Arsenic Behaviors and Pollution Control Technologies in Aqueous Solution

  • Li-Yuan ChaiEmail author
  • Qing-Zhu Li
  • Qing-Wei Wang
  • Yun-Yan Wang
  • Wei-Chun Yang
  • Hai-Ying Wang


The removal of arsenic from solutions has been investigated for decades and continues to be a topic of intense research studies. Many arsenic treatment techniques have been recommended, but paucity still exists where practically feasible and less expensive and eco-friendly technique for remediation of arsenic is urgently required. Redox behavior and chemical species of arsenic in acidic aqueous system, photochemical oxidation of trivalent arsenic and the molecular reaction mechanism, formation mechanism and characteristics of tooeleite are stated. Cascade sulfide precipitation and separation of copper from high-arsenic acid wastewater, and a new process to remove arsenic efficiently by Fe3O4 hierarchical particles via adsorption in aqueous solution are well detailed.


  1. 1.
    Luo, T., Cui, J., Hu, S., et al.: Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ. Sci. Technol. 44(23), 9094–9098 (2010)CrossRefGoogle Scholar
  2. 2.
    Baig, J.A., Kazi, T.G., Shah, A.Q., et al.: Speciation and evaluation of arsenic in surface water and groundwater samples: a multivariate case study. Ecotoxicol. Environ. Saf. 73(5), 914–923 (2010)CrossRefGoogle Scholar
  3. 3.
    Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58(1), 201–235 (2002)CrossRefGoogle Scholar
  4. 4.
    Riveros, P.A., Dutrizac, J.E., Spencer, P.: Arsenic disposal practices in the metallurgical industry. Can. Metall. Q. 40(4), 395–420 (2001)CrossRefGoogle Scholar
  5. 5.
    Emett, M.T., Khoe, G.H.: Photochemical oxidation of arsenic by oxygen and iron in acidic solutions. Water Res. 35(3), 649–656 (2001)CrossRefGoogle Scholar
  6. 6.
    Kim, M.J., Nriagu, J.: Oxidation of arsenite in groundwater using ozone and oxygen. Sci. Total Environ. 247(1), 71–79 (2000)CrossRefGoogle Scholar
  7. 7.
    Jia, Y.F., Zhang, D.N., Pan, R.R., et al.: A novel two-step coprecipitation process using Fe (III) and Al (III) for the removal and immobilization of arsenate from acidic aqueous solution. Water Res. 46(2), 500–508 (2012)CrossRefGoogle Scholar
  8. 8.
    Cui, J.L., Jing, C.Y., Che, D.S., et al.: Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: a comparative and mechanistic study. J. Environ. Sci. 32, 42–53 (2015)CrossRefGoogle Scholar
  9. 9.
    Mertens, J., Casentini, B., Masiond, A., et al.: Polyaluminum chloride with high Al30 content as removal agent for arsenic-contaminated well water. Water Res. 46(1), 53–62 (2012)CrossRefGoogle Scholar
  10. 10.
    An, B., Liang, Q.Q., Zhao, D.Y.: Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Res. 45(5), 1961–1972 (2011)CrossRefGoogle Scholar
  11. 11.
    Pakzadeh, B., Batista, J.R.: Surface complexation modeling of the removal of arsenic from ion-exchange waste brines with ferric chloride. J. Hazard. Mater. 188(1–3), 399–407 (2011)CrossRefGoogle Scholar
  12. 12.
    Zhang, G.S., Liu, F.D., Liu, H.J., et al.: Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Environ. Sci. Technol. 48(17), 10316–10322 (2014)CrossRefGoogle Scholar
  13. 13.
    Dou, X.M., Mohan, D., Pittman Jr., C.U.: Arsenate adsorption on three types of granular schwertmannite. Water Res. 47(9), 2938–2948 (2013)CrossRefGoogle Scholar
  14. 14.
    Na, L., Maohong, F., Johannes, V.L., et al.: Oxidation of As (III) by potassium permanganate. J. Environ. Sci. 19(7), 783–786 (2007)Google Scholar
  15. 15.
    Sorlini, S., Gialdini, F.: Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Res. 44(19), 5653–5659 (2010)CrossRefGoogle Scholar
  16. 16.
    Lee, Y.H., Um, I., Yoon, J.: Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ. Sci. Technol. 37(24), 5750–5756 (2003)CrossRefGoogle Scholar
  17. 17.
    Molnár, L., Virčíkova, E., Lech, P.: Experimental study of As (III) oxidation by hydrogen peroxide. Hydrometallurgy 35(1), 1–9 (1994)Google Scholar
  18. 18.
    Hug, S.J., Leupin, O.: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction. Environ. Sci. Technol. 37(12), 2734–2742 (2003)CrossRefGoogle Scholar
  19. 19.
    Laat, J.D., Le, T.G.: Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions. Environ. Sci. Technol. 39(6), 1811–1818 (2005)CrossRefGoogle Scholar
  20. 20.
    Sorlini, S., Gialdini, F., Stefan, M.: Arsenic oxidation by UV radiation combined with hydrogen peroxide. Water Sci. Technol. 61(2), 339–344 (2010)CrossRefGoogle Scholar
  21. 21.
    Bissen, M., Vieillard-Baron, M.-M., Schindelin, A.J., et al.: TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. Chemosphere 44(4), 751–757 (2001)Google Scholar
  22. 22.
    Klaning, U.K., Bielski, B.H.J., Sehested, K.: Arsenic(IV). A pulse-radiolysis study. Inorg. Chem. 28(14), 2717–2724 (1989)CrossRefGoogle Scholar
  23. 23.
    Rastogi, A., Al-Abed, S.R., Dionysiou, D.D.: Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B 85(3–4), 171–179 (2009)CrossRefGoogle Scholar
  24. 24.
    Gomathi Devi, L., Girish Kumar, S., Mohan Reddy, K., et al.: Photo degradation of methyl orange an azo dye by advanced fenton process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. J. Hazard. Mater. 164(2–3), 459–467 (2009)Google Scholar
  25. 25.
    Yang, Y., Pignatello, J.J., Ma, J., Mitch, W.A.: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol. 48(4), 2344–2351 (2014)Google Scholar
  26. 26.
    Hori, H., Hayakawa, E., Einaga, H., et al.: Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environ. Sci. Technol. 38(22), 6118–6124 (2004)CrossRefGoogle Scholar
  27. 27.
    Schröder, H.F., Meesters, R.J.W.: Stability of fluorinated surfactants in advanced oxidation processes–a follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. J. Chromatogr. A 1082(1), 110–119 (2005)Google Scholar
  28. 28.
    Zhang, B.T., Zhang, Y., Teng, Y.G., et al.: Sulfate radical and its application in decontamination technologies. Crit. Rev. Environ. Sci. Technol. 45(16), 1756–1800 (2015)CrossRefGoogle Scholar
  29. 29.
    Lei, Z., Wei, Z., Jinfeng, Z., et al.: Ferrous-activated persulfate oxidation of arsenic (III) and diuron in aquatic system. J. Hazard. Mater. 263(Part 2), 422–430 (2013)Google Scholar
  30. 30.
    Jing, X., Wei, D., Feng, W., et al.: Rapid catalytic oxidation of arsenite to arsenate in an iron (III)/sulfite system under visible light. Appl. Catal. B Environ. 186, 56–61 (2016)Google Scholar
  31. 31.
