Advertisement

Arsenic Distribution and Pollution Characteristics

  • Yun-Yan WangEmail author
  • Li-Yuan Chai
  • Wei-Chun Yang
Chapter

Abstract

Arsenic is abundant in the earth’s crust and has been found in more than 300 minerals in nature. As a compound with other elements such as oxygen, chlorine, and sulfur, arsenic is widely distributed in minerals and ores that contain copper or lead. Arsenic present in the minerals is usually mobilized through geogenic and anthropogenic activities. Anthropogenic sources of arsenic pollution originate in several industries, such as mining, smelting or refining of metal, fossil fuel combustion, and wood preservation.

References

  1. 1.
    Bowell, R.J., Alpers, C.N., Jamieson, H.E., et al.: The environmental geochemistry of arsenic—an overview. Rev. Mineral. Geochem. 79(1), 1–16 (2014)Google Scholar
  2. 2.
    Drahota, P., Filippi, M.: Secondary arsenic minerals in the environment: a review. Environ. Int. 35(8), 1243–1255 (2009)Google Scholar
  3. 3.
    Walker, S.R., Parsons, M.B., Jamieson, H.E., et al.: Arsenic mineralogy of near-surface tailings and soils: influences on arsenic mobility and bioaccessibility in the Nova Scotia gold mining districts. Can. Miner. 47(3), 533–556 (2009)Google Scholar
  4. 4.
    Utsunomiya, S., Peters, S.C., Blum, J.D., et al.: Nanoscale mineralogy of arsenic in a region of New Hampshire with elevated As-concentrations in the groundwater. Am. Miner. 88(11–12), 1844–1852 (2003)Google Scholar
  5. 5.
    Morin, G., Rousse, G., Elkaim, E.: Crystal structure of tooeleite, Fe6(AsO3)4SO4(OH)4·4H2O, a new iron arsenite oxyhydroxysulfate mineral relevant to acid mine drainage. Am. Miner. 92(1), 193–197 (2007)Google Scholar
  6. 6.
    Nishimura, T., Robins, R.G.: Confirmation that tooeleite is a ferric arsenite sulfate hydrate, and is relevant to arsenic stabilization. Miner. Eng. 21(4), 246–251 (2008)Google Scholar
  7. 7.
    Akter, A., Ali, M.H.: Arsenic contamination in groundwater and its proposed remedial measures. Int. J. Environ. Sci. Technol. 8(2), 433–443 (2011)Google Scholar
  8. 8.
    Smedley, P.L., Kinniburgh, D.G.: A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 17(5), 517–568 (2002)Google Scholar
  9. 9.
    How Does Arsenic Get into the Groundwater. Civil and Environmental Engineering. University of Maine. https://umaine.edu/arsenic/how-does-arsenic-get-into-the-groundwater/. Accessed 27 Nov 2018
  10. 10.
    Zeng, Z.H., Zhang, Z.L.: The formation of As element in groundwater and the controlling factor. Shanghai Geol. 87(3), 11–15 (2002)Google Scholar
  11. 11.
    Zheng, Y., Stute, M., Geen, A.V., et al.: Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 19(2), 201–214 (2004)Google Scholar
  12. 12.
    Thomas, M.A.: The association of arsenic with redox conditions, depth, and ground-water age in the glacial aquifer system of the northern United States. USGS U.S. Geological Survey, Virginia, pp. 1–18(2007)Google Scholar
  13. 13.
    Hong, B.: Influence of microbes on biogeochemistry of arsenic mechanism of arsenic-mechanism of arsenic mobilization in groundwater. Adv. Earth Sci. 21(1), 77–82 (2006)Google Scholar
  14. 14.
    Su, C.: Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J. Hazard. Mater. 322(Part A), 48–84 (2017)Google Scholar
  15. 15.
    Kim, E.J., Batchelor, B.: Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite. Environ. Sci. Technol. 43(8), 2899–2904 (2009)Google Scholar
  16. 16.
    Paktunc, D., Dutrizac, J., Gertsman, V.: Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochim. Cosmochim. Acta 72(11), 2649–2672 (2008)Google Scholar
  17. 17.
    Henke, K.: Arsenic: Environmental Chemistry, Health Threats and Waste Treatment, vol. 20, no. 3, pp. 199–201. Wiley (2009)Google Scholar
  18. 18.
    Pollutants, M.A.B.E.: Arsenic, vol. vii, p. 332. National Academy of Sciences, Washington, D.C. (1977)Google Scholar
  19. 19.
    Singh, R., Singh, S., Parihara, P., et al.: Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol. Environ. Saf. 112, 247–270 (2015)Google Scholar
  20. 20.
    Yang, B., Zhang, G.L., Deng, W., et al.: Review of arsenic pollution and treatment progress in nonferrous metallurgy industry. Adv. Mater. Res. 634–638(1), 3239–3243 (2013)Google Scholar
  21. 21.
    Luo, T., Cui, J.L., Hu, S., et al.: Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ. Sci. Technol. 44(23), 9094–9098 (2010)Google Scholar
  22. 22.
    Morales, A., Cruells, M., Roca, A., et al.: Treatment of copper flash smelter flue dusts for copper and zinc extraction and arsenic stabilization. Hydrometallurgy 105(1–2), 148–154 (2010)Google Scholar
  23. 23.
    Li, Y.C., Min, X.B., Chai, L.Y., et al.: Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. J. Environ. Manag. 181, 756–761 (2016)Google Scholar
  24. 24.
    Ke, Y., Shen, C., Min, X.B., et al.: Separation of Cu and As in Cu-As-containing filter cakes by Cu2+-assisted acid leaching. Hydrometallurgy 172, 45–50 (2017)Google Scholar
  25. 25.
    Peng, Y.L., Zheng, Y.J., Chen, W.M., et al.: The oxidation of arsenic from As(III) to As(V) during copper electrorefining. Hydrometallurgy 129–130, 156–160 (2012)Google Scholar
  26. 26.
    Zheng, Y.J., Peng, Y.L., Lang, K.E., et al.: Separation and recovery of Cu and As from copper electrolyte through electrowinning and SO2 reduction. Trans. Nonferrous Met. Soc. China 23(7), 2166–2173 (2013)Google Scholar
  27. 27.
    Shankar, S., Shikha, U.: Arsenic contamination of groundwater: a review of sources, prevalence, health risks, and strategies for mitigation. Sci. World J. 2014(1), 179–186 (2014)Google Scholar
  28. 28.
    Pena-Pereira, F., Villar-Blanco, L., Lavilla, I., et al.: Test for arsenic speciation in waters based on a paper-based analytical device with scanometric detection. Anal. Chim. Acta 1011, 1–10 (2018)Google Scholar
  29. 29.
    Michael, H.A.: An arsenic forecast for China. Science 341(6148), 852–853 (2013)Google Scholar
  30. 30.
    Mukherjee, A., Sengupta, M.K., Hossain, M.A., et al.: Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J. Health Popul. Nutr. 24(2), 142–163 (2006)Google Scholar
  31. 31.
    Nordstrom, D.K.: Worldwide occurrences of arsenic in ground water. Science 296(5576), 2143–2145 (2002)Google Scholar
  32. 32.
    He, Y., Luo, Y.: Status of arsenic pollution in Xinjiang and research progress in prevention and treatment of arsenism. People’s Military Surg. (06), 616–618 (2017)Google Scholar
  33. 33.
    Zhang, L., Xie, X., Li, J., et al.: Hydrochemical and geochemical investigations on high arsenic groundwater from Datong Basin, Northern China. Asian J. Ecotoxicol. 02, 215–221 (2013)Google Scholar
  34. 34.
    Deng, Y.: Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin. China University of Geosciences, Wuhan (2008)Google Scholar
  35. 35.
    Zhao, S., Liu, G., Yang, B., et al.: Screening report on endemic arsenism and high content of arsenic in Xiantao City, Hubei Province. Chin. J. Endemiol. 28(1), 71–74 (2009)Google Scholar
  36. 36.
    Deng, Y., Wang, Y., Li, H., et al.: Seasonal variation of arsenic speciation in shallow groundwater from endemic arsenicosis area in Jianghan Plain. Editor. Comm. Earth Sci. J. China Univ. Geosci. 40(11), 1876–1886 (2015)Google Scholar
  37. 37.
    Matschullat, J.: Arsenic in the geosphere—a review. Sci. Total Environ. 249(1–3), 297–312 (2000)Google Scholar
  38. 38.
    Pacyna, J.M., Pacyna, E.G.: An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9(4), 269–298 (2001)Google Scholar
  39. 39.
    Sánchez-Rodas, D., Campa, A.M.A.S.D.L., Rosa, J.D.D.L., et al.: Arsenic speciation of atmospheric particulate matter (PM10) in an industrialised urban site in southwestern Spain. Chemosphere 66(8), 1485–1493 (2007)Google Scholar
  40. 40.
    Chilvers, D., Peterson, P.: Global cycling of arsenic. Lead, mercury, cadmium and arsenic in the environment. 279–301 (1987)Google Scholar
  41. 41.
    Goldberg, S.: Geochemistry, groundwater and pollution. Vadose Zone J. 5(1), 510–510 (2006)Google Scholar
  42. 42.
    Turner, A.W.: Bacterial oxidation of arsenite. Nature 164(4158), 76–77 (1949)Google Scholar
  43. 43.
    Francesconi, K.A., Kuehnelt, D.: Arsenic compounds in the environment. Environ. Chem. Arsen. (Boca Raton) 51–94 (2002)Google Scholar
