Advertisement

Comparative Study on the Photocatalytic Degradation of Paraquat Using Tungsten-Doped TiO2 Under UV and Sunlight

  • Manpreet Kaur
  • Anoop Verma
  • Hema SetiaEmail author
  • Amrit Pal Toor
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 30)

Abstract

Photocatalytic degradation of paraquat dichloride a poisonous dipyridilium herbicide present as a pollutant in surface water has been studied in a batch photoreactor using P25 TiO2 and tungsten (W)-doped TiO2. Effect of varying parameters such as substrate concentration, catalyst loading, pH of the solution, light conditions, type of catalyst, and amount of dopant has also been studied. It was observed that synthesized catalyst with 2.5 wt% W-doped TiO2 exhibited higher percentage degradation efficiency than bare TiO2 under optimum conditions of catalyst loading, pH, and substrate concentration under solar irradiation. W-TiO2 catalyst has been synthesized and characterized using UV–Vis DRS, XRD, SEM-EDS, and TEM techniques. Maximum degradation of 98% was observed for 25 ppm paraquat, at a pH of 6.5, catalyst loading of 1 g L−1, and 2.5 wt% W-doped TiO2 under sunlight.

Keywords

Paraquat Photocatalysis Degradation Doping Tungsten-doped TiO2 Wastewater 

References

  1. Baruwati B, Kumar DK, Manorama SV (2006) Hydrothermal synthesis of highly crystalline ZnO nanoparticles: a competitive sensor for LPG and EtOH. Sensor Actuat B-Chem 119(2):676–682CrossRefGoogle Scholar
  2. Bokare A, Sanap A, Pai M et al (2013) Antibacterial activities of Nd doped and Ag coated TiO2 nanoparticles under solar light irradiation. Colloids Surf B Biointerfaces 102:273–280CrossRefGoogle Scholar
  3. Cantavenera MJ, Catanzaro I, Loddo V et al (2007) Photocatalytic degradation of paraquat and genotoxicity of its intermediate products. J Photochem Photobiol A Chem 185:277–282CrossRefGoogle Scholar
  4. Cunff JL, Tomasic V, Wittine O (2015) Photocatalytic degradation of the herbicide terbuthylazine: preparation, characterization and photoactivity of the immobilized thin layer of TiO2/chitosan. J Photochem Photobiol A Chem 309:22–29CrossRefGoogle Scholar
  5. Dhaouadi A, Adhoum N (2009) Degradation of paraquat herbicide by electrochemical advanced oxidation methods. J Electroanal Chem 637(1–2):33–42CrossRefGoogle Scholar
  6. Eleburuike NA, Bakar WAWA, Rusmidah A et al (2016) Photocatalytic degradation of paraquat dichloride over CeO2-modified TiO2 nanotubes and the optimization of parameters by response surface methodology. RCS Adv 6:104082–104093Google Scholar
  7. Florêncio MH, Pires E, Castro AL et al (2004) Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterization of intermediates. Chemosphere 55:345–355CrossRefGoogle Scholar
  8. Garcia OA, Valencia JE, Romero R et al (2017) W and Mo doped TiO2: synthesis, characