Arsenic Pollution Control Technologies for Arsenic-Bearing Solid Wastes

  • Xiao-Bo Min
  • Li-Yuan Chai
  • Yan-Jie LiangEmail author
  • Yong Ke


The current treatments of arsenic-bearing solid wastes originated from nonferrous metals smelter, taking the wastewater treatment sludge and arsenic-bearing anode slime for example, are mainly both solidification and secondary utilization. The stabilization, solidification and vitrification technologies are described, and most of the technologies have been commercialized by at least one non-ferrous metal smelter.


  1. 1.
    Singh, T.S., Pant, K.K.: Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. J. Hazard. Mater. 131(1–3), 29–36 (2006)CrossRefGoogle Scholar
  2. 2.
    Shaw, J.K., Fathordoobadi, S., Zelinski, B.J., Ela, W.P., Saez, A.E.: Stabilization of arsenic-bearing solid residuals in polymeric matrices. J. Hazard. Mater. 152(3), 1115–1121 (2008)CrossRefGoogle Scholar
  3. 3.
    Shi, M.Q., Liang, Y.J., Chai, L.Y., et al.: Raman and FTIR spectra of modified iron phosphate glasses containing arsenic. J. Mol. Struct. 1081, 389–394 (2015)CrossRefGoogle Scholar
  4. 4.
    Ke, Y., Chai, L.Y., Min, X.B., et al.: Sulfidation of heavy-metal-containing neutralization sludge using zinc leaching residue as the sulfur source for metal recovery and stabilization. Miner. Eng. 61, 105–112 (2014)CrossRefGoogle Scholar
  5. 5.
    Yang, Z.H., Liu, L., Chai, L.Y., et al.: Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environ. Sci. Pollut. R. 22(16), 12624–12632 (2015)CrossRefGoogle Scholar
  6. 6.
    Paktunc, D., Bruggeman, K.: Solubility of nanocrystalline scorodite and amorphous ferric arsenate: implications for stabilization of arsenic in mine wastes. Appl. Geochem. 25(5), 674–683 (2010)CrossRefGoogle Scholar
  7. 7.
    Kundu, S., Gupta, A.K.: Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic. J. Hazard. Mater. 153(1–2), 434–443 (2008)CrossRefGoogle Scholar
  8. 8.
    Mendonca, A.A., Galvao, T.C.B., Lima, D.C., et al.: Stabilization of arsenic-bearing sludges using lime. J. Mater. Civil. Eng. 18(2), 135–139 (2006)CrossRefGoogle Scholar
  9. 9.
    Yoon, I.H., Moon, D.H., Kim, K.W., et al.: Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J. Environ. Manag. 91(11), 2322–2328 (2010)CrossRefGoogle Scholar
  10. 10.
    Peng, B., Lei, J., Min, X., et al.: Physicochemical properties of arsenic-bearing lime-ferrate sludge and its leaching behaviors. Trans. Nonferrous Met. Soc. China 27, 1188–1198 (2017)CrossRefGoogle Scholar
  11. 11.
    Bothe, J.V., Brown, P.W.: Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol. 33(21), 3806–3811 (1999)CrossRefGoogle Scholar
  12. 12.
    Donahue, R., Hendry, M.J.: Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada. Appl. Geochem. 18(11), 1733–1750 (2003)CrossRefGoogle Scholar
  13. 13.
    Camacho, J., Wee, H.Y., Kramer, T.A., Autenrieth, R.: Arsenic stabilization on water treatment residuals by calcium addition. J. Hazard. Mater. 165(1–3), 599–603 (2009)CrossRefGoogle Scholar
  14. 14.
    Guo, X.J., Wang, K.P., He, M.C., et al.: Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors. J. Environ. Sci. China. 26(7), 1549–1556 (2014)CrossRefGoogle Scholar
  15. 15.
    Baskan, M.B., Pala, A.: Determination of arsenic removal efficiency by ferric ions using response surface methodology. J. Hazard. Mater. 166(2–3), 796–801 (2009)CrossRefGoogle Scholar
  16. 16.
    Lei, J., Peng, B., Min, X., et al.: Modeling and optimization of lime-based stabilization in high alkaline arsenic-bearing sludges with a central composite design. J. Environ. Sci. Health 52(5), 449–458 (2017)CrossRefGoogle Scholar
  17. 17.
    Divsar, F., Habibzadeh, K., Shariati, S., Shahriarinour, M.: Aptamer conjugated silver nanoparticles for the colorimetric detection of arsenic ions using response surface methodology. Anal. Methods UK 7(11), 4568–4576 (2015)CrossRefGoogle Scholar
  18. 18.
    Kowalski, K.P., Søgaard, E.G.: Implementation of zero-valent iron (ZVI) into drinking water supply—role of the ZVI and biological processes. Chemosphere 117, 108–114 (2014)CrossRefGoogle Scholar
  19. 19.
    Wen, Z., Zhang, Y., Dai, C., et al.: Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions. Microporous Mesoporous Mater. 200, 235–244 (2014)Google Scholar
  20. 20.
    An, B., Zhao, D.: Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. J. Hazard. Mater. 211–212, 332–341 (2012)CrossRefGoogle Scholar
  21. 21.
    Liang, Y., Min, X., Chai, L., et al.: Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere 168, 1142–1151 (2017)CrossRefGoogle Scholar
  22. 22.
    Selena, M., Alessandro, C., Massimo, P., et al.: Remediation of heavy metals contaminated soils by ball milling. Chemosphere 67, 631–639 (2007)CrossRefGoogle Scholar
  23. 23.
    Kim, J.Y., Allen, P.D.: Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ. Sci. Technol. 37, 189–195 (2003)CrossRefGoogle Scholar
  24. 24.
    Lagno, F., Rocha, S.D., Chryssoulis, S., et al.: Scorodite encapsulation by controlled deposition of aluminum phosphate coatings. J. Hazard. Mater. 181, 526–534 (2010)CrossRefGoogle Scholar
  25. 25.
    Yang, H., McCormick, P.G.: Combustion reaction of zinc oxide with magnesium during mechanical milling. J. Solid State Chem. 107, 258–263 (1993)CrossRefGoogle Scholar
  26. 26.
    Zhang, D., Richmond, J.: Microstructural evolution during combustion reaction between CuO and Al induced by high energy ball milling. J. Mater. Sci. 34, 701–706 (1999)CrossRefGoogle Scholar
  27. 27.
    Laszlo, T.: Self-sustaining reactions induced by ball milling. Prog. Mater. Sci. 47, 355–414 (2002)CrossRefGoogle Scholar
  28. 28.
    Chai, L., Liang, Y., Ke, Y., et al.: Mechano-chemical sulfidization of zinc oxide by grinding with sulfur and reductive additives. Trans. Nonferrous Met. Soc. China 23, 1129–1138 (2013)CrossRefGoogle Scholar
  29. 29.
    Li, M., Sun, C., Gau, S., et al.: Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash. J. Hazard. Mater. 174, 586–591 (2010)CrossRefGoogle Scholar
  30. 30.
    Grosvenor, A.P., Kobe, B.A., Biesinger, M.C., et al.: Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574 (2004)CrossRefGoogle Scholar
  31. 31.
    Sun, F., Kwadwo, A.O., Chen, Y., et al.: Reduction of As(V) to As(III) by commercial ZVI or As(0) with acid-treated ZVI. J. Hazard. Mater. 196, 311–317 (2011)CrossRefGoogle Scholar
  32. 32.
    Cyril, W.C., Naoto, M., Yoshinaga, N.: Ferrihydrite deposits in paddy races, Aso-Dani. Clay Sci. 8, 9–15 (1990)Google Scholar
  33. 33.
    Song, J., Jia, S., Yu, B., et al.: Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate. J. Hazard. Mater. 294, 70–79 (2015)CrossRefGoogle Scholar
  34. 34.
    Himemstra, T., Riemsdijk, W.H.V.: Surface structural adsorption modeling of competitive binding of oxyanions by metal(hydr)oxides. J. Colloid Interface Sci. 210, 182–193 (1999)CrossRefGoogle Scholar
  35. 35.
    Jia, Y., Xu, L., Fang, Z., et al.: Observation of surface precipitation of arsenate on ferrihydrite. Environ. Sci. Technol. 40, 3248–3253 (2006)CrossRefGoogle Scholar
  36. 36.
    Cui, H., Li, Q., Gao, S., et al.: Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 18, 1418–1427 (2012)CrossRefGoogle Scholar
  37. 37.
    Cornell, R.M., Giovanoli, R.: Effect of manganese on the transformation of ferrihydrite into goethite and jacobsite in alkaline media. Clays Clay Miner. 35, 11–20 (1987)CrossRefGoogle Scholar
  38. 38.
    Ouvrard, S., Dedonato, P.H., Simonnot, M.O.: Natural manganese oxide: combined analytical approach for solid characterization and arsenic retention. Geochim. Cosmochim. Acta 69, 2715–2724 (2005)CrossRefGoogle Scholar
  39. 39.
    Rauret, G., Nchez, J., Sahuquillo, A., et al.: Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1, 57–61 (1999)CrossRefGoogle Scholar
  40. 40.
    Xie, X., Min, X., Chai, L., et al.: Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation–flotation process. Environ. Sci. Pollut. Res. 20, 6050–6058 (2013)CrossRefGoogle Scholar
  41. 41.
    Ke, Y., Shen, C., Min, X.-B., et al.: Separation of Cu and As in Cu-As-containing filter cakes by Cu2 +-assisted acid leaching. Hydrometallurgy 172, 45–50 (2017)CrossRefGoogle Scholar
  42. 42.
    Shi, C., Meyer, C., Behnood, A.: Utilization of copper slag in cement and concrete. Resour. Conserv. Recycl. 52, 1115–1120 (2008)CrossRefGoogle Scholar
  43. 43.
    Jing, C., Korfiatis, G.P., Meng, X.: Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement. Environ. Sci. Technol. 37, 5050–5056 (2003)CrossRefGoogle Scholar
  44. 44.
    Chai, L., Yue, M., Yang, J., et al.: Formation of tooeleite and the role of direct removal of As(III) from high-arsenic acid wastewater. J. Hazard. Mater. 320, 620–627 (2016)CrossRefGoogle Scholar
  45. 45.
    Choi, W.H., Lee, S.R., Park, J.Y.: Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag. 29, 1766–1771 (2009)CrossRefGoogle Scholar
  46. 46.
    Li, Y.C., Min, X.B., Chai, L.Y., et al.: Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. J. Environ. Manag. 181, 756–761 (2016)CrossRefGoogle Scholar
  47. 47.
    Min, X.-B., Liao, Y.-P., Chai, L.-Y., et al.: Removal and stabilization of arsenic from anode slime by forming crystal scorodite. Trans. Nonferrous Met. Soc. 25, 1298–1306 (2015)CrossRefGoogle Scholar
  48. 48.
    Min, X., Li, Y., Ke, Y., et al.: Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal. Water Sci. Technol. 76(1), 192–200 (2017)CrossRefGoogle Scholar
  49. 49.
    Peng, B., Song, T., Wang, T., et al.: Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application. Chem. Eng. J. 299, 15–22 (2016)CrossRefGoogle Scholar
  50. 50.
    Zhao, Z., Song, Y., Min, X., et al.: XPS and FTIR studies of sodium arsenate vitrification by cullet. J. Non-Cryst. Solids 452, 238–244 (2016)CrossRefGoogle Scholar
  51. 51.
    Bose, P., Sharma, A.: Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Res. 4916–4926 (2002)Google Scholar
  52. 52.
    Desogus, P., Manca, P.P., Orrù, G., et al.: Stabilization–solidification treatment of mine tailings using Portland cement, potassium dihydrogen phosphate and ferric chloride hexahydrate. Miner. Eng. 45, 47–54 (2013)CrossRefGoogle Scholar
  53. 53.
    Jaarsveld, J.G.S.V., Deventer, J.S.J.V., Lorenzeni, L.: The potential use of geopolymeric materials to immobilise toxic metals Part I. Theory and applications. Miner. Eng. 7, 659–669 (1997)CrossRefGoogle Scholar
  54. 54.
    Jaarsveld, J.G.S.V., Deventer, J.S.J.V., Lorenzeni, L.: The potential use of geopolymeric materials to immobilise toxic metals Part II. Material and leaching characteristics. Miner. Eng. 1, 75–91 (1999)CrossRefGoogle Scholar
  55. 55.
    Jang, A., Kim, I.S.: Solidification and stabilization of Pb, Zn, Cd and Cu in tailing wastes using cement and fly ash. Miner. Eng. 14, 1659–1662 (2000)CrossRefGoogle Scholar
  56. 56.
    Singh, T.S., Pant, K.K.: Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater. 131, 29–36 (2006)CrossRefGoogle Scholar
  57. 57.
    Qian, G., Cao, Y., Chui, P., et al.: Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. J. Hazard. Mater. 129, 274–281 (2006)CrossRefGoogle Scholar
  58. 58.
    Liu, D.-G., Min, X.-B., Ke, Y., et al.: Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Environ. Sci. Pollut. Res. 25, 7600–7607 (2018)CrossRefGoogle Scholar
  59. 59.
    Kumar, S., Kumar, R., Bandopadhyay, A., et al.: Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cem. Concr. Compos. 30, 679–685 (2008)Google Scholar
  60. 60.
    Horpibulsuk, S., Miura, N., Nagaraj, T.: Assessment of strength development in cement-admixed high water content clays with Abrams’ law as a basis. Geotechnique 53, 439–444 (2003)CrossRefGoogle Scholar
  61. 61.
    Seco, J.I., Fernández-Pereira, C., Vale, J.: A study of the leachate toxicity of metal-containing solid wastes using Daphnia magna. Ecotoxicol. Environ. Saf. 56, 339–350 (2003)CrossRefGoogle Scholar
  62. 62.
    Coussy, S., Paktunc, D., Rose, J., et al.: Arsenic speciation in cemented paste backfills and synthetic calcium–silicate–hydrates. Miner. Eng. 39, 51–61 (2012)CrossRefGoogle Scholar
  63. 63.
    Phenrat, T., Marhaba, T.F., Rachakornkij, M.: A SEM and X-ray study for investigation of solidified/stabilized arsenic-iron hydroxide sludge. J. Hazard. Mater. 118, 185–195 (2005)CrossRefGoogle Scholar
  64. 64.
    Stronach, S., Walker, N., Macphee, D., et al.: Reactions between cement and As (III) oxide: the system CaO·SiO2·As2O3·H2O at 25 °C. Waste Manag. 17, 9–13 (1997)CrossRefGoogle Scholar
  65. 65.
    Kumarathasan, P., McCarthy, G.J., Hassett, D.J., et al.: Oxyanion substituted ettringites: synthesis and characterization; and their potential role in immobilization of As, B, Cr, Se and V. MRS Online Proc. Library Arch. 178, 83 (1989)Google Scholar
  66. 66.
    Vandecasteele, C., Dutré, V., Geysen, D., et al.: Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Manag. 22, 143–146 (2002)CrossRefGoogle Scholar
  67. 67.
    Dutré, V., Vandecasteele, C.: Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. J. Hazard. Mater. 40, 55–68 (1995)CrossRefGoogle Scholar
  68. 68.
    Qiao, X.C., Poon, C.S., Cheeseman, C.R.: Investigation into the stabilization/solidification performance of Portland cement through cement clinker phases. J. Hazard. Mater. 139, 238–243 (2007)CrossRefGoogle Scholar
  69. 69.
    Li, Y.-C., Min, X.-B., Chai, L.-Y., et al.: Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. J. Environ. Manag. 181, 756–761 (2016)CrossRefGoogle Scholar
  70. 70.
    Boldyrev, V., Pavlov, S., Goldberg, E.: Interrelation between fine grinding and mechanical activation. Comminution 44(95), 181–185 (1996)Google Scholar
  71. 71.
    Wei, B., Zhang, Y., Bao, S.: Preparation of geopolymers from vanadium tailings by mechanical activation. Constr. Build. Mater. 145(Supplement C), 236–242 (2017)Google Scholar
  72. 72.
    Sulaymon, A.H., Faisal, A.A., Khaliefa, Q.M.: Cement kiln dust (CKD)-filter sand permeable reactive barrier for the removal of Cu(II) and Zn(II) from simulated acidic groundwater. J. Hazard. Mater. 297, 160–72 (2015)CrossRefGoogle Scholar
  73. 73.
    Doudart de la Grée, G.C.H., Yu, Q.L., Brouwers, H.J.H.: Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugars. Constr. Build. Mater. 143, 48–60 (2017)Google Scholar
  74. 74.
    Kang, S.-P., Kwon, S.-J.: Effects of red mud and alkali-activated slag cement on efflorescence in cement mortar. Constr. Build. Mater. 133, 459–467 (2017)Google Scholar
  75. 75.
    Li, Y.-C., Min, X.-B., Ke, Y., et al.: Utilization of red mud and Pb/Zn smelter waste for the synthesis of a red mud-based cementitious material. J. Hazard. Mater. 344, 343–349 (2018)CrossRefGoogle Scholar
  76. 76.
    Minard, H., Garrault, S., Regnaud, L., et al.: Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cem. Concr. Res. 37(10), 1418–1426 (2007)CrossRefGoogle Scholar
  77. 77.
    Pontikes, Y., Angelopoulos, G.N.: Bauxite residue in cement and cementitious applications: current status and a possible way forward. Resour. Conserv. Recycl. 73, 53–63 (2013)CrossRefGoogle Scholar
  78. 78.
    Coussy, S., Paktunc, D., Rose, J., et al.: Arsenic speciation in cemented paste backfills and synthetic calcium–silicate–hydrates. Miner. Eng. 39, 51–61 (2012)Google Scholar
  79. 79.
    Moon, D.H., Dermatas, D.: Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions. J. Hazard. Mater. 141, 388–394 (2007)CrossRefGoogle Scholar
  80. 80.
    Phair, J.W., Van Deventer, J.S.J.: Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process. 66, 121–143 (2002)CrossRefGoogle Scholar
  81. 81.
    Liu, X., Zhang, N.: Utilization of red mud in cement production: a review. Waste Manag. Res. 29, 1053–1063 (2011)CrossRefGoogle Scholar
  82. 82.
    Singh, M., Upadhayay, S.N., Prasad, P.M.: Preperation of iron rich cements using red mud. Cem. Concr. Res. 27, 1037–1046 (1997)CrossRefGoogle Scholar
  83. 83.
    Zhang, M., Yang, C., Zhao, M., et al.: Immobilization potential of Cr(VI) in sodium hydroxide activated slag pastes. J. Hazard. Mater. 321, 281–289 (2017)Google Scholar
  84. 84.
    Andini, S., Cioffi, R., Colangelo, F., et al.: Coal fly ash as raw material for the manufacture of geopolymer-based products. Waste Manag. 28, 416–423 (2008)Google Scholar
  85. 85.