  44. 44.
    Wang, P., Wang, S.L., Liu, S.Q., et al.: Occurrence, speciation, source and genochemical cycle of arsenic. Environ. Sci. Technol. 33(7), 96–103 (2010)Google Scholar
  45. 45.
    Garelick, H., Jones, H., Dybowska, A., et al.: Arsenic pollution sources. Rev. Environ. Contam. Toxicol. 197, 17–60 (2008)Google Scholar
  46. 46.
    Aurilio, A.C., Mason, R.P., Hemond, H.F.: Speciation and fate of arsenic in three lakes of the aberjona watershed. Environ. Sci. Technol. 28(4), 577–585 (1994)Google Scholar
  47. 47.
    Fu, Q.Y., Zhuang, G.S., Li, J., et al.: Source, long-range transport, and characteristics of a heavy dust pollution event in Shanghai. J. Geophys. Res. 115, 1–12 (2010)Google Scholar
  48. 48.
    Pey, J., Alastuey, A., Querol, X., et al.: A simplified approach to the indirect evaluation of the chemical composition of atmospheric aerosols from PM mass concentrations. Atmos. Environ. 44(39), 5112–5121 (2010)Google Scholar
  49. 49.
    Song, C.H.: Analysis of arsenic speciation in atmospheric particulate matters. J. Wuhan Univ. Technol. 32(13), 45–47 (2010)Google Scholar
  50. 50.
    He, T.T.: Analysis of Total Arsenic and Speciation in Atmospheric Particles in Shijing, Beijing. Nanhua University, HengyangGoogle Scholar
  51. 51.
    He, T.T., Li, B., Xu, D.D., et al.: Ultrasonic extraction of arsenic speciation in atmospheric particles with phosphoric acid. Chin. J. Anal. Chem. 39(4), 491–495 (2011)Google Scholar
  52. 52.
    Gupta, D.K., Chatterjee, S.: Arsenic Contamination in the Environment. The Issues and Solutions. Springer, Cham, Springer International Publishing (2017). ISBN: 9783319543543Google Scholar
  53. 53.
    Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58(1), 201–235 (2002)Google Scholar
  54. 54.
    García-Sánchez, A., Alonso-Rojo, P., Santos-Francés, F.: Distribution and mobility of arsenic in soils of a mining area (Western Spain). Sci. Total Environ. 408(19), 4194–4201 (2010)Google Scholar
  55. 55.
    Kien, C.N., Noi, V.N., Bang, N.D., et al.: Arsenic and heavy metal concentrations in agricultural soils around tin and tungsten mines in the Dai Tu district, N. Vietnam. Water Air Soil Pollut. 197(1–4), 75–89 (2009)Google Scholar
  56. 56.
    Krysiak, A., Karczewska, A.: Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Sci. Total Environ. 379(2–3), 190–200 (2007)Google Scholar
  57. 57.
    Niazi, N.K., Singh, B., Shah, P.: Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ. Sci. Technol. 45(17), 7135–7142 (2011)Google Scholar
  58. 58.
    Otones, V., Álvarez-Ayuso, E., García-Sánchez, A., et al.: Arsenic distribution in soils and plants of an arsenic impacted former mining area. Environ. Pollut. 159(10), 2637–2647 (2011)Google Scholar
  59. 59.
    Mikutta, C., Mandaliev, P.N., Mahler, N., et al.: Bioaccessibility of arsenic in mining-impacted circumneutral river floodplain soils. Environ. Sci. Technol. 48(22), 13468–13477 (2014)Google Scholar
  60. 60.
    Adriano, D.C.: Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd edn. Springer, New York (2001)Google Scholar
  61. 61.
    Kim, E.J., Yoo, J.C., Baek, K.: Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Environ. Pollut. 186, 29–35 (2014)Google Scholar
  62. 62.
    Kabata-Pendias, A.: Trace Elements in Soils and Plants, 4th edn. CRC Press, Boca Raton (2010)Google Scholar
  63. 63.
    Tang, J.W., Liao, Y.P., Yang, Z.H., et al.: Characterization of arsenic serious-contaminated soils from Shimen realgar mine area, the Asian largest realgar deposit in China. J. Soils Sediments 16(5), 1519–1528 (2016)Google Scholar
  64. 64.
    Zhu, X.Y., Wang, R.C., Lu, X.C., et al.: Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China. Mineral. Petrol. 109(1), 1–15 (2015)Google Scholar
  65. 65.
    Li, H., Ben, B.: Arsenic pollution sows despair in Chinese cancer village. Reuters. HESHAN China Mon Jun 23, 2014 6:42am EDT. www.360doc.com/content/14/0625/08/26286_389523917.shtml. Accessed 27 Nov 2018

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution (CNERC-CTHMP)ChangshaChina

Personalised recommendations