    Neppolian, B., Doronila, A., Ashokkumar, M.: Sonochemical oxidation of arsenic (III) to arsenic (V) using potassium peroxydisulfate as an oxidizing agent. Water Res. 44(12), 3687–3695 (2010)CrossRefGoogle Scholar
  32. 32.
    Neppolian, B., Celik, E., Choi, H.: Photochemical oxidation of arsenic(III) to arsenic(V) using peroxydisulfate ions as an oxidizing agent. Environ. Sci. Technol. 42(16), 6179–6184 (2008)CrossRefGoogle Scholar
  33. 33.
    Woods, R., Kolthoff, I.M., Meehan, E.J.: Arsenic(IV) as an intermediate in the induced oxidation of arsenic(III) by the iron(II)- persulfate reaction and the photoreduction of iron(III). I. Absence of oxygen. J. Am. Chem. Soc. 85(16), 2385–2390 (1963)Google Scholar
  34. 34.
    Woods, R., Kolthoff, I.M., Meehan, E.J.: Arsenic(IV) as an intermediate in the iron(III) and copper(II) catalyzed arsenic(III)-per sulfate reaction. Inorg. Chem. 4(5), 697–704 (1965)CrossRefGoogle Scholar
  35. 35.
    Takahashi, M., Chiba, K., Li, P.: Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. J. Phys. Chem. B 111(39), 11443–11446 (2007)CrossRefGoogle Scholar
  36. 36.
    Li, Y., Cai, X.J., Guo, J.W., et al.: UV-induced photoactive adsorption mechanism of arsenite by anatase TiO2 with high surface hydroxyl group density. Colloids Surf. A 462, 202–210 (2014)CrossRefGoogle Scholar
  37. 37.
    Robins, R.G.: The solubility of metal arsenates. Metall. Trans. B 12(1), 103–109 (1981)CrossRefGoogle Scholar
  38. 38.
    Trigub, A.L., Tagirov, B.R., Kvashnina, K.O., et al.: X-ray spectroscopy study of the chemical state in “invisible” Au in synthetic minerals in the Fe-As-S system. Am. Miner. 102(5), 1057–1065 (2017)Google Scholar
  39. 39.
    Gonzalez-Contreras, P., Weijma, J., Buisman, C.J.N.: Bioscorodite crystallization in an airlift reactor for arsenic removal. Cryst. Growth Des. 12(5), 2699–2706 (2012)CrossRefGoogle Scholar
  40. 40.
    Fujita, T., Taguchi, R., Abumiya, M., et al.: Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Hydrometallurgy 90(2–4), 92–102 (2008)CrossRefGoogle Scholar
  41. 41.
    Paktunc, D., Dutrizac, J., Gertsman, V.: Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochim. Cosmochim. Acta 72(11), 2649–2672 (2008)CrossRefGoogle Scholar
  42. 42.
    Dutrizac, J.E., Jambor, J.L.: The synthesis of crystalline scorodite, FeAsO4·2H2O. Hydrometallurgy 19(3), 377–384 (1988)CrossRefGoogle Scholar
  43. 43.
    Yang, J.Q., Chai, L.Y., Yue, M.Q., et al.: Complexation of arsenate with ferric ion in aqueous solutions. RSC Adv. 5(126), 103936–103942 (2015)CrossRefGoogle Scholar
  44. 44.
    Sergeyeva, E.I., Khodakovskiy, I.L.: Physicochemical conditions of formation of native arsenic in hydrothermal deposits. Geochem. Int. 846–859 (1969)Google Scholar
  45. 45.
    Technical Note 270-7. Schumm, R.H., Wagman, D.D., Evans, W.H., et al.: Selected Values of Chemical Thermodynamic Properties. National Bureau of Standards (1973)Google Scholar
  46. 46.
    Wagman, D.D., Evans, W.H., Parker, V.B., et al.: Erratum: The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data 18(4), 1807–1812 (1989)CrossRefGoogle Scholar
  47. 47.
    Bard, A.J., Parsons, R., Jordan, J.: Standard Potentials in Aqueous Solution. CRC Press, New York (1985)Google Scholar
  48. 48.
    Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52(8), 2009–2036 (1988)CrossRefGoogle Scholar
  49. 49.
    Nordstrom, D.K., Archer, D.G.: Arsenic Thermodynamic Data and Environmental Geochemistry. Arsenic in Ground Water, pp. 1–25. Springer, (2003)Google Scholar
  50. 50.
    Jin-qin, Y.A.N.G., Li-yuan, C.H.A.I., Qing-zhu, L.I., et al.: Redox behavior and chemical species of arsenic in acidic aqueous system. Trans. Nonferrous Species Arsen. Acidic Aqueous 27(9), 2063–2072 (2017)Google Scholar
  51. 51.
    Long, H.: A Fundamental Study of the Acidic Pressure Oxidation of Orpiment and Pyrite at High Temperature. University of British Columbia, British Columbia (2000)Google Scholar
  52. 52.
    Masscheleyn, P.H., Delaune, R.D., Patrick, J.R.W.H.: Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25(8), 1414–1419 (1991)CrossRefGoogle Scholar
  53. 53.
    Pieczaba, E., Sanak-rydlewska, S., Zieba, D.: Removal of arsenic from aqueous solutions by the method of precipitate flotation. Arch. Min. Sci. 50(1), 131–142 (2005)Google Scholar
  54. 54.
    Yazdi, M.R.S., Darban, A.K.: Effect of arsenic speciation on remediation of arsenic-contaminated soils and waters. In: 15th International Conference on Heavy Metals in the Environment (ICHMET), Gdansh, pp. 492–495 (2010)Google Scholar
  55. 55.
    Yi, X.W.: An empirical estimation of standard entropy for some complex cationa and the E-pH diagram of As-H2O system at elevated temperature. J. Kunming Univ. Sci. Technol. 3, 58–73 (1982)Google Scholar
  56. 56.
    Debusschere, L., Demesmay, C., Rocca, J.L.: Arsenic speciation by coupling capillary zone electrophoresis with mass spectrometry. Chromatographia 51(5–6), 262–268 (2000)CrossRefGoogle Scholar
  57. 57.
    Gout, R., Pokrovski, G., Schott, J., et al.: Raman spectroscopic study of arsenic speciation in aqueous solutions up to 275 °C. J. Raman Spectrosc. 28(9), 725–730 (1997)CrossRefGoogle Scholar
  58. 58.
    Loehr, T.M., Plane, R.A.: Raman spectra and structures of arsenious acid and arsenites in aqueous solution. Inorg. Chem. 7(9), 1708–1714 (1968)CrossRefGoogle Scholar
  59. 59.
    Mähler, J., Persson, I., Herbert, R.B.: Hydration of arsenic oxyacid species. Dalton Trans. 42(5), 1364–1377 (2013)CrossRefGoogle Scholar
  60. 60.
    Bu, L.J., Gu, T., Ma, Y.X., et al.: Enhanced cathodic preconcentration of As(0) at Au and Pt electrodes for anodic stripping voltammetry analysis of As(III) and As(V). J. Phys. Chem. C 119(21), 11400–11409 (2015)CrossRefGoogle Scholar
  61. 61.
    Marini, L., Accornero, M.: Prediction of the thermodynamic properties of metal–arsenate and metal–arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environ. Geol. 52(7), 1343–1363 (2007)CrossRefGoogle Scholar
  62. 62.
    Pettine, M., Campanella, L., Millero, F.J.: Arsenite oxidation by H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 63(18), 2727–2735 (1999)CrossRefGoogle Scholar
  63. 63.
    Vink, B.W.: Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem. Geol. 130(1–2), 21–30 (1996)CrossRefGoogle Scholar
  64. 64.
    Marini, L., Accornero, M.: Erratum to: Prediction of the thermodynamic properties of metal–arsenate and metal–arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environ. Earth Sci. 59(7), 1601–1606 (2010)CrossRefGoogle Scholar
  65. 65.
    Knight, R.J., Sylva, R.N.: Spectrophotometric investigation of iron (III) hydrolysis in light and heavy water at 25 °C. J. Inorg. Nucl. Chem. 37(3), 779–783 (1975)CrossRefGoogle Scholar
  66. 66.
    Langmuir, D., Mahoney, J., Rowson, J.: Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochim. Cosmochim. Acta 70(12), 2942–2956 (2006)CrossRefGoogle Scholar
  67. 67.
    Robins, R.G.: The stability and solubility of ferric arsenate: an update. In: EPD Congress’90, pp. 93–104 (1990)Google Scholar
  68. 68.
    Whiting, K.S.: The Thermodynamics and Geochemistry of Arsenic with Application to Subsurface Waters at the Sharon Steel Superfund Site at Midvale, Utah. Colorado School of Mines, Midvale (1992)Google Scholar
  69. 69.
    Hug, S.J., Canonica, L., Wegelin, M., et al.: Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environ. Sci. Technol. 35(10), 2114–2121 (2001)CrossRefGoogle Scholar
  70. 70.
    Wang, K.L., Jia, Y.F.: Effects of temperature and pH on the transformation of ferric arsenate to scorodite in acidic solution. Adv. Mater. Res. 726–731, 2165–2168 (2013)CrossRefGoogle Scholar
  71. 71.
    Paktunc, D., Dutrizac, J., Gertsman, V.: Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochim. Cosmochim. Acta 72(11), 2649–2672 (2008)CrossRefGoogle Scholar
  72. 72.
    Welham, N.J., Malatt, K.A., Vukcevic, S.: The effect of solution speciation on iron–sulfur–arsenic–chloride systems at 298 K. Hydrometallurgy 57(3), 209–223 (2000)CrossRefGoogle Scholar
  73. 73.
    Raposo, J.C., Olazabal, M.A., Madariaga, J.M.: Complexation and precipitation of arsenate and iron species in sodium perchlorate solutions at 25 °C. J. Solut. Chem. 35(1), 79–94 (2006)CrossRefGoogle Scholar
  74. 74.
    Khoe, G.H., Robins, R.G.: ChemInform abstract: the complexation of iron(III) with sulfate, phosphate, or arsenate ion in sodium nitrate medium at 25 °C. J. Chem. Soc. Dalton Trans. 8, 2015–2021 (1988)CrossRefGoogle Scholar
  75. 75.
    Chai, L., Yang, J., Zhang, N., et al.: Structure and spectroscopic study of aqueous Fe(III)-As(V) complexes using UV-Vis, XAS and DFT-TDDFT. Chemosphere 182, 595–604 (2017)CrossRefGoogle Scholar
  76. 76.
    Ikeda-Ohno, A., Hennig, C., Tsushima, S., et al.: Speciation and structural study of U(IV) and (VI) in perchloric and nitric acid solutions. Inorg. Chem. 48(15), 7201–7210 (2009)CrossRefGoogle Scholar
  77. 77.
    Stefansson, A., Lemke, K.H., Seward, T.M.: Iron(III) complexation in hydrothermal solutionse an experimental and theoretical study. In: 15th International Conference on the Properties of Water and Steam, Berlin (2008)Google Scholar
  78. 78.
    Chen, Z., Zhu, Y.G., Liu, W.J., et al.: Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 165(1), 91–97 (2005)CrossRefGoogle Scholar
  79. 79.
    Glastras, M.: The Precipitation of Arsenic from Aqueous Solutions. University of New South Wales, Sydney (1988)Google Scholar
  80. 80.
    Lee, J.S., Nriagu, J.O.: Stability constants for metal arsenates. Environ. Chem. 4(2), 123–133 (2007)CrossRefGoogle Scholar
  81. 81.
    Nordstrom, D.K., Parks, G.A.: Solubility and stability of scorodite, FeAsO4•2H2O: discussion. Am. Miner. 72(7–8), 849–851 (1987)Google Scholar
  82. 82.
    Galal-Gorchev, H., Stumm, W.: The reaction of ferric iron with ortho-phos-phate. J. Inorg. Nucl. Chem. 25(5), 567–574 (1963)CrossRefGoogle Scholar
  83. 83.
    Wilhelmy, R.B., Patel, R.C., Matijevic, E.: Thermodynamics and kinetics of aqueous ferric phosphate complex formation. Inorg. Chem. 24(20), 3290–3297 (1985)CrossRefGoogle Scholar
  84. 84.
    Harris, D., Loew, G.H., Komornicki, A.: Structure and relative spin-state ener-getics of [Fe(H2O)6]3+: a comparison of UHF, møller-plesset, nonlocal DFT, and semiempircal INDO/S calculations. J. Phys. Chem. A 101(21), 3959–3965 (1997)CrossRefGoogle Scholar
  85. 85.
    Jarzecki, A.A., Anbar, A.D., Spiro, T.G.: DFT analysis of [Fe(H2O)6]3+ and [Fe(H2O)6]2+ structure and vibrations; implications for isotope fractionation. J. Phys. Chem. A 108(14), 2726–2732 (2004)CrossRefGoogle Scholar
  86. 86.
    Collins, R.N., Rosso, K.M., Rose, A.L., et al.: An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate. Geochim. Cosmochim. Acta 177, 150–169 (2016)CrossRefGoogle Scholar
  87. 87.
    Sherman, D.M., Randall, S.R.: Surface complexation of arsenic (V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 67(22), 4223–4230 (2003)CrossRefGoogle Scholar
  88. 88.
    Waychunas, G.A., Rea, B.A., Fuller, C.C.: Surface chemistry of ferri-hydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57(10), 2251–2269 (1993)Google Scholar
  89. 89.
    Kitahama, K., Kiriyama, R., Baba, Y.: Refinement of the crystal structure of scorodite. Acta Crystallogr. Sect. B 31(1), 322–324 (1975)CrossRefGoogle Scholar
  90. 90.
    Mikutta, C., Mandaliev, P.N., Kretzschmar, R.: New clues to the local atomic structure of short-range ordered ferric arsenate from extended X-ray absorption fine structure spectroscopy. Environ. Sci. Technol. 47(22), 13201–13202 (2013)CrossRefGoogle Scholar
  91. 91.
    Chen, N., Jiang, D.T., Cutler, J., et al.: Structural characterization of poorly-crystalline scorodite, iron(III) earsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Acta 73(11), 3260–3276 (2009)CrossRefGoogle Scholar
  92. 92.
    Mikutta, C., Michel, F.M., Mandaliev, P., et al.: Structure of Amorphous Ferric Arsenate from EXAFS Spectroscopy and Total X-ray Scattering. EGU General Assembly, Vienna (2013)Google Scholar
  93. 93.
    Guido, C.A., Cortona, P., Mennucci, B., et al.: On the metric of charge transfer molecular excitations: a simple chemical descriptor. J. Chem. Theory Comput. 9(7), 3118–3126 (2013)CrossRefGoogle Scholar
  94. 94.
    Goguel, R.: Direct spectrophotometric determination of sulfate in natural waters by formation of the ferric sulfate complex. Anal. Chem. 41(8), 1034–1038 (1969)CrossRefGoogle Scholar
  95. 95.
