Stochastic Optimal Control of Seismic Structures with MR Dampers

  • Yongbo PengEmail author
  • Jie Li


Although the active structural control can attain a desired structural performance, the power supply system for implementing the structural control might suffer from a serious damage when subjected to hazardous dynamic excitations (Patten et al. 1998).


  1. Asai T, Chang CM, Spencer BF Jr (2015) Real-time hybrid simulation of a smart base-isolated building. J Eng Mech 141(3):04014128-1-10CrossRefGoogle Scholar
  2. Boada MJL, Calvo JA, Boada BL, Diaz V (2011) Modeling of a magnetorheological damper by recursive lazy learning. Int J Non-Linear Mech 46(3):479–485CrossRefGoogle Scholar
  3. Bouc R (1967) Forced vibration of mechanical system with hysteresis. In: Proceedings of 4th conference on nonlinear oscillations, Prague, CzechoslovakiaGoogle Scholar
  4. Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10(4–5):555–569CrossRefGoogle Scholar
  5. Carrion JE, Spencer BF Jr, Phill BM (2009) Real-time hybrid simulation for structural control performance assessment. Earthq Eng Eng Vibr 8(4):481–492CrossRefGoogle Scholar
  6. Casciati F, Magonette G, Marazzi F (2006) The technology of semiactive devices and applications in vibration mitigation. John Wiley & Sons, LtdGoogle Scholar
  7. Cha YJ, Zhang JQ, Agrawal AK, Dong BP, Friedman A, Dyke SJ, Ricles J (2013) Comparative studies of semiactive control strategies for MR dampers: pure simulation and real-time hybrid tests. J Struct Eng 139(7):1237–1248CrossRefGoogle Scholar
  8. Chae Y, Ricles JM, Sause R (2013) Modeling of a large-scale magneto-rheological damper for seismic hazard mitigation. Part II: semi-active mode. Earthq Eng Struct Dyn 42(5):687–703CrossRefGoogle Scholar
  9. Chang CC, Roschke P (1998) Neural network modeling of a magnetorheological damper. J Intell Mater Syst Struct 9(9):755–764CrossRefGoogle Scholar
  10. Charalampakis AE, Koumousis VK (2008) Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm. J Sound Vib 314(3–5):571–585CrossRefGoogle Scholar
  11. Chu SY, Soong TT, Reinhorn AM (2005) Active, hybrid and semi-active structural control. Wiley, New YorkGoogle Scholar
  12. Dan M, Ishizawa Y, Tanaka S, Nakahara S, Wakayama S, Kohiyama M (2015) Vibration characteristics change of a base-isolated building with semi-active dampers before, during, and after the 2011 Great East Japan earthquake. Earthq Struct 8(4):889–913CrossRefGoogle Scholar
  13. Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD (1996) Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater Struct 5:565–575CrossRefGoogle Scholar
  14. Dyke SJ, Spencer BF Jr, Sain MK, Carlson JD (1998) An experimental study of MR dampers for seismic protection. Smart Mater Struct 7(5):693–703CrossRefGoogle Scholar
  15. Hogsberg J (2011) The role of negative stiffness in semi-active control of magneto-rheological dampers. Struct Control Health Monit 18(3):289–304CrossRefGoogle Scholar
  16. Hrovat D, Barak P, Rabins M (1983) Semi-active versus passive or active tuned mass dampers for structural control. ASCE J Eng Mech 109(3):691–705CrossRefGoogle Scholar
  17. Ikhouane F, Rodellar J (2005) On the hysteretic Bouc-Wen model. Nonlinear Dyn 42(1):63–78MathSciNetzbMATHCrossRefGoogle Scholar
  18. Imaduddin F, Mazlan SA, Zamzuri H (2013) A design and modelling review of rotary magnetorheological damper. Mater Des 51:575–591CrossRefGoogle Scholar
  19. Jansen LM, Dyke SJ (2000) Semi-active control strategies for MR dampers comparative study. ASCE J Eng Mech 126(8):795–803CrossRefGoogle Scholar
  20. Jung HJ, Jang DD, Lee HJ, Lee IW, Cho SW (2010) Feasibility test of adaptive passive control system using MR fluid damper with electromagnetic induction part. J Eng Mech 136(2):254–259CrossRefGoogle Scholar
  21. Li J, Chen JB, Fan WL (2007) The equivalent extreme-value event and evaluation of the structural system reliability. Struct Saf 29(2):112–131CrossRefGoogle Scholar
  22. Liu WK, Karpov EG, Park HS (2006) Nano mechanics and materials: theory, multiscale methods and applications. Wiley, New YorkCrossRefGoogle Scholar
  23. Metered H, Bonello P, Oyadiji SO (2010) The experimental identification of magnetorheological dampers and evaluation of their controllers. Mech Syst Signal Process 24(4):976–994CrossRefGoogle Scholar
  24. Nagarajaiah S, Narasimhan S (2006) Smart base-isolated benchmark building. Part II: phase I sample controllers for linear isolation systems. Struct Control Health Monit 13(2–3):589–604CrossRefGoogle Scholar
  25. Ni YQ, Chen Y, Ko JM, Cao DQ (2002) Neuro-control of cable vibration using semi-active magneto-rheological dampers. Eng Struct 24:295–307CrossRefGoogle Scholar
  26. Patten WN, Mo C, Kuehn J, Lee J (1998) A primer on design of semi-active vibration absorbers (SAVA). ASCE J Eng Mech 124(1):61–68CrossRefGoogle Scholar
  27. Peng YB, Li J (2011) Multiscale analysis of stochastic fluctuation of dynamic yield of magnetorheological fluids. Int J Multiscale Comput Eng 9(2):175–191CrossRefGoogle Scholar
  28. Peng YB, Ghanem R, Li J (2012) Investigations of microstructured behaviors of magnetorheological suspensions. J Intell Mater Syst Struct 23(12):1349–1368CrossRefGoogle Scholar
  29. Peng YB, Yang JG, Li J (2017) Seismic risk based stochastic optimal control of structures using magnetorheological dampers. Nat Hazards Rev ASCE 18(1):UNSP B4016001CrossRefGoogle Scholar
  30. Peng YB, Yang JG, Li J (2018) Parameter identification of modified Bouc-Wen model and analysis of size effect of magnetorheological dampers. J Intell Mater Syst Struct 29(7):1464–1480CrossRefGoogle Scholar
  31. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19. lammps.sandia.govzbMATHCrossRefGoogle Scholar
  32. Soong TT (1990) Active structural control: theory and practice. Longman Scientific & Technical, New YorkGoogle Scholar
  33. Spencer BF Jr, Sain MK, Carlson JD (1997) Phenomenological model of magnetorheological damper. ASCE J Eng Mech 123(3):230–238CrossRefGoogle Scholar
  34. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) A computer simulation method for the calculation of equilibrium constrains for the formation of physical cluster of molecules: application to small water clusters. J Chem Phys 76(1):637–649CrossRefGoogle Scholar
  35. Tsang HH, Su RKL, Chandler AM (2006) Simplified inverse dynamics models for MR fluid dampers. Eng Struct 28(3):327–341CrossRefGoogle Scholar
  36. Tse T, Chang CC (2004) Shear-mode rotary magnetorheological damper for small-scale structural control experiments. J Struct Eng 130(6):904–911CrossRefGoogle Scholar
  37. Verlet L (1967) Computer “experiments” on classical fluids I: thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98–103CrossRefGoogle Scholar
  38. Wang YM, Dyke S (2013) Modal-based LQG for smart base isolation system design in seismic response control. Struct Control Health Monit 20(5):753–768CrossRefGoogle Scholar
  39. Wen YK (1976) Method for random vibration of hysteretic systems. ASCE J Eng Mech Div 102(2):249–263Google Scholar
  40. Xu ZD, Guo YQ (2008) Neuro-fuzzy control strategy for earthquake-excited nonlinear magnetorheological structures. Soil Dyn Earthq Eng 28(9):717–727CrossRefGoogle Scholar
  41. Xu ZD, Jia DH, Zhang XC (2012) Performance tests and mathematical model considering magnetic saturation for magnetorheological damper. J Intell Mater Syst Struct 23(12):1331–1349CrossRefGoogle Scholar
  42. Yang G (2001) Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testing and control. PhD Thesis, University of Notre Dame, USAGoogle Scholar
  43. Yang G, Spencer BF Jr, Carlson JD, Sain MK (2002) Large-scale MR fluid dampers: modeling and dynamic performance considerations. Eng Struct 24(3):309–323CrossRefGoogle Scholar
  44. Yang MG, Li CY, Chen ZQ (2013) A new simple non-linear hysteretic model for MR damper and verification of seismic response reduction experiment. Eng Struct 52:434–445CrossRefGoogle Scholar
  45. Ying ZG, Ni YQ, Ko JM (2009) A semi-active stochastic optimal control strategy for nonlinear structural systems with MR dampers. Smart Struct Syst 5(1):69–79CrossRefGoogle Scholar
  46. Yoshioka H, Ramallo JC, Spencer BF Jr (2002) “Smart” base isolation strategies employing magnetorheological dampers. J Eng Mech 128(5):540–551CrossRefGoogle Scholar
  47. Zhong WX (2004) On precise integration method. J Comput Appl Math 163:59–78MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Shanghai Scientific and Technical Publishers 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Disaster Prevention and ReliefTongji UniversityShanghaiChina
  2. 2.College of Civil EngineeringTongji UniversityShanghaiChina

Personalised recommendations