Advertisement

Introduction to Deep Learning

  • M. Arif Wani
  • Farooq Ahmad Bhat
  • Saduf Afzal
  • Asif Iqbal Khan
Chapter
Part of the Studies in Big Data book series (SBD, volume 57)

Abstract

Machine learning systems, with shallow or deep architectures, have ability to learn and improve with experience. The process of machine learning begins with the raw data which is used for extracting useful information that helps in decision-making. The primary aim is to allow a machine to learn useful information just like humans do. At abstract level, machine learning can be carried out using following approaches.

Bibliography

  1. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)MathSciNetCrossRefGoogle Scholar
  2. Blaauw, M., Bonada, J.: A neural parametric singing synthesizer. arXiv preprint. arXiv:1704.03809
  3. Cruz-Roa, A.A., Ovalle, J.E.A., Madabhushi, A., Osorio, F.A.G.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, pp. 403–410, Sept 2013Google Scholar
  4. Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Signal Process. 7(34), 197–387 (2013)MathSciNetzbMATHGoogle Scholar
  5. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT Press, Cambridge (2016)zbMATHGoogle Scholar
  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  7. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97Google Scholar
  8. Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. (TOG) 35(4), 138:1–138:11Google Scholar
  9. Kang, E., Min, J., Ye, J.C.: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44(10) (2017)Google Scholar
  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)CrossRefGoogle Scholar
  12. Shi, Y., Yao, K., Tian, L., Jiang, D.: Deep LSTM based feature mapping for query classification. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1501–1511 (2016)Google Scholar
  13. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)Google Scholar
  14. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556
  15. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)Google Scholar
  16. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)Google Scholar
  17. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint. arXiv:1609.08144
  18. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., et al.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057, June 2015Google Scholar
  19. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European Conference on Computer Vision. Springer, Cham, pp. 649–666, Oct 2016Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • M. Arif Wani
    • 1
  • Farooq Ahmad Bhat
    • 2
  • Saduf Afzal
    • 3
  • Asif Iqbal Khan
    • 4
  1. 1.Department of Computer SciencesUniversity of KashmirSrinagarIndia
  2. 2.Education DepartmentGovernment of Jammu and KashmirKashmirIndia
  3. 3.Islamic University of Science and TechnologyKashmirIndia
  4. 4.Department of Computer SciencesUniversity of KashmirSrinagarIndia

Personalised recommendations