    Harharan, A., Sudhakar, C.H., Rao, B.V.: Studies on the solvent extraction of iron (III) with tri-iso-octylamine from aqueous mineral acid solutions. Orient. J. Chem. 28(4), 1785–1790 (2012)CrossRefGoogle Scholar
  96. 96.
    Sen, B., Mukherjee, M., Pal, S., et al.: A water soluble copper(II) complex as a HSO4 ion selective turn-on fluorescent sensor applicable in living cell imaging. RSC Adv. 5(62), 50532–50539 (2015)CrossRefGoogle Scholar
  97. 97.
    Drahota, P., Filippi, M.: Secondary arsenic minerals in the environment: a review. Environ. Int. 35(8), 1243–1255 (2009)CrossRefGoogle Scholar
  98. 98.
    Parker, V.B., Khodakovskii, I.L.: Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron. J. Phys. Chem. Ref. Data 24(5), 1699 (1995)Google Scholar
  99. 99.
    Jia, Y.F., Xu, L.Y., Wang, X., et al.: Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim. Cosmochim. Acta 71(7), 1643–1654 (2007)CrossRefGoogle Scholar
  100. 100.
    Le Berre, J.F., Gauvin, R., Demopoulos, G.P.: Characterization of poorly-crystalline ferric arsenate precipitated from equimolar Fe(III)-As(V) solutions in the pH range 2 to 8. Metall. Mater. Trans. B 38(5), 751–762 (2007)CrossRefGoogle Scholar
  101. 101.
    Roque-Malherbe, R., Polanco-Estrella, R., Marquez-Linares, F.: Study of the interaction between silica surfaces and the carbon dioxide molecule. J. Phys. Chem. C 114(41), 17773–17787 (2010)CrossRefGoogle Scholar
  102. 102.
    Zhu, H.F., Tang, P.G., Feng, Y.J., et al.: Intercalation of IR absorber into layered double hydroxides: preparation, thermal stability and selective IR absorption. Mater. Res. Bull. 47(3), 532–536 (2012)CrossRefGoogle Scholar
  103. 103.
    Kim, C.R., Noh, T.H., Yoo, K.H., et al.: Anionic indicators on the surface of submicrospheres consisting of ionic palladium(II) complex. Bull. Korean Chem. Soc. 30(12), 3057–3060 (2009)CrossRefGoogle Scholar
  104. 104.
    Yoon, S.H., Lee, S., Kim, T.H., et al.: Oxidation of methylated arsenic species by UV/S2O82−. Chem. Eng. J. 173(2), 290–295 (2011)CrossRefGoogle Scholar
  105. 105.
    Chai, L., Yang, J., Liao, F., et al.: Kinetics and molecular mechanism of arsenite photochemical oxidation based on sulfate radical. Mol. Catal. 438, 113–130 (2017)CrossRefGoogle Scholar
  106. 106.
    Neppolian, B., Celik, E., Choi, H.: Photochemical oxidation of arsenic(III) to arsenic(V) using peroxydisulfate ions as an oxidizing agent. Environ. Sci. Technol. 42(16), 6179–6184 (2008)CrossRefGoogle Scholar
  107. 107.
    Zhou, L., Zheng, W., Ji, Y.F., et al.: Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. J. Hazard. Mater. 263(Part 2), 422–430 (2013)Google Scholar
  108. 108.
    Davies, M.J., Gilbert, B.C., Stell, J.K., et al.: Nucleophilic substitution reactions of spin adducts. Implications for the correct identification of reaction intermediates by EPR/spin trapping. J. Chem. Soc. Perkin Trans. 2(3), 333–335 (1992)Google Scholar
  109. 109.
    Mottley, C., Mason, R.P.: Sulfate anion free radical formation by the peroxidation of (Bi) sulfite and its reaction with hydroxyl radical scavengers. Arch. Biochem. Biophys. 267(2), 681–689 (1988)CrossRefGoogle Scholar
  110. 110.
    Wang, Z., Bush, R.T., Sullivan, L.A., et al.: Selective oxidation of arsenite by peroxymonosulfate with high utilization efficiency of oxidant. Environ. Sci. Technol. 48(7), 3978–3985 (2014)CrossRefGoogle Scholar
  111. 111.
    Buxton, G.V., Greenstock, C.L., Helman, W.P., et al.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/·O in aqueous solution. J. Phys. Chem. Ref. Data 17(2), 513–886 (1988)CrossRefGoogle Scholar
  112. 112.
    Neta, P., Grodkowski, J., Ross, A.B.: Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution. J. Phys. Chem. Ref. Data 25(3), 709–1050 (1996)CrossRefGoogle Scholar
  113. 113.
    Klaening, U.K., Bielski, B.H.J., Sehested, K.: Arsenic(IV). A pulse-radiolysis study. Inorg. Chem. 28(14), 2717–2724 (1989)CrossRefGoogle Scholar
  114. 114.
    Yamazaki-Nishida, S., Kimura, M.: Kinetics of the oxidation reaction of arsenious acid by peroxodisulfate ion, induced by irradiation with visible light of aqueous solutions containing tris(2,2′-bipyridine) ruthenium(II) ion. Inorg. Chim. Acta 174(2), 231–235 (1990)CrossRefGoogle Scholar
  115. 115.
    Yoon, S.H., Lee, J.H., Oh, S.E., et al.: Photochemical oxidation of As(III) by vacuum-UV lamp irradiation. Water Res. 42(13), 3455–3463 (2008)CrossRefGoogle Scholar
  116. 116.
    Fan, Z.Y., Huang, J.L., Wang, P., et al.: Kinetics of aniline oxidation with chlorine dioxide. J. Environ. Sci. 16(2), 238–241 (2004)Google Scholar
  117. 117.
    Gomes, A.C., Nunes, J.C., Simões, R.M.S.: Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system. J. Hazard. Mater. 178(1–3), 57–65 (2010)CrossRefGoogle Scholar
  118. 118.
    Iwai, M., Majima, H., Awakura, Y.: Oxidation of As(III) with dissolved molecular oxygen in alkaline solutions. Trans. Jpn. Inst. Met. 26(7), 492–498 (1985)CrossRefGoogle Scholar
  119. 119.
    Pettine, M., Campanella, L.G., Millero, F.J.: Arsenite oxidation by H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 63(18), 2727–2735 (1999)CrossRefGoogle Scholar
  120. 120.
    Lau, T.K., Chu, W., Graham, N.J.D.: The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environ. Sci. Technol. 41(2), 613–619 (2007)CrossRefGoogle Scholar
  121. 121.
    Chai, L., Yue, M., Yang, J., et al.: Formation of tooeleite and the role of direct removal of As(III) from high-arsenic acid wastewater. J. Hazard. Mater. 320, 620–627 (2016)CrossRefGoogle Scholar
  122. 122.
    Nishimura, T., Robins, R.G.: Confirmation that tooeleite is a ferric arsenite sulfate hydrate, and is relevant to arsenic stabilization. Miner. Eng. 21(4), 246–251 (2008)CrossRefGoogle Scholar
  123. 123.
    McLeod, J., Paterson, A.H.J., Jones, J.R., et al.: Primary nucleation of alpha-lactose monohydrate: the effect of supersaturation and temperature. Int. Dairy J. 21(7), 455–461 (2011)CrossRefGoogle Scholar
  124. 124.
    Dang, S.V., Kawasaki, J., Abella, L.C., et al.: Removal of arsenic from simulated groundwater by adsorption using iron-modified rice husk carbon. J. Water Environ. Technol. 7(2), 43–56 (2009)CrossRefGoogle Scholar
  125. 125.
    Mercer, K.L., Tobiason, J.E.: Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO. Environ. Sci. Technol. 42(10), 3797–3802 (2008)CrossRefGoogle Scholar
  126. 126.
    Wang, Y.X., Duan, J.M., Liu, S.X., et al.: Removal of As(III) and As(V) by ferric salts coagulation—implications of particle size and zeta potential of precipitates. Sep. Purif. Technol. 135, 64–71 (2014)CrossRefGoogle Scholar
  127. 127.
    Li, X.F., Zhao, F.H., Deng, S.M.: The removal of arsenic(III) from acid mine drainage by mineral trap of tooeleite (Fe6(AsO3)4SO4(OH)4·4H2O). In: An Interdisciplinary Response to Mine Water Challenges, pp. 671–674 (2014)Google Scholar
  128. 128.
    Swash, P.M., Monhemius, A.J.: Comparison of the solubilities of arsenic-bearing wastes from hydrometallurgical and pyrometallurgical processes. GDMB 83, 141–152 (2000)Google Scholar
  129. 129.
    Paikaray, S., Göttlicher, J., Peiffer, S.: As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Chemosphere 86, 557–564 (2012)Google Scholar
  130. 130.
    Rahman, N., Haseen, U.: Development of polyacrylamide chromium oxide as a new sorbent for solid phase extraction of As(III) from food and environmental water samples. RSC Adv. 5, 7311–7323 (2015)CrossRefGoogle Scholar
  131. 131.
    Tokoro, C., Yatsugi, Y., Koga, H., et al.: Sorption mechanisms of arsenate during coprecipitation with ferrihydrite in aqueous solution. Environ. Sci. Technol. 44, 638–643 (2010)CrossRefGoogle Scholar
  132. 132.
    Kaksonen, A.H., Riekkola-Vanhanen, M.L., Puhakka, J.A.: Optimization of metal sulfide precipitation in fluidized-bed treatment of acidic wastewater. Water Res. 37(2), 255–266 (2003)CrossRefGoogle Scholar
  133. 133.
    Mokone,Cas T.P., van Hille, R.P., Lewis, A.E.: Effect of solution chemistry on particle characteristics during metal sulfide precipitation. J. Colloid Interface Sci. 351(1), 10–18 (2010)Google Scholar
  134. 134.
    Long, G., Peng, Y.J., Bradshaw, D.: Flotation separation of copper sulfides from arsenic minerals at Rosebery copper concentrator. Miner. Eng. 66–68, 207–214 (2014)CrossRefGoogle Scholar
  135. 135.
    Padilla, R., Rodriguez, G., Ruiz, M.C.: Copper and arsenic dissolution from chalcopyrite–enargite concentrate by sulfidation and pressure leaching in H2SO4–O2. Hydrometallurgy 100(3–4), 152–156 (2010)CrossRefGoogle Scholar
  136. 136.
    Wang, T., Yang, W.C., Song, T.T., et al.: Cu doped Fe3O4 magnetic adsorbent for arsenic: synthesis, property, and sorption application. RSC Adv. 5(62), 50011–50018 (2015)CrossRefGoogle Scholar
  137. 137.
    Wang, Z.F., Cui, Z.J., Liu, L., et al.: Toxicological and biochemical responses of the earthworm eisenia fetida exposed to contaminated soil: effects of arsenic species. Chemosphere 154, 161–170 (2016)CrossRefGoogle Scholar
  138. 138.
    Yan, X., Li, Q.Z., Chai, L.Y., et al.: Formation of abiological granular sludge-A facile and bioinspired proposal for improving sludge settling performance during heavy metal wastewater treatment. Chemosphere 113, 36–41 (2014)CrossRefGoogle Scholar
  139. 139.
    Wang, T., Zhang, L.Y., Li, C.F., et al.: Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ. Sci. Technol. 49(9), 5654–5662 (2015)CrossRefGoogle Scholar
  140. 140.
    Chai, L.Y., Wang, Q.W., Li, Q.Z., et al.: Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass. Water Sci. Technol. 62(9), 2157–2165 (2010)CrossRefGoogle Scholar
  141. 141.
    Stalidis, G.A., Matis, K.A., Lazaridis, N.K.: Selective separation of Cu, Zn, and As from solution by flotation techniques. Sep. Sci. Technol. 24(1–2), 97–109 (1989)CrossRefGoogle Scholar
  142. 142.
    Alison Emslie Lewis: Review of metal sulfide precipitation. Hydrometallurgy 104(2), 222–234 (2010)CrossRefGoogle Scholar
  143. 143.
    Lian-hua, Z., Yu-lan, X.: Sulfide precipitation flotation for treatment of acidic mine waste water. Trans. Nonferrous Met. Soc. China 10, 106–109 (2000)Google Scholar
  144. 144.
    Huisman, J.L., Schouten, G., Schultz, C.: Biologically produced sulfide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83(1), 106–113 (2006)CrossRefGoogle Scholar
  145. 145.
    Bhattacharyya, D., Jumawan Jr., A.B., Grieves, R.B.: Separation of toxic heavy metals by sulfide precipitation. Sep. Sci. Technol. 14(5), 441–452 (1979)CrossRefGoogle Scholar
  146. 146.
    Veeken, A.H.M., de Vries, S., van Der Mark, A., et al.: Selective precipitation of heavy metals as controlled by a sulfide-selective electrode. Sep. Sci. Technol. 38(1), 1–19 (2003)CrossRefGoogle Scholar
  147. 147.
    Jiang, G.M., Peng, B., Chai, L.Y., et al.: Cascade sulfidation and separation of copper and arsenic from acidic wastewater via gas–liquid reaction. Trans. Nonferrous Met. Soc. China 27(4), 925–931 (2017)CrossRefGoogle Scholar
  148. 148.
    Zheng, J.X., Ye, H.Q., Huang, N.D., et al.: Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation-ultrafiltration process. Chemosphere 76(5), 706–710 (2009)CrossRefGoogle Scholar
  149. 149.
    Yavuz, C.T., Mayo, J., Yu, W.W., et al.: Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801), 964–967 (2006)CrossRefGoogle Scholar
  150. 150.
    Zeng, H., Singh, A., Basak, S., et al.: Nanoscale size effects on uranium(VI) adsorption to hematite. Environ. Sci. Technol. 43(5), 1373–1378 (2009)CrossRefGoogle Scholar
  151. 151.
    Yean, S., Cong, L., Yavuz, C.T., et al.: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20(12), 3255–3264 (2005)CrossRefGoogle Scholar
  152. 152.
    Cotten, G.B., Eldredge, H.B.: Nanolevel magnetic separation model considering flow limitations. Sep. Sci. Technol. 37(16), 3755–3779 (2002)CrossRefGoogle Scholar
  153. 153.
    Kelland, D.R.: Magnetic separation of nanoparticles. IEEE Trans. Magn. 34(4), 2123–2125 (1998)CrossRefGoogle Scholar
  154. 154.
    Mou, F.Z., Guan, J.G., Ma, H., et al.: Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities. ACS Appl. Mater. Interfaces 4(8), 3987–3993 (2012)CrossRefGoogle Scholar
  155. 155.
    Ge, J.P., Huynh, T., Hu, Y.X., et al.: Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst–supports. Nano Lett. 8(3), 931–934 (2008)CrossRefGoogle Scholar
  156. 156.
    Wei, Z.H., Xing, R., Zhang, X., et al.: Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment. ACS Appl. Mater. Interfaces 5(3), 598–604 (2013)CrossRefGoogle Scholar
  157. 157.
    Wang, T., Zhang, L., Li, C., et al.: Synthesis of core–shell magnetic Fe3O4@ poly (m-phenylenediamine) particles for chromium reduction and adsorption. Environ. Sci. Technol. 49(9), 5654–5662 (2012)CrossRefGoogle Scholar
  158. 158.
    Mou, F.Z., Guan, J.G., Xiao, Z.D., et al.: Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/γ-phase-shell hierarchical nanostructures with strong As(V) removal capability. J. Mater. Chem. 21(14), 5414–5421 (2011)CrossRefGoogle Scholar
  159. 159.
    Wang, P., Lo, I.M.C.: Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res. 43(15), 3727–3734 (2009)CrossRefGoogle Scholar
  160. 160.
    Wang, T., Zhang, L.Y., Wang, H.Y., et al.: Controllable synthesis of hierarchical porous Fe3O4 particles mediated by Poly(diallyldimethylammonium chloride) and their application in arsenic removal. ACS Appl. Mater. Interfaces 5(23), 12449–12459 (2013)CrossRefGoogle Scholar
  161. 161.
    Jia, B.P., Gao, L.: Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field. J. Phys. Chem. C 112(3), 666–671 (2008)CrossRefGoogle Scholar
  162. 162.
    Fan, T., Pan, D., Zhang, H., et al.: Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes. Ind. Eng. Chem. Res. 50(15), 9009–9018 (2011)CrossRefGoogle Scholar
  163. 163.
    Liu, Z.H., Yang, X.J., Makita, Y., et al.: Preparation of a polycation-intercalated layered manganese oxide nanocomposite by a delamination/reassembling process. Chem. Mater. 14(11), 4800–4806 (2002)CrossRefGoogle Scholar
  164. 164.
    Liu, K.P., Zhang, J.J., Yang, G.H., et al.: Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem. Commun. 12(3), 402–405 (2010)CrossRefGoogle Scholar
  165. 165.
    Yu, X.Y., Luo, T., Jia, Y., et al.: Porous hierarchically micro-/nanostructured MgO: morphology control and their excellent performance in As(III) and As(V) removal. J. Phys. Chem. C 115(45), 22242–22250 (2011)Google Scholar
  166. 166.
    Hang, C., Li, Q., Gao, S.A., et al.: As(III) and As(V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heat treatment. Ind. Eng. Chem. Res. 51(1), 353–361 (2012)CrossRefGoogle Scholar
  167. 167.
    Zhong, L.S., Hu, J.S., Liang, H.P., et al.: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18(18), 2426–2431 (2006)CrossRefGoogle Scholar
  168. 168.
    Zhu, H., Hou, C., Li, Y.J., et al.: One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization. Chem. Asian J. 8(7), 1447–1454 (2013)CrossRefGoogle Scholar
  169. 169.
    Cao, C.Y., Qu, J., Yan, W.S., et al.: Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir 28(9), 4573–4579 (2012)CrossRefGoogle Scholar
  170. 170.
    Kanel, S.R., Greneche, J.M., Choi, H.: Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40(6), 2045–2050 (2006)CrossRefGoogle Scholar
  171. 171.
    Nesbitt, H.W., Muir, I.J.: Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air. Mineral. Petrol. 62(1–2), 123–144 (1998)CrossRefGoogle Scholar
  172. 172.
    Gomes, J.A.G., Daida, P., Kesmez, M., et al.: Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products. J. Hazard. Mater. 139(2), 220–231 (2007)CrossRefGoogle Scholar
  173. 173.
    Chen, B., Zhu, Z.L., Ma, J., et al.: Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. J. Mater. Chem. A 1(37), 11355–11367 (2013)CrossRefGoogle Scholar
  174. 174.
    Wielant, J., Hauffman, T., Blajiev, O., et al.: Influence of the iron oxide acid-base properties on the chemisorption of model epoxy compounds studied by XPS. J. Phys. Chem. C 111(35), 13177–13184 (2007)CrossRefGoogle Scholar
  175. 175.
    Ramos, M.A.V., Yan, W.L., Li, X.Q., et al.: Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J. Phys. Chem. C 113(33), 14591–14594 (2009)CrossRefGoogle Scholar
  176. 176.
    Lim, S.F., Zheng, Y.M., Chen, J.P. Organic arsenic adsorption onto a magnetic sorbent. Langmuir 25(9), 4973–4978 (2009)Google Scholar
  177. 177.
    Manning, B.A., Hunt, M.L., Amrhein, C., et al.: Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. 36(24), 5455–5461 (2002)CrossRefGoogle Scholar
  178. 178.
    Pena, M., Meng, X., Koratis, G.P., et al.: Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ. Sci. Technol. 40(4), 1257–1262 (2006)CrossRefGoogle Scholar
  179. 179.
    Sandoval, R., Cooper, A.M., Aymar, K., et al.: Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles. J. Hazard. Mater. 193, 296–303 (2011)CrossRefGoogle Scholar
  180. 180.
    Xu, W.H., Wang, J., Wang, L., et al.: Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: role of surface-and structure-dependent properties. J. Hazard. Mater. 260, 498–507 (2013)CrossRefGoogle Scholar
  181. 181.
    Lv, X.J., Yang, W.G., Quan, Z.W., et al.: Enhanced electron transport in Nb-Doped TiO2 nanoparticles via pressure-induced phase transitions. J. Am. Chem. Soc. 136(1), 419–426 (2014)CrossRefGoogle Scholar
  182. 182.
    Li, H., Zhang, L.Z.: Oxygen vacancy induced selective silver deposition on the 001 facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light. Nanoscale 6(14), 7805–7810 (2014)CrossRefGoogle Scholar
  183. 183.
    Zhang, Y., Yang, M., Dou, X.M., et al.: Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: Role of surface properties. Environ. Sci. Technol. 39(18), 7246–7253 (2005)CrossRefGoogle Scholar
  184. 184.
    Warner, C.L., Chouyyok, W., Mackie, K.E., et al.: Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 28(8), 3931–3937 (2012)CrossRefGoogle Scholar
  185. 185.
    Wang, Y.J., Chen, D.G., Wang, Y.D., et al.: Tunable surface charge of ZnS: Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater. Nanoscale 4(12), 3665–3668 (2012)CrossRefGoogle Scholar
  186. 186.
    Neagu, D., Irvine, J.T.: Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater. 23(6), 1607–1617 (2011)CrossRefGoogle Scholar
  187. 187.
    Norris, D.J., Efros, A.L., Erwin, S.C.: Doped nanocrystals. Science 319(5871), 1776–1779 (2008)CrossRefGoogle Scholar
  188. 188.
    Chen, Z., Pina, C.D., Falletta, E., et al.: A green route to conducting polyaniline by copper catalysis. J. Catal. 267(2), 93–96 (2009)CrossRefGoogle Scholar
  189. 189.
    Chai, L.Y., Wang, T., Zhang, L.Y., et al.: A Cu–m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon 81, 748–757 (2015)CrossRefGoogle Scholar
  190. 190.
    Deng, H., Li, X.L., Peng, Q., et al.: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)CrossRefGoogle Scholar
  191. 191.
    Yin, A.Y., Guo, X.Y., Dai, W.L., et al.: The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergetic effect between Cu0 and Cu+. J. Phys. Chem. C 113(25), 11003–11013 (2009)CrossRefGoogle Scholar
  192. 192.
    Derrouiche, S., Lauron-Pernot, H., Louis, C.: Synthesis and Treatment Parameters For Controlling Metal Particle Size And Composition in Cu/ZnO materials first evidence of Cu3Zn alloy formation. Chem. Mater. 24(12), 2282–2291 (2012)CrossRefGoogle Scholar
  193. 193.
    McFarland, E.W., Metiu, H.: Catalysis by doped oxides. Chem. Rev. 113(6), 4391–4427 (2013)CrossRefGoogle Scholar
  194. 194.
    Aldon, L., Kubiak, P., Picard, A., et al.: Size particle effects on lithium insertion into Sn-doped TiO2 anatase. Chem. Mater. 18(6), 1401–1406 (2006)CrossRefGoogle Scholar
  195. 195.
    Deiana, C., Fois, E., Coluccia, S., et al.: Surface structure of TiO2 P25 nanoparticles: infrared study of hydroxy groups on coordinative defect sites. J. Phys. Chem. C 114(49), 21531–21538 (2010)CrossRefGoogle Scholar
  196. 196.
    Chai, L.Y., Wang, Y.Y., Zhao, N., et al.: Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res. 47(12), 4040–4049 (2013)CrossRefGoogle Scholar
  197. 197.
    Mohapatra, M., Sahoo, S.K., Anand, S., et al.: Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples. J. Colloid Interface Sci. 298(1), 6–12 (2006)CrossRefGoogle Scholar
  198. 198.
    Yu, X.Y., Luo, T., Jia, Y., et al.: Porous hierarchically micro-/nanostructured MgO: morphology control and their excellent performance in As (III) and As (V) removal. J. Phys. Chem. C 115(45), 22242–22250 (2011)CrossRefGoogle Scholar
  199. 199.
    Xu, W.H., Wang, L., Wang, J., et al.: Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. CrystEngComm 15(39), 7895–7903 (2013)CrossRefGoogle Scholar
  200. 200.
    Couture, R.M., Rose, J., Kumar, N., et al.: Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Environ. Sci. Technol. 47(11), 5652–5659 (2013)CrossRefGoogle Scholar
  201. 201.
    Can, M., Uzun, S.: Oxidizing effect of the Cu(ClO4)2 on chemical polymerization of aniline in anhydrous media. Asian J. Chem. 22, 867–872 (2010)Google Scholar
  202. 202.
    Izumi, C.M.S., Constantino, V.R.L., Temperini, M.L.A.: Spectroscopic characterization of polyaniline formed by using copper (II) in homogeneous and MCM-41 molecular sieve media. J. Phys. Chem. B 109(47), 22131–22140 (2005)CrossRefGoogle Scholar
  203. 203.
    Mou, F.Z., Guan, J.G., Ma, H.R., et al.: Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities. ACS Appl. Mater. Interfaces 4(8), 3987–3993 (2012)CrossRefGoogle Scholar
  204. 204.
    Toulemon, D., Pichon, B.P., Cattoen, X., et al.: 2D assembly of non-interacting magnetic iron oxide nanoparticles via “click” chemistry. Chem. Commun. 47(43), 11954–11956 (2011)CrossRefGoogle Scholar
  205. 205.
    Feng, L.Y., Cao, M.H., Ma, X.Y., et al.: Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J. Hazard. Mater. 217–218, 439–446 (2012)CrossRefGoogle Scholar
  206. 206.
    Saiz, J., Bringas, E., Ortiz, I.: Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters. J. Chem. Technol. Biotechnol. 89(6), 909–918 (2014)CrossRefGoogle Scholar
  207. 207.
    Chen, B., Zhu, Z.L., Ma, J., et al.: One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. J. Colloid Interface Sci. 434, 9–17 (2014)CrossRefGoogle Scholar
  208. 208.
    Li, H., Yu, S., Han, X.X.: Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties. Chem. Eng. J. 283, 1443–1454 (2016)CrossRefGoogle Scholar
  209. 209.
    Meshram, S.P., Adhyapak, P.V., Mulik, U.P., et al.: Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties. Chem. Eng. J. 204–206, 158–168 (2012)CrossRefGoogle Scholar
  210. 210.
    Peng, B., Song, T., Wang, T., et al.: Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application. Chem. Eng. J. 299, 15–22 (2016)CrossRefGoogle Scholar
  211. 211.
    Escudero, C., Fiol, N., Villaescusa, I., et al.: Arsenic removal by awaste metal (hydr)oxide entrapped into calcium alginate beads. J. Hazard. Mater. 164(2–3), 533–541 (2009)CrossRefGoogle Scholar
  212. 212.
    Li, Z.J., Deng, S.B., Yu, G., et al.: As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: behavior and mechanism. Chem. Eng. J. 161(1–2), 106–113 (2010)CrossRefGoogle Scholar
  213. 213.
    Yang, Y., Yang, M., Dou, X.M., et al.: Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. Environ. Sci. Technol. 39(18), 7246–7253 (2005)CrossRefGoogle Scholar
  214. 214.
    Zhang, S.W., Li, J.X., Wen, T., et al.: Magnetic Fe3O4@NiO hierarchical structures: preparation and their excellent As(V) and Cr(VI) removal capabilities. RSC Adv. 3(8), 2754–2764 (2013)CrossRefGoogle Scholar
  215. 215.
    Wang, T., Zhang, L.Y., Li, C.F., et al.: Synthesis of core-shell magnetic Fe3O4 @poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ. Sci. Technol. 49(9), 5654–5662 (2015)CrossRefGoogle Scholar
  216. 216.
    Xu, L.J., Wang, J.L.: Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ. Sci. Technol. 46(18), 10145–10153 (2012)CrossRefGoogle Scholar
  217. 217.
    Gai, L.G., Li, Z.L., Hou, Y.H., et al.: Preparation of core–shell Fe3O4/SiO2 microspheres as adsorbents for purification of DNA. J. Phys. D Appl. Phys. 43, 445001 (2010)CrossRefGoogle Scholar
  218. 218.
    Ma, Z.Y., Guan, Y.P., Liu, H.Z.: Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J. Polym. Sci. Part A Polym. Chem. 43(15), 3433–3439 (2005)CrossRefGoogle Scholar
  219. 219.
    Lu, C.H., Qi, L.M., Yang, J.H., et al.: Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J. Phys. Chem. B 108(46), 17825–17831 (2004)Google Scholar
  220. 220.
    Hua, R., Li, Z.K.: Sulfhydryl functionalized hydrogel with magnetism: synthesis, characterization, and adsorption behavior study for heavy metal removal. Chem. Eng. J. 249, 189–200 (2014)CrossRefGoogle Scholar
  221. 221.
    Martinson, C.A., Reddy, K.J.: Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 336(2), 406–411 (2009)CrossRefGoogle Scholar
  222. 222.
    Wang, X.L., Liu, Y.K., Zheng, J.T.: Removal of As(III) and As(V) from water by chitosan and chitosan derivative: a review. Environ. Sci. Pollut. Res. 23(14), 13789–13801 (2016)CrossRefGoogle Scholar
  223. 223.
    Zhang, G.S., Ren, Z.M., Zhang, X.W., et al.: Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 47(12), 4022–4031 (2013)CrossRefGoogle Scholar
  224. 224.
    Maeda, K., Domen, K.: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111(22), 7851–7861 (2007)CrossRefGoogle Scholar
  225. 225.
    Huang, M.R., Ding, Y.B., Li, X.G.: Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer. Analyst 138(13), 3820–3829 (2013)CrossRefGoogle Scholar
  226. 226.
    Huang, M.R., Rao, X.W., Li, X.G., et al.: Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores. Talanta 85(3), 1575–1584 (2011)CrossRefGoogle Scholar
  227. 227.
    Huang, J.Y., Li, S.H., Ge, M.Z., et al.: Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation. J. Mater. Chem. A 3(6), 2825–2832 (2015)CrossRefGoogle Scholar
  228. 228.
    Li, X.G., Ma, X.L., Sun, J., et al.: Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles. Langmuir 25(3), 1675–1684 (2009)CrossRefGoogle Scholar
  229. 229.
    Wang, J.J., Jiang, J., Hu, B., et al.: Uniformly shaped poly(p-phenylenediamine) microparticles: shape-controlled synthesis and their potential application for the removal of lead ions from water. Adv. Func. Mater. 18(7), 1105–1111 (2008)CrossRefGoogle Scholar
  230. 230.
    Huang, M.R., Lu, H.J., Song, W.D., et al.: Dynamic reversible adsorption and desorption of lead ions through a packed column of poly(m-phenylenediamine) spheroids. Soft Mater. 8(2), 149–163 (2010)Google Scholar
  231. 231.
    Zhang, L.Y., Wang, T., Wang, H.Y., et al.: Graphene@poly(m-phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy. Chem. Commun. 49(85), 9974–9976 (2013)CrossRefGoogle Scholar
  232. 232.
    Yu, W.T., Zhang, L.Y., Meng, Y., et al.: High conversion synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu-OH-assisted method and its superior ability toward Ag+ adsorption. Synth. Met. 176, 78–85 (2013)CrossRefGoogle Scholar
  233. 233.
    Wang, H.Y., Chai, L.Y., Hu, A.J., et al.: Self-assembly microstructures of amphiphilic polyborate in aqueous solutions. Polymer 50(13), 2976–2980 (2009)CrossRefGoogle Scholar
  234. 234.
    Harris, J.K., Rose, G.D., Bruening, M.L.: Spontaneous generation of multilamellar vesicles from ethylene oxide/butylene oxide diblock copolymers. Langmuir 18(14), 5337–5342 (2002)CrossRefGoogle Scholar
  235. 235.
    Li, H.Q., Lai, Y.K., Huang, J.Y., et al.: Multifunctional wettability patterns prepared by laser processing on superhydrophobic TiO2 nanostructured surfaces. J. Mater. Chem. B 3(3), 342–347 (2015)CrossRefGoogle Scholar
  236. 236.
    Dey, J., Kumar, S., Nath, S., et al.: Additive induced core and corona specific dehydration and ensuing growth and interaction of Pluronic F127 micelles. J. Colloid Interface Sci. 415, 95–102 (2014)CrossRefGoogle Scholar
  237. 237.
    Sang, P.L., Wang, Y.Y., Zhang, L.Y., et al.: Effective adsorption of sulfate ions with poly(m-phenylenediamine) in aqueous solution and its adsorption mechanism. Trans. Nonferrous Met. Soc. China 23(1), 243–252 (2013)CrossRefGoogle Scholar
  238. 238.
    Li, X.G., Wang, L.X., Jin, Y., et al.: Preparation and identification of a soluble copolymer from pyrrole and o-toluidine. J. Appl. Polym. Sci. 82(2), 510–518 (2001)CrossRefGoogle Scholar
  239. 239.
    Chai, L.Y., Zhang, L.Y., Wang, H.Y., et al.: An effective and scale-up self-assembly route to prepare the rigid and smooth oligo(o-phenylenediamine) microfibers in acidic solution by NaClO2. Mater. Lett. 64(21), 2302–2305 (2010)CrossRefGoogle Scholar
  240. 240.
    Li, X.G., Huang, M.R., Duan, W.: Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem. Rev. 102(9), 2925–3030 (2002)CrossRefGoogle Scholar
  241. 241.
    Liu, M.L., Ye, M., Yang, Q., et al.: A new method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemisty. Electrochim. Acta 52(1), 342–352 (2006)CrossRefGoogle Scholar
  242. 242.
    Huang, M.R., Li, X.G., Yang, Y.L.: Oxidative polymerization of o-phenylenediamine and pyrimidylamine. Polym. Degrad. Stab. 71(1), 31–38 (2000)CrossRefGoogle Scholar
  243. 243.
    Yu, W.T., Zhang, L.Y., Wang, H.Y., et al.: Adsorption of Cr(VI) using synthetic poly(m-phenylenediamine). J. Hazard. Mater. 260, 789–795 (2013)CrossRefGoogle Scholar
  244. 244.
    Zhang, L.Y., Chai, L.Y., Liu, J., et al.: pH manipulation: a facile method for lowering oxidation state and keeping good yield of poly(m-phenylenediamine) and its powerful Ag+ adsorption ability. Langmuir 27(22), 13729–13738 (2011)CrossRefGoogle Scholar
  245. 245.
    Losito, I., Malitesta, C., De Bari, I., et al.: X-ray photoelectron spectroscopy characterization of poly(2,3-diaminophenazine) films electrosynthesised on platinum. Thin Solid Films 473(1), 104–113 (2005)CrossRefGoogle Scholar
  246. 246.
    Frost, R.L., Xi, Y.F., Wood, B.J.: Thermogravimetric analysis, PXRD, EDX and XPS study of chrysocolla (Cu, Al)2H2Si2O5(OH)4·nH2O-structural implications. Thermochim. Acta 545, 157–162 (2012)CrossRefGoogle Scholar
  247. 247.
    Pelissier, B., Beaurain, A., Fontaine, H., et al.: Investigations on HCl contaminated Cu 200 mm wafers using parallel angle resolved XPS. Micro Microelectron. Eng. 86(4–6), 1013–1016 (2009)CrossRefGoogle Scholar
  248. 248.
    Ayad, M.M., Amer, W.A., Stejskal, J.: Effect of iodine solutions on polyaniline films. Thin Solid Films 517(21), 5969–5973 (2009)CrossRefGoogle Scholar
  249. 249.
    Han, J., Dai, J., Guo, R.: Highly efficient adsorbents of poly(o-phenylenediamine) solid and hollow sub-microspheres towards lead ions: a comparative study. J. Colloid Interface Sci. 356(2), 749–756 (2011)CrossRefGoogle Scholar
  250. 250.
    Stejskal, J., Trchová, M., Brožová, L., et al.: Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chem. Pap. 63(1), 77–83 (2009)CrossRefGoogle Scholar
  251. 251.
    Izumi, C.M.S., Brito, H.F., Ferreira, A.M.D.C., et al.: Spectroscopic investigation of the interactions between emeraldine base polyaniline and Eu(III) ions. Synth. Met. 159(5–6), 377–384 (2009)Google Scholar
  252. 252.
    Huang, M.R., Huang, S.J., Li, X.G.: Facile synthesis of polysulfoaminoanthraquinone nanosorbents for rapid removal and ultrasensitive fluorescent detection of heavy metal ions phys. J. Phys. Chem. C 115(13), 5301–5315 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Li-Yuan Chai
    • 1
    • 2
    Email author
  • Qing-Zhu Li
    • 1
  • Qing-Wei Wang
    • 1
  • Yun-Yan Wang
    • 1
  • Wei-Chun Yang
    • 1
  • Hai-Ying Wang
    • 1
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP)ChangshaChina

Personalised recommendations