    Goetz-Neunhoeffer, F., Neubauer, J., Schwesig, P.: Mineralogical characteristics of Ettringites synthesized from solutions and suspensions. Cem. Concr. Res. 36, 65–70 (2006)Google Scholar
  86. 86.
    Bhatnagar, A., Minocha, A.K.: Utilization of industrial waste for cadmium removal from water and immobilization in cement. Chem. Eng. J. 150, 145–151 (2009)Google Scholar
  87. 87.
    Choi, W.H., Lee, S.R., Park, J.Y.: Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag. 29(5), 1766–1771 (2009)Google Scholar
  88. 88.
    Miller, J., Akhter, H., Cartledge, F.K., et al.: Treatment of arsenic-contaminated soils. II: Treatability study and remediation. J. Environ. Eng. 126(11), 1004–1012 (2000)Google Scholar
  89. 89.
    Kuo, Y.M., Wang, J.W., Chao, H.R., et al.: Effect of cooling rate and basicity during vitrification of fly ash: Part 2. On the chemical stability and acid resistance of slags. J. Hazard. Mater. 152(2), 554–562 (2008)Google Scholar
  90. 90.
    Joseph, K., Kutty, K.G., Chandramohan, P., et al.: Studies on the synthesis and characterization of cesium-containing iron phosphate glasses. J. Nucl. Mater. 384(3), 262–267 (2009)CrossRefGoogle Scholar
  91. 91.
    Reis, S.T., Karabulut, M., Day, D.E.: Structural features and properties of lead-iron-phosphate nuclear wasteforms. J. Nucl. Mater. 304(2–3), 87–95 (2002)CrossRefGoogle Scholar
  92. 92.
    Chakraborty, S., Arora, A.K.: Temperature evolution of Raman spectrum of iron phosphate glass. Vib. Spectrosc. 61, 99–104 (2012)CrossRefGoogle Scholar
  93. 93.
    Bingham, P., Hand, R., Forder, S.: Doping of iron phosphate glasses with Al2O3, SiO2 or B2O3 for improved thermal stability. Mater. Res. Bull. 41(9), 1622–1630 (2006)CrossRefGoogle Scholar
  94. 94.
    Shi, M., Liang, Y., Chai, L., et al.: Raman and FTIR spectra of modified iron phosphate glasses containing arsenic. J. Mol. Struct. 1081, 389–394 (2015)CrossRefGoogle Scholar
  95. 95.
    Krishna, S.B.M., Babu, A.R., Rajya Sree, C., et al.: Influence of molybdenum ions on the structure of ZnO–As2O3–Sb2O3 glass system by means of spectroscopic and dielectric studies. J. Non-Cryst. Solids 356, 1754–1761 (2010)Google Scholar
  96. 96.
    Leist, M., Casey, R.J., Caridi, D.: The management of arsenic wastes: problems and prospects. J. Hazard. Mater. 76, 125–138 (2000)CrossRefGoogle Scholar
  97. 97.
    Tang, Y., Chan, S.-W., Shih, K.: Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials. Waste Manag. 34, 1085–1091 (2014)CrossRefGoogle Scholar
  98. 98.
    Li, H., Yang, X., Xu, W., et al.: Application of dry composite electroplating sludge into preparation of cement-based decorative mortar as green pigment. J. Clean. Prod. 66, 101–106 (2014)CrossRefGoogle Scholar
  99. 99.
    Huang, R., Huang, K.-L., Lin, Z.-Y., et al.: Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. J. Environ. Manag. 129, 586–592 (2013)CrossRefGoogle Scholar
  100. 100.
    Chen, Y.-L., Shih, P.-H., Chiang, L.-C., et al.: The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. J. Hazard. Mater. 170, 443–448 (2009)CrossRefGoogle Scholar
  101. 101.
    wen Zhao, Z., yuan Chai, L., Peng, B., et al.: Arsenic vitrification by copper slag based glass: mechanism and stability studies. J. Non-Cryst. Solids 466, 21–28 (2017)Google Scholar
  102. 102.
    Zhao, Z., Chai, L., Liang, Y., et al.: The vitrification of arsenic-rich residue using iron phosphate glass. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. Part B 58(3), 109–114 (2017)CrossRefGoogle Scholar
  103. 103.
    Reis, S., Karabulut, M., Day, D.: Chemical durability and structure of zinc–iron phosphate glasses. J. Non-Cryst. Solids 292, 150–157 (2001)CrossRefGoogle Scholar
  104. 104.
    Zhao, Z., Liang, Y., Min, X., et al.: The effects of antimony oxide on the structure of iron phosphate glass for the immobilisation of arsenic. Glass Technol. Eur. J. Glass Sci. Technol. Part A 56, 196–202 (2015)CrossRefGoogle Scholar
  105. 105.
    Karamberi, A., Orkopoulos, K., Moutsatsou, A.: Synthesis of glass-ceramics using glass cullet and vitrified industrial by-products. J. Eur. Ceram. Soc. 27, 629–636 (2007)CrossRefGoogle Scholar
  106. 106.
    Moustakas, K., Mavropoulos, A., Katsou, E., et al.: Leaching properties of slag generated by a gasification/vitrification unit: the role of pH, particle size, contact time and cooling method used. J. Hazard. Mater. 207, 44–50 (2012)CrossRefGoogle Scholar
  107. 107.
    Moguš-Milanković, A., Šantić, A., Reis, S.T., et al.: Studies of lead–iron phosphate glasses by Raman, Mössbauer and impedance spectroscopy. J. Non-Cryst. Solids 351, 3246–3258 (2005)CrossRefGoogle Scholar
  108. 108.
    Rosli, A.N., Zabidi, N.A., Kassim, H.A., et al.: Ab initio calculation of vibrational frequencies of AsO glass. J. Non-Cryst. Solids 356, 428–433 (2010)CrossRefGoogle Scholar
  109. 109.
    Gilliam, S.J., Merrow, C.N., Kirkby, S.J., et al.: Raman spectroscopy of arsenolite: crystalline cubic As4O6. J. Solid State Chem. 173, 54–58 (2003)CrossRefGoogle Scholar
  110. 110.
    Zhang, L., Brow, R.K., Schlesinger, M.E., et al.: Glass formation from iron-rich phosphate melts. J. Non-Cryst. Solids 356, 1252–1257 (2010)CrossRefGoogle Scholar
  111. 111.
    Lai, Y.M., Liang, X.F., Yang, S.Y., et al.: Raman spectra study of iron phosphate glasses with sodium sulfate. J. Mol. Struct. 10(13), 134–137 (2012)CrossRefGoogle Scholar
  112. 112.
    Silva, A., Correia, R., Oliveira, J., et al.: Structural characterization of TiO2–P2O5–CaO glasses by spectroscopy. J. Eur. Ceram. Soc. 30, 1253–1258 (2010)CrossRefGoogle Scholar
  113. 113.
    Couchman, P., Karasz, F.: A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11, 117–119 (1978)CrossRefGoogle Scholar
  114. 114.
    Gayathri Devi, A.V., Rajendran, V., Rajendran, N.: Structure, solubility and bioactivity in TiO2-doped phosphate-based bioglasses and glass–ceramics. Mater. Chem. Phys. 124, 312–318 (2010)Google Scholar
  115. 115.
    Qian, B., Liang, X., Wang, C., et al.: Structure and properties of calcium iron phosphate glasses. J. Nucl. Mater. 443, 140–144 (2013)CrossRefGoogle Scholar
  116. 116.
    Glasser, F.: Chemistry of cement-solidified waste forms. Chem. Microstruct. Solidified Waste Forms 1–39 (1993)Google Scholar
  117. 117.
    Phenrat, T., Marhaba, T.F., Rachakornkij, M.: A SEM and X-ray study for investigation of solidified/stabilized arsenic–iron hydroxide sludge. J. Hazard. Mater. 118, 185–195 (2005)CrossRefGoogle Scholar
  118. 118.
    Myneni, S.C., Traina, S.J., Logan, T.J., et al.: Oxyanion behavior in alkaline environments: sorption and desorption of arsenate in ettringite. Environ. Sci. Technol. 31, 1761–1768 (1997)CrossRefGoogle Scholar
  119. 119.
    Yoon, I.-H., Moon, D.H., Kim, K.-W., et al.: Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J. Environ. Manag. 91, 2322–2328 (2010)CrossRefGoogle Scholar
  120. 120.
    Moon, D.H., Dermatas, D.: Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions. J. Hazard. Mater. 141, 388–394 (2007)CrossRefGoogle Scholar
  121. 121.
    Sullivan, C., Tyrer, M., Cheeseman, C.R., et al.: Disposal of water treatment wastes containing arsenic—a review. Sci. Total Environ. 408, 1770–1778 (2010)CrossRefGoogle Scholar
  122. 122.
    Colombo, P., Brusatin, G., Bernardo, E., et al.: Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr. Opin. Solid State Mater. Sci. 7, 225–239 (2003)CrossRefGoogle Scholar
  123. 123.
    Park, Y.J., Heo, J.: Vitrification of fly ash from municipal solid waste incinerator. J. Hazard. Mater. 91, 83–93 (2002)CrossRefGoogle Scholar
  124. 124.
    El-Shimy, Y.N., Amin, S.K., El-Sherbiny, S.A., et al.: The use of cullet in the manufacture of vitrified clay pipes. Constr. Build. Mater. 73, 452–457 (2014)CrossRefGoogle Scholar
  125. 125.
    Federico, L., Chidiac, S.: Waste glass as a supplementary cementitious material in concrete–critical review of treatment methods. Cem. Concr. Compos. 31, 606–610 (2009)CrossRefGoogle Scholar
  126. 126.
    Bernardo, E., Doyle, J., Hampshire, S.: Sintered feldspar glass–ceramics and glass–ceramic matrix composites. Ceram. Int. 34, 2037–2042 (2008)CrossRefGoogle Scholar
  127. 127.
    Dalby, K.N., Nesbitt, H.W., Zakaznova-Herzog, V.P., et al.: Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS: implications for O and Si speciation. Geochim. Cosmochim. Acta 71, 4297–4313 (2007)CrossRefGoogle Scholar
  128. 128.
    Ribeiro, A.S.M., Monteiro, R.C.C., Davim, E.J.R., et al.: Ash from a pulp mill boiler—characterisation and vitrification. J. Hazard. Mater. 179, 303–308 (2010)CrossRefGoogle Scholar
  129. 129.
    Hassaan, M., Saudi, H., Saad, H.M., et al.: Structural study of glass and glass ceramics prepared with Egyptian Basalt. Silicon 7, 383–391 (2015)CrossRefGoogle Scholar
  130. 130.
    Contreras, M.L., Arostegui, J.M., Armesto, L.: Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations. Fuel 88, 539–546 (2009)CrossRefGoogle Scholar
  131. 131.
    Sitarz, M., Mozgawa, W., Handke, M.: Rings in the structure of silicate glasses. J. Mol. Struct. 511, 281–285 (1999)CrossRefGoogle Scholar
  132. 132.
    Merzbacher, C.I., White, W.B.: The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy. J. Non-Cryst. Solids 130, 18–34 (1991)CrossRefGoogle Scholar
  133. 133.
    Lubas, M., Sitarz, M., Fojud, Z., et al.: Structure of multicomponent SiO2–Al2O3–Fe2O3–CaO–MgO glasses for the preparation of fibrous insulating materials. J. Mol. Struct. 744, 615–619 (2005)CrossRefGoogle Scholar
  134. 134.
    Villegas, M., Navarro, J.F.: Characterization of B2O3-SiO2 glasses prepared via sol-gel. J. Mater. Sci. 23, 2464–2478 (1988)CrossRefGoogle Scholar
  135. 135.
    MacDonald, S.A., Schardt, C.R., Masiello, D.J., et al.: Dispersion analysis of FTIR reflection measurements in silicate glasses. J. Non-Cryst. Solids 275, 72–82 (2000)CrossRefGoogle Scholar
  136. 136.
    De Ferri, L., Bersani, D., Lorenzi, A., et al.: Structural and vibrational characterization of medieval like glass samples. J. Non-Cryst. Solids 358, 814–819 (2012)CrossRefGoogle Scholar
  137. 137.
    Ibrahim, M.M., Fanny, M.A., Hassaan, M., et al.: Optical, FTIR and DC conductivity of soda lime silicate glass containing cement dust and transition metal ions. Silicon 8(3), 443–453 (2016)CrossRefGoogle Scholar
  138. 138.
    ElBatal, F., Selim, M., Marzouk, S., et al.: UV-vis absorption of the transition metal-doped SiO2–B2O3–Na2O glasses. Phys. B 398, 126–134 (2007)CrossRefGoogle Scholar
  139. 139.
    Akatov, A., Nikonov, B., Omel’yanenko, B., et al.: Structure of borosilicate glassy materials with high concentrations of sodium, iron, and aluminum oxides. Glass Phys. Chem. 35, 245–259 (2009)Google Scholar
  140. 140.
    Serra, J., Gonzalez, P., Liste, S., et al.: Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J. Mater. Sci. Mater. Med. 13, 1221–1225 (2002)CrossRefGoogle Scholar
  141. 141.
    Brotikovskii, O., Pen, K., Cherntsov, S.: IR spectroscopic investigation of the formation and properties of lead-silicate glass films on silicon surfaces. J. Appl. Spectrosc. 32, 365–369 (1980)CrossRefGoogle Scholar
  142. 142.
    zur Loye, K.D., Latshaw, A.M., Smith, M.D., et al.: Synthesis and crystal structure of sodium arsenate oxyhydroxide: Na4(AsO4)OH. J. Chem. Crystallogr. 45, 20–25 (2015)Google Scholar
  143. 143.
    Mekki, A., Khattak, G., Wenger, L.: Structure and magnetic properties of lead vanadate glasses. J. Non-Cryst. Solids 330, 156–167 (2003)CrossRefGoogle Scholar
  144. 144.
    Sawyer, R., Nesbitt, H.W., Secco, R.A.: High resolution X-ray Photoelectron Spectroscopy (XPS) study of K2O–SiO2 glasses: Evidence for three types of O and at least two types of Si. J. Non-Cryst. Solids 358, 290–302 (2012)CrossRefGoogle Scholar
  145. 145.
    Gresch, R., Müller-Warmuth, W., Dutz, H.: X-ray photoelectron spectroscopy of sodium phosphate glasses. J. Non-Cryst. Solids 34, 127–136 (1979)CrossRefGoogle Scholar
  146. 146.
    Minami, T., Hayashi, A., Tatsumisago, M.: Preparation and characterization of lithium ion-conducting oxysulfide glasses. Solid State Ion. 136, 1015–1023 (2000)CrossRefGoogle Scholar
  147. 147.
    Flambard, A., Videau, J.-J., Delevoye, L., et al.: Structure and nonlinear optical properties of sodium–niobium phosphate glasses. J. Non-Cryst. Solids 354, 3540–3547 (2008)CrossRefGoogle Scholar
  148. 148.
    Fu, Z., Wu, F., Chen, L., et al.: Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China. Environ. Pollut. (2016)Google Scholar
  149. 149.
    Guo, X., Song, Y.: Substance flow analysis of copper in China. Resour. Conserv. Recycl. 52(6), 874–882 (2008)CrossRefGoogle Scholar
  150. 150.
    Kavouras, P., Komninou, P., Chrissafis, K., et al.: Microstructural changes of processed vitrified solid waste products. J. Eur. Ceram. Soc. 23(8), 1305–1311 (2003)CrossRefGoogle Scholar
  151. 151.
    El-Damrawi, G., El-Egili, K.: Characterization of novel CeO2–B2O3 glasses, structure and properties. Phys. B 299(1), 180–186 (2001)CrossRefGoogle Scholar
  152. 152.
    El-Batal, F.H., Khalil, E.M., Hamdy, Y.M., et al.: FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides. Silicon 2(1), 41–47 (2010)CrossRefGoogle Scholar
  153. 153.
    Wang, M., Mei, L.I., Cheng, J., et al.: Free volume and structure of Gd2O3 and Y2O3 co-doped silicate glasses. J. Non-Cryst. Solids 379, 145–149 (2013)CrossRefGoogle Scholar
  154. 154.
    Lu, M., Wang, F., Chen, K., et al.: The crystallization and structure features of barium-iron phosphate glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 1–6 (2015)CrossRefGoogle Scholar
  155. 155.
    Husung, R.D., Doremus, R.H.: The infrared transmission spectra of four silicate glasses before and after exposure to water. J. Mater. Res. 5(10), 2209–2217 (1990)CrossRefGoogle Scholar
  156. 156.
    Steger, E.: Spektroskopische Untersuchungen zum Bindungszustand in Phosphorsäurederivaten Amidoderivate. Zeitschrift Für Elektrochemie Berichte Der Bunsengesellschaft Für Physikalische Chemie 61(61), 1004–1007 (2015)Google Scholar
  157. 157.
    Mansour, E.: Semi-quantitative analysis for FTIR spectra of Al2O3-PbO-B2O3-SiO2 glasses. J. Non-Cryst. Solids 358(3), 454–460 (2012)CrossRefGoogle Scholar
  158. 158.
    Mekki, A., Holland, D., Mcconville, C.F., et al.: An XPS study of iron sodium silicate glass surfaces. J. Non-Cryst. Solids 208(208), 267–276 (1996)CrossRefGoogle Scholar
  159. 159.
    Pauling, L.: The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54(9), 3570–3582 (1931)Google Scholar
  160. 160.
    Wang, P.W., Zhang, L.: Structural role of lead in lead silicate glasses derived from XPS spectra. J. Non-Cryst. Solids 194(1–2), 129–134 (1996)CrossRefGoogle Scholar
  161. 161.
    Serra, J., González, P., Liste, S., et al.: FTIR and XPS studies of bioactive silica based glasses. J. Non-Cryst. Solids 332(1), 20–27 (2003)CrossRefGoogle Scholar
  162. 162.
    Raghavaiah, B.V., Laxmikanth, C., Veeraiah, N.: Spectroscopic studies of titanium ions in PbO–Sb2O3–As2O3 glass system. Opt. Commun. 235(4–6), 341–349 (2004)CrossRefGoogle Scholar
  163. 163.
    Lee, K., Zimmerman, J.D., Xiao, X., et al.: Reuse of GaAs substrates for epitaxial lift-off by employing protection layers. J. Appl. Phys. 111(3), 84–327 (2012)CrossRefGoogle Scholar
  164. 164.
    Imran, M.M.A., Saxena, N.S., Bhandari, D., et al.: Transition phenomena, crystallization kinetics and enthalpy released in binary Se100–xInx (x = 2,4 and 10) semiconducting glasses. Phys. Status Solidi 181(2), 357–368 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiao-Bo Min
    • 1
  • Li-Yuan Chai
    • 1
    • 2
  • Yan-Jie Liang
    • 1
    Email author
  • Yong Ke
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP)ChangshaChina

Personalised recommendations