institute of Pacific Northwest Laboratory, Ecos. Department, Battelle, Richland, Washington, DCGoogle Scholar
  75. Harb S, Abbady A, El-Kamel AH, Abd El-Mageed AI, Rashed W (2009) Concentration of U-238, U-235, Ra-226, Th-232 And K- 40 for some granite samples in Eastern Desert of Egypt. In: Proceedings of the third environmental physics conference (EPC-2008), 335 pGoogle Scholar
  76. Hedger JN (1986) Suillus luteus on the Equator. Bull Br Mycol Soc 20:53–54CrossRefGoogle Scholar
  77. Henrich E, Friedrich M, Haider W, Kienzl K, Hiesel E, Bioisits A, Hekerle G (1990) The contamination of large Austrian forest systems after the Chernobyl nuclear reactor accident: studies 1988 and further. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 217–225Google Scholar
  78. Hirose K, Igarashi Y, Aoyama M (2008) Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan. Appl Radiat Isot 66:1675–1678CrossRefPubMedGoogle Scholar
  79. Hobson KA, Wassenaar LI, Mila B, Lovette I, Dingle C, Smith TB (2003) Stable isotopes as indicators of altitudinal distributions and movements in an Ecuadorean hummingbird community. Oecologia 136:302–308CrossRefPubMedGoogle Scholar
  80. Hoffman GR (1972) The accumulation of cesium-137 by cryptogams in a Liriodendron Tulipi fera forest. Bot Gaz 133:107–119CrossRefGoogle Scholar
  81. Hogberg P, Plamboeck AH, Taylor AFS, Fransson PMA (1999) Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proc Natl Acad Sci USA 96:8534–8539CrossRefPubMedGoogle Scholar
  82. Holleman DF, White RG, Luigk JR, Stephenson RO (1980) Energy flow through the lichen-caribou-wolf chain during winter in northern Alaska. In: Reimers E, Gaare E, Skjenneberg S (eds) Proceedings 2nd international Reindeer/Caribou symposium, 17–21 September 1979. Trondheim. Direktor. f. Vilt og Fersk Vannfisk, pp 202–206Google Scholar
  83. Horrill AD, Kennedy VH, Harwood TR (1990) The concentrations of Chernobyl-derived radionuclides in species characteristic of natural and semi-natural ecosystems. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 27–39Google Scholar
  84. Hviden T, Lillegraven A (1961) Cesium-137 and Strontium-90 in precipitation, soil and animals in Norway. Nature 192:1144CrossRefGoogle Scholar
  85. Ikaheimonen T, Outola I, Vartti VP, Kotilainen P (2009) Radioactivity in the Baltic Sea: inventories and temporal trends of 137cs and 90sr in water and sediments. J Radioanalyt Nucl Chem 282:419–425CrossRefGoogle Scholar
  86. International Atomic Energy Agency (IAEA) (1988) Assessing the impact of deep sea disposal of low level radioactive waste on living marine resources, Technical reports series no. 288. IAEA, ViennaGoogle Scholar
  87. International Atomic Energy Agency (IAEA) (1992) Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards, Technical reports series no 332. IAEA, ViennaGoogle Scholar
  88. International Atomic Energy Association (2001) Present and future environmental impact of the Chernobyl Accident. Study monitored by an International Advisory Committee under the Project Management of the Institut De Protection Et DeSuret ˆ e Nucl ´ eaire (Ipsn), France. IAEA, ViennaGoogle Scholar
  89. Ivens W, Lovblad G, Westling O, Kauppi P (1990) Throughfall monitoring as a means of monitoring deposition to forest ecosystems, evaluation of European Data. Nordic Counc Ministers Nord 120:1–72Google Scholar
  90. Iyengar MAR (1990) The natural distribution of radium. Environmental behavior of Radium, and Uptake of radium by marine animals, The environmental behaviour of Radium, Technical Reports Series No. 310, IAEA, ViennaGoogle Scholar
  91. Jacobi W, Andre Κ (1963) The vertical distribution of radon-222 and radon-220 and their decay products in the atmosphere. J Geophys Res 68:3799–3814CrossRefGoogle Scholar
  92. Japan Ministry of Land, Infrastructure, Transport and Tourism (2011) Soil map of Japan.
  93. Japanese Ministry of Education Culture Sports Science and Technology (2011) Environmental radiation database.
  94. Jasiulionis R, Rozkov A (2007) 137 Cs activity concentration in the ground level air in the Ignalina Npp Region. Lithuanian J Phys 47:195–202CrossRefGoogle Scholar
  95. Jasiulionis R, Rozkov A, Vycinas L (2006) Radionuclides in the ground level air and deposition in the Ignalina Npp Region During 2002–2005. Lithuanian J Phys 46:101–108CrossRefGoogle Scholar
  96. Jhariya MK (2017) Influences of forest fire on forest floor and litterfall dynamics in Bhoramdeo Wildlife Sanctuary (C.G.), India. J For Environ Sci 33(4):330–341Google Scholar
  97. Jhariya MK, Yadav DK (2018) Biomass and carbon storage pattern in natural and plantation forest ecosystem of Chhattisgarh, India. J For Environ Sci 34(1):1–11. CrossRefGoogle Scholar
  98. Jhariya MK, Yadav DK, Banerjee A (2018a) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. Daya Publishing House, A Division of Astral International Pvt. Ltd, New Delhi, pp 231–247. ISBN: 9789351248880Google Scholar
  99. Jhariya MK, Banerjee A, Yadav DK, Raj A (2018b) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, pp 315–345. ISBN 978-981-13-0253-4 (eBook), ISBN: 978-981-13-0252-7 (Hardcover). CrossRefGoogle Scholar
  100. Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ 13CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334CrossRefGoogle Scholar
  101. Jonsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low Earth orbit. Curr Biol 18(17):R729–R731. CrossRefGoogle Scholar
  102. Kerpen W (1988) Cs-137 sorption and desorption in relation to properties of 17 soils. Commissariat à l’ Energie Atomique D:188–201Google Scholar
  103. Kliashtorin AL, Tikhomirov FA, Shcheglov AI (1994) Vertical radionuclide transfer by infiltration water in forest soils in the 30-km Chernobyl accident zone. Sci Total Environ 157:285–288CrossRefPubMedGoogle Scholar
  104. Kohzu A, Yoshioka T, Ando T, Takahashi M, Koba K, Wada E (1999) Natural 13C and 15N abundance of field collected fungi and their ecological implications. New Phytol 144:323–330CrossRefGoogle Scholar
  105. Kreuzer-Martin HW, Lott MJ, Dorigan J, Ehleringer JR (2003) Microbe forensics: oxygen and hydrogen stable isotope ratios in Bacillus subtilis cells and spores. Proc Natl Acad Sci USA 100:815–819CrossRefPubMedGoogle Scholar
  106. Krupnik I (1993) Arctic adaptations: native whalers and reindeer herders of Northern Eurasia. University Press of New England, Hanover/LondonGoogle Scholar
  107. Kuhn W, Handl J, Schuller P (1984) The influence of soil parameters on 137 Cs uptake by plants from long-term fallout on forest clearings and grassland. Health Phys 46:5CrossRefGoogle Scholar
  108. Kumblad L, Kautsky U, Naeslund B (2006) Transport and fate of radionuclides in aquatic environments – the use of ecosystem modelling for exposure assessmentsof nuclear facilities. J Environ Radioact 87:107–129CrossRefPubMedGoogle Scholar
  109. Kumru MN (1995) Distribution of radionuclides in sediments and soils along the Buyuk Menderes River. Proc Pak Acad Sci 32:51–56Google Scholar
  110. Kwapulinski J, Seaward MRD, Bylinska EA (1985a) Uptake of 226 Radium and 228 Radium by the lichen genus Umbilicaria. Sci Total Environ 41:135–141CrossRefPubMedGoogle Scholar
  111. Kwapulinski J, Seaward MRD, Bylinska EA (1985b) 137 Caesium content of Umbilicaria-species, with particular reference to altitude. Sci Total Environ 41:125–133CrossRefGoogle Scholar
  112. Lee EW, Alanis L, Cho SK, Saab S (2016) Yttrium-90 selective internal radiation therapy with glass microspheres for hepatocellular carcinoma: current and updated literature review. Korean J Radiol 17(4):472–488CrossRefPubMedPubMedCentralGoogle Scholar
  113. Lehmann P, Boratynski Z, Mappes T, Mousseau TA, Moller AP (2016) Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl. Sci Rep 6.
  114. Lembrechts JF, Stoutjesdijk JF, van Ginkel JH, Noordijk H (1990) Soil-to-grass transfer of radionuclides: local variations and fluctuations as a function of time. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 524–531Google Scholar
  115. Leon JD, Jaffe DA, Kaspar J, Knecht A, Miller ML, Robertson RGH, Schubert AG (2011) Arrival time and magnitude of airborne fission products from the Fukushima, Japan, reactor incident as measured in Seattle, Wa, USA. J Environ Radioact 102:1032–1038CrossRefPubMedGoogle Scholar
  116. Lozano RL, Hernandez-Ceballos MA, Adame JA, Casas-Ruız M, Sorribas M, San Miguel EG, Bolıvar JP (2011) Radioactive impact of Fukushima accident on the Iberian peninsula: evolution and plume previous pathway. Environ Int 37:1259–1264CrossRefPubMedGoogle Scholar
  117. Manolopoulou M, Vagena E, Stoulos S, Ioannidou A, Papastefanou C (2011) Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident. J Environ Radioact 102:796–797CrossRefPubMedGoogle Scholar
  118. Marovic G, Bituh T, Franic Z, Gospodaric I, Kovac J, Lokobauer N, Maracic M, Petrinec B, Sencar J (2010) Results of environmental radioactivity measurements in the Republic of Croatia annual reports 1998–2009 (in Croatian). Institute for Medical Research and Occupational HealthGoogle Scholar
  119. Matthews KM (1981) The use of lichens in a study of geothermal radon emissions in New Zealand. Environ Pollut Ser A 24:105–116CrossRefGoogle Scholar
  120. Maubert H, Duret F, Combes C, Roussel S (1990) Behaviour of the radionuclides deposited after the Chernobyl accident in a mountain ecosystem of the French southern Alps. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and seminatural environments. Elsevier, London/New York, pp 94–102Google Scholar
  121. Maushart HU (1966) Ganzkörpermessungen am Menschen. 3. Umweltradioaktivität und Strahlenbelastung. Bundesminist. Wiss. Forsch. Bad Godesberg, pp 149–153Google Scholar
  122. Mazurak AP, Mosher PN (1968) Detachment of soil aggregates by simulated rainfall. Soil Sci Soc Am Proc 34:798–800CrossRefGoogle Scholar
  123. Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244Google Scholar
  124. Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797Google Scholar
  125. Meena RS, Gogaoi N, Kumar S (2017) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359CrossRefGoogle Scholar
  126. Melin J, Wallberg L (1991) Distribution and retention of cesium in Swedish Boreal forest ecosystems. In: Moberg J (ed) The Chernobyl fallout in Sweden, results from a research programme on environmental radiology. The Swedish Radiation Protection Project. Arprint, Lund/Stockholm, pp 467–475Google Scholar
  127. Menzel RG, Jung PK, Ryu KS, Um KT (1987) Estimating soil erosion losses in Korea with fallout cesium-137. Appl Radiat Isotopes 38:451–454CrossRefGoogle Scholar
  128. Meyerhof D, Marshall H (1990) The non- agricultural areas of Canada and radioactivity. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 48–55Google Scholar
  129. Middleton LJ (1959) Radioactive strontium and caesium in the edible parts of crop plants after foliar contamination. J Radiat Biol 1:387–402Google Scholar
  130. Moller AP, Mousseau TA (2013) The effects of natural variation in background radioactivity on humans, animals and other organisms. Biol Rev Cambridge Philos Soc 88(1):226–254CrossRefPubMedGoogle Scholar
  131. Moller AP, Mousseau TA (2015) Strong effects of ionizing radiation from Chernobyl on mutation rates. Sci Rep 5.
  132. Moller AP, Mousseau TA (2017) Radiation levels affect pollen viability and germination among sites and species at Chernobyl. Int J Plant Species 178(7):537–545CrossRefGoogle Scholar
  133. Moller AP, Barnier F, Mousseau TA (2012) Ecosystem effects 25 years after Chernobyl: pollinators, fruit set, and recruitment. Oecologia 170:1155–1165CrossRefPubMedGoogle Scholar
  134. Moller AP, Shyu JC, Mousseau TA (2016) Ionizing radiation from Chernobyl and the fraction of viable pollen. Int J Plant Sci 177(9):727–735CrossRefGoogle Scholar
  135. Monte L (1990) Evaluation of the environmental transfer parameters for 131 I and 137 Cs using the contamination produced by the Chernobyl accident at a site in Central Italy. J Environ Radioact 12:13–22CrossRefGoogle Scholar
  136. Monte L, Quaggia S, Pompei F, Fratarcangeli S (1990) The behaviour of 137 Cs in some edible fruits. J Environ Radioact 11:207–214CrossRefGoogle Scholar
  137. Morino Y, Ohara T, Nishizawa M (2011) Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi Nuclear Power Plant in March 2011. Geophys Res Lett 38:L00G11CrossRefGoogle Scholar
  138. Mousseau TA, Moller AP (2014) Genetic and ecological studies of animals in Chernobyl and Fukushima. J Heredity 105(5):704–709CrossRefGoogle Scholar
  139. Mousseau TA, Welch SM, Chizhevsky I, Bondarenko O, Milinevsky G, Tedeschi D, Bonisoli-Alquati A, Moller AP (2013) Tree rings reveal extent of exposure to ionizing radiation in Scots pine Pinus sylvestris. Trees Struct Funct 27(5):1443–1453CrossRefGoogle Scholar
  140. Mousseau TA, Milinevsky G, Kenney-Hunt J, Moller AP (2014) Highly reduced mass loss rates and increased litter layer in radioactively contaminated areas. Oecologia 175(1):429–437CrossRefPubMedGoogle Scholar
  141. Muller H, Eisfeld K, Matthies M, Prohl G (1983) Foliar uptake of radionuclides. In: Seminar on transfer of radioactive materials in the terrestrial environment subsequent to an accidental release to atmosphere. Dublin, 11–15 April, pp 154–160Google Scholar
  142. Murase K, Murase J, Horie R, Endo K (2015) Effects of the Fukushima Daiichi accident on goshawk reproduction. Sci Rep 5.
  143. Nelin P, Nylen T (1994) Factors influencing the changes in 137 Cs levels with time in boreal-forest plants in Sweden. Sci Total Environ 157:73–81CrossRefGoogle Scholar
  144. Niemann L, Jahnke S, Feige GB (1989) Radioaktive Kontamination von Pflanzen und Bodennach dem Reaktorunfall in Tschernobyl. Verh Gesellsch f Ökologie (Essen) 8:873–882Google Scholar
  145. Nimis PL, Giovani C, Padovani R (1988) On the ways of expressing radiocaesium contamination in plants forradioecological research. Studia Geobot 8:3–12Google Scholar
  146. Nimis PL, Tretiach M, Belli M, Sansone U (1990) The effect of microniches in a natural ecosystem on the radiocontamination of vascular plants. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 84–93Google Scholar
  147. Nimis PL, Bolognini G, Giovani C (1994) Radiocontamination patterns of vascular plants in a forest ecosystem. Sci Total Environ 157:181–188CrossRefGoogle Scholar
  148. Nisbet AF, Lembrechts JF (1990) The dynamics of radionuclide behaviour in soil solution with special reference to the application of countermeasures. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 371–381Google Scholar
  149. Nuclear Energy Agency (1985) Review of the continued suitability of the dumping site for radioactive waste in the North-East Atlantic. Organization for Economic Cooperation and Development, ParisGoogle Scholar
  150. Okumara M, Kerisit S, Bourg IC, Lammers LN, Ikeda T, Sassi M, Rosso KM, Machida M (2018) Radiocesium interaction with clay minerals: theory and simulation advances Post–Fukushima. J Environ Radiact 189:135–145. CrossRefGoogle Scholar
  151. Oraon PR, Singh L, Jhariya MK (2018) Forest floor biomass, litterfall and physico-chemical properties of soil along the anthropogenic disturbance regimes in tropics of Chhattisgarh, India. J For Environ Sci 34(5):359–375. CrossRefGoogle Scholar
  152. Ostle N, Ineson P, Benham D, Sleep D (2000) Carbon assimilation and turnover in grassland vegetation using and in situ 13CO2 pulse labelling system. Rapid Commun Mass Spectrom 14:1345–1350CrossRefPubMedGoogle Scholar
  153. Otake M, Schull WJ (1998) Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int J Radiat Biol 74(2):159–171CrossRefPubMedGoogle Scholar
  154. Padovani R, Contento G, Giovani C, Malisan R (1990) Field study of fallout radiocaesium in upland soil. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and seminatural environments. Elsevier, London/New York, pp 292–299Google Scholar
  155. Parlak Y, Gumuser G, Sayit E (2016) Samarium-153 therapy and radiation dose for prostate cancer, prostate cancer – leading-edge diagnostic procedures and treatments. In: Mohan R (ed). InTech. Google Scholar
  156. Pastor J, Naiman RJ (1992) Selective foraging and ecosystem processes in boreal forests. Am Nat 139:690–705CrossRefGoogle Scholar
  157. Pentreath RJ (1988) Radionuclides in the aquatic environment. In: Carter MW (ed) Radionuclides in the food chain. Springer-Verlag, NewYorkGoogle Scholar
  158. Peterson HT (1983) Terrestrial and aquatic food chain pathways. In: Till J, Meyer HR (eds) Radiological assessment: a textbook on environmental dose analysis, NUREG/CR3332, ORNL-5968. Oak Ridge National Laboratory, Oak RidgeCrossRefGoogle Scholar
  159. Petterson HBL, Hallstadius L, Hedvall R, Holm E (1988) Radioecology in the vicinity of prospected uranium mining sites in a subarctic environment. J Environ Radioact 6:25–40CrossRefGoogle Scholar
  160. Pienkowski L, Jastrzebski J, Tys J, Batsch T, Jaracz P, Kurcewicz W, Mirowski S, Szeflinska G, Szeflinski Z, Szweryn B, Wilhelmi ZJ, Ozefowicz ET (1987) Isotopic composition of the radioactive fallout in Eastern Poland after the Chernobyl accident. J Radioanal Nucl Chem 117:379–409CrossRefGoogle Scholar
  161. Pochin EE (1988) Links in the transmission of radionuclides through food chains. In: Carter MW (ed) Radionuclides in the food chain. Springer, New YorkGoogle Scholar
  162. Polednak AP, Stehney AF, Lucas HF (1983) Mortality among male workers at a thorium-processing plant. Health Phys 44(suppl 1):239–251CrossRefPubMedGoogle Scholar
  163. Porcelli D, Andersson PS, Baskaran M, Wasserburg GJ (2001) Transport of U- and Th-series nuclides in a Baltic shield watershed and the Baltic Sea. Geochimica et Cosmochimica Acta 65:2439–2459CrossRefGoogle Scholar
  164. Porstendorfer J, Mercer TT (1979) Influence of electric charge and humidity upon the diffusion coefficient of radon decay products. Health Phys 37(2):191–199CrossRefPubMedGoogle Scholar
  165. Proehl G, Hoffman FO (1994) The interception, initial and post deposition-retention by vegetation of dry and wet deposited radionuclide. VAMP Terrestrial Working Group Draft Review Paper. IAEAGoogle Scholar
  166. Qin H, Yokoyama Y, Fa Q, Iwatani H, Tanaka K, Sakaguchi A, Kanai Y, Zhu J, Onda Y, Takahashi Y (2012) Investigation of Investigation of adsorption on soil and sediment samples from Fukushima Prefecture by sequential extraction and EXAFS technique. Geochem J 46:297–302CrossRefGoogle Scholar
  167. Raj A, Jhariya MK, Bargali SS (2018a) Climate smart agriculture and carbon sequestration. In: Pandey CB, Gaur MK, Goyal RK (eds) Climate change and agroforestry: adaptation mitigation and livelihood security. New India Publishing Agency (NIPA), New Delhi, pp 1–19. ISBN: 9789-386546067Google Scholar
  168. Raj A, Jhariya MK, Harne SS (2018b) Threats to biodiversity and conservation strategies. In: Sood KK, Mahajan V (eds) Forests, climate change and biodiversity. Kalyani Publisher, pp 304–320. 381 pGoogle Scholar
  169. Rao SR, Shah SM (eds) (1976) Elemental contents in environmental samples. BARC, MumbaiGoogle Scholar
  170. Rauret G, Laurado M, Tent J, Rigol A, Alegre LH, Utrillas MJ (1994) Deposition on holm oak leaf surfaces of accidentally released radionuclides. Sci Total Environ 157:716CrossRefGoogle Scholar
  171. Remesh BP, Vinod CP (2010) Radiation incident in Mayapuri: disquieting signals to labour. Econ Pol Wkly XLV(30):16–18Google Scholar
  172. Ritz B, Morgenstern H, Crawford-Brown D, Young B (2000) The effects of internal radiation exposure on cancer mortality in nuclear workers at Rocketdyne/Atomics International. Environ Health Perspect 108(8):743–751CrossRefPubMedPubMedCentralGoogle Scholar
  173. Robinson WL, Stone EL (1986) Bikini Atoll Rehabilitation Committee Report No. 4, Status March 31, Appendix A. Submitted March 31, 1986 to the US Congress, Washington DC, A1-A40Google Scholar
  174. Rohleder K (1967) Zur radioaktiven Kontamination von Speisepilze. Deutsch. Lebensmus. Rundsch 63:135–143Google Scholar
  175. Rommelt R, Hiersche L, Schaller G, Wirth E (1990) Influence of soil fungi (Basidiomycetes) on the migration of Cs134+137 and Sr90 in coniferous forest soils. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi natural environments. Elsevier, London/New York, pp 152–160Google Scholar
  176. Ruiz-Gonzalez MX, Czirják GA, Genevaux P, Moller AP, Mousseau TA, Heeb P (2016) Resistance of feather-associated bacteria to intermediate levels of ionizing radiation near Chernobyl. Sci Rep 6.
  177. Rushton L (2003) Health hazards and waste management. Br Med Bull 68:183–198CrossRefPubMedGoogle Scholar
  178. Salt C, Meyes RW (1990) Seasonal patterns of 134 Cs uptake into hill pasture vegetation. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 334–340Google Scholar
  179. Samet JM, Seo J (2016) The financial costs of the Chernobyl nuclear power plant disaster: a review of the literature. Green Cross Switzerland, ZurichGoogle Scholar
  180. Sandalls J, Bennett L (1992) Radiocaesium in upland herbage in Cumbria, UK: a three year field study. J Environ Radioact 16:147–165CrossRefGoogle Scholar
  181. Sartor O (2004) Overview of Samarium Sm 153 Lexidronam in the treatment of painful metastatic bone disease. Rev Urol 6(Suppl 10):S3–S12PubMedPubMedCentralGoogle Scholar
  182. Sauras T, Roca MC, Tent J, Llauradò M, Vidal M, Rauret G, Vallejo VR (1994) Migration study of radionuclides in a Mediterranean forest soil using synthetic aerosols. Sci Total Environ 157:231–238CrossRefGoogle Scholar
  183. Sawidis T (1987) Uptake of radionuclides by plants after the Chernobyl accident. Environ Pollut 50:317–324CrossRefGoogle Scholar
  184. Scher (2010) Opinion on the environmental and health risks posed by depleted uranium. European Commission, Scientific Committee on Health and Environmental RisksGoogle Scholar
  185. Schimmack W, Bunzl K, Kreutzer K, Schierl R (1991) Effects of acid irrigation and liming on the migration of radiocesium in a forest soil as observed by field measurements. Sci Total Environ 101:181–189CrossRefGoogle Scholar
  186. Schimmack W, Bunzl K, Dietl F, Klotz D (1994) Infiltration of radionuclides with low mobility (Cs137 and Co60) into a forest soil. Effect of the irrigation intensity. J Environ Radioact 24:53–63CrossRefGoogle Scholar
  187. Schnock G (1967) Recherches sur l’ écosystème forêt, sér. B.–La chenaie mélangée calcicole de Virelles-Blaimont. Contr. 17: Réception des précipitations et écoulement le long des troncs en 1966. Bull Inst R Sci Nat Belg 43(37):1–15Google Scholar
  188. Seaward MRD, Heslop JA, Green D, Bylinska EA (1988) Recent levels of radionuclides in lichens from southwest Poland with particular reference to 134 Cs and Cs. J Environ Radioact 7:123–129CrossRefGoogle Scholar
  189. Seeger R, Schweinshaut P (1981) Vorkommen von Caesium in höheren Pilzen. Sci Total Environ 19:253–276CrossRefGoogle Scholar
  190. Shaw G, Bell JNB (1991) Competitive effects of Potassium and Ammonium on Caesium uptake kinetics in wheat. J Environ Radioact 13:283–296CrossRefGoogle Scholar
  191. Sheppard SC, Evenden WG (1990) Characteristics of plant concentration ratios assessed in a 64-site field survey of 23 elements. J Environ Radioact 11:15–36CrossRefGoogle Scholar
  192. Sheppard MI, Sheppard SC (1985) The plant concentration ratio concept as applied to natural U. Health Phys 48:494–500PubMedPubMedCentralGoogle Scholar
  193. Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav, Yadav RS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L.) cultivars. Ecoscan 9(1–2):517–519Google Scholar
  194. Singh J, Singh L, Singh G (1995) High U-contents observed in some drinking waters of Punjab, India. J Environ Radioact 26:211–222CrossRefGoogle Scholar
  195. Singh S, Malhotra R, Kumar J, Singh B, Singh L (2001) Uranium analysis of geological samples, water and plants from Kulu Area, Himachal Pradesh, India. Radiat Meas 34:427–431CrossRefGoogle Scholar
  196. Sombre L, Vanhouche M, Thiry Y, Ronneau C, Lambotte JM, Myttenaere C (1990) Transfer of radiocesium in forest ecosystems resulting from a nuclear accident. In: Desmet G et al (eds) Transfer of radionuclides in natural and seminatural environments. Elsevier, London/New York, pp 74–83Google Scholar
  197. Spiers FW (1968) Radioactivity of the human body. In: Olive JR (ed) Radioisotopes in the human body: physical and biological aspects, Monograph series on radiation biology. Academic, New York/London, pp 257–296CrossRefGoogle Scholar
  198. Stapp P, Polis A, Pinero S (1999) Stable isotope reveal strong marine and El Niño effects on island food webs. Nature 401:467–469CrossRefGoogle Scholar
  199. Stohl A, Seibert P, Wotawa G, Arnold D, Burkhart JF, Eckhardt S, Tapia C, Vargas A, Yasunari TJ (2011) Xenon-133 and caesium-137 Releases into the atmosphere from the Fukushima Dai-Ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmos Chem Phys 11:28319–28394CrossRefGoogle Scholar
  200. Strandberg M (1994) Radiocesium in a Danish pine forest ecosystem. Sci Total Environ 157:125–132CrossRefGoogle Scholar
  201. Sumerling TJ (1984) The use of mosses as indicators of airborne radionuclides near a major nuclear installation. Sci Total Environ 35:251–265CrossRefPubMedGoogle Scholar
  202. Takemura T, Nakamura H, Takigawa M, Kondo H, Satomura T, Miyasaka T, Nakajima T (2011) A numerical simulation of global transport of atmospheric particles emitted from the Fukushima Daiichi nuclear power plant. Meteorological Society of Japan, TokyoCrossRefGoogle Scholar
  203. Taylor HW, Hutchinson EA, McInnes KL, Svoboda J (1979) Cosmos 954: search for airborne radioactivity on lichens in the crash area, Northwestern Territories, Canada. Science 205:1383–1385CrossRefPubMedGoogle Scholar
  204. Thiry Y, Myttenaere C (1993) Behaviour of radiocesium in forest multilayered soils. J Environ Radioact 18:247–257CrossRefGoogle Scholar
  205. Thiry Y, de Brouwer S, Myttenaere C (1991) Status of radiocesium in complex forest soils. In: 5th international conference on geochemical pathways of artificial radionuclides migration in biosphere, 9–13 December 1991. Pushino (Moscow), RussiaGoogle Scholar
  206. Thomas DJ, Tracey BL, Marshall H, Norstrom RJ (1992) Arctic terrestrial ecosystem contamination. Sci Total Environ 122:135–164CrossRefPubMedGoogle Scholar
  207. Tikhomirov FA, Shcheglov AI (1990) The radioecological consequences of the Kyshtym and Chernobyl accidents for forest ecosystems. (in Russian). In: Proceedings of the seminar on comparative assessment of the environment impact of radionuclides. Luxembourg, 1–5 Oct. 190. Rep. EUR 13574, vol 2, pp 867–887Google Scholar
  208. Tikhomirov FA, Shcheglov AI (1994) Main investigation results in the forest radioecology in the Kyshtym and Chernobyl accident zones. Sci Total Environ 157:45–57CrossRefPubMedGoogle Scholar
  209. Tikhomirov FA, Shcheglov AI, Tzvetnova OB, Kliashtorin AI (1990) Geochemical migration of radionuclides in the forests of Chernobyl NPP zone of radioactive contamination (in Russian). Pochvovedenie 10:40–41Google Scholar
  210. Tracey BL (1995) Radiation Protection Bureau, Ottawa, Canada, personal communication, Mar. 23, 1995Google Scholar
  211. Tuominen Y, Jaakkola T (1973) Absorption and accumulation of mineral elements and radioactive nuclides. In: Ahamadjan V, Hale M (eds) The Lichens. Academic, LondonGoogle Scholar
  212. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Report (2000) Sources and effects of ionizing radiation. UNSCEAR, New YorkCrossRefGoogle Scholar
  213. UNSCEAR (2000) Exposures from natural radiation sources UNSCEAR 2000 Report to the General Assembly, with scientific annexes United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations, New YorkGoogle Scholar
  214. US GAO (Government Accountability Office) (2011) Nuclear Regulatory Commission: Oversight of underground piping systems commensurate with risk, but proactive measures could help address future leaks. Report GAO-11-563. US Government Accountability Office, Washington, DCGoogle Scholar
  215. Valcke E, Cremers A (1994) Sorption-desorption dynamics of radiocaesium in organic matter soils. Sci Total Environ 157:275–283CrossRefGoogle Scholar
  216. Vallejo VR, Roca C, Fons J, Rauret G, Llaurado M, Vidal M (1990) Radiocaesium transfer in Mediterranean forest ecosystems. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 103–109Google Scholar
  217. Valles I, Camacho A, Ortega X, Serrano I, Blazquez S, Perez S (2009) Natural and anthropogenic radionuclides in airborne particulate samples collected in Barcelona (Spain). J Environ Radioact 100(2):102–107CrossRefPubMedGoogle Scholar
  218. Van Voris P, Cowan CE, Cataldo D, Wildung RE, Shugart HH (1990) Chernobyl case study: modelling the dynamics of long-term cycling and storage of 137 Cs in forested ecosystems. In: Desmet G, Nassimbeni P, Belli M (eds) Transfer of radionuclides in natural and semi-natural environments. Elsevier, London/New York, pp 61–73Google Scholar
  219. Varma D, Meena RS, Kumar S (2017) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389Google Scholar
  220. Visible Information Center (2011) Simulation on 137cs deposition due to the emission from Fukushima Daiichi nuclear plant. Retrieved from http://efdl.cims.nyu. edu/project aomip/forcing data/topography/merged/overview.html
  221. Wagenmakers AJM, Rehrer NJ, Brouns F, Saris WHM, Halliday D (1993) Breath (13CO2) background enrichment during Exercise – diet- related differences between Europe and America. J Appl Physiol 74:2353–2357CrossRefPubMedGoogle Scholar
  222. Walker JS (2004) Three Mile Island: a nuclear crisis in historical perspective. University of California Press, BerkeleyGoogle Scholar
  223. Wang TH, Huang PI, Hu YW, Lin KH, Liu CS, Lin YY, Liu CA, Tseng HS, Liu YM, Lee RC (2018) Combined Yttrium 90 microsphere selective internal radiation therapy and external beam radiotherapy in patients with hepatocellular carcinoma: from clinical aspects to dosimetry. PLoS ONE 13(1):e0190098. CrossRefPubMedPubMedCentralGoogle Scholar
  224. Ward GM, Keszthelyi Z, Kanyar B, Kralovanszkyi VP, Johnson JE (1989) Transfer of 137Cs to milk and meat in Hungary from Chernobyl fallout with comparisons of worldwide fallout in the 1960s. Health Phys 57(4):587–592CrossRefPubMedGoogle Scholar
  225. Wauters J, Sweeck L, Valcke E, Elsen A, Cremers A (1994) Availability of radiocesium in soils: a new methodology. Sci Total Environ 157:239–248CrossRefGoogle Scholar
  226. Wernsperger B, Schlosser C (2004) Noble gas monitoring within the international monitoring system of the comprehensive Nuclear Test-Ban Treaty. Radiat Phys Chem 71:775–779CrossRefGoogle Scholar
  227. Wiggs LD, Johnson ER, Cox-De-Vore CA, Voelz GL (1994) Mortality through 1990 among white male workers at the Los Alamos National Laboratory: considering exposures to plutonium and external ionizing radiation. Health Phys 67(6):577–588CrossRefPubMedGoogle Scholar
  228. Wirth E, Hiersche L, Kammerer L, Krajewska G, Krestel R, Mahler S, Römmelt R (1994) Transfer equations for cesium-137 for coniferous forest understorey plant species. Sci Total Environ 157:163–170CrossRefGoogle Scholar
  229. World Health Organization (WHO) (2013) Health effects of Chernobyl accident.
  230. Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agric Sci 87(9):1165–1169Google Scholar
  231. Yasunari TJ, Stohl A, Hayano RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc Natl Acad Sci USA 108:19530–19534CrossRefPubMedGoogle Scholar
  232. Yeong CH, Cheng M, Ng KH (2014) Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B 15(10):845–863CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Arnab Banerjee
    • 1
  • Manoj Kumar Jhariya
    • 2
  • Dhiraj Kumar Yadav
    • 2
  • Abhishek Raj
    • 3
  • Ram Swaroop Meena
    • 4
  1. 1.Department of Environmental ScienceSarguja UniversityAmbikapurIndia
  2. 2.Department of Farm ForestrySarguja UniversityAmbikapurIndia
  3. 3.Department of Forestry, College of AgricultureIndira Gandhi Krishi Vishwavidyalaya (I.G.K.V.)RaipurIndia
  4. 4.Department of Agronomy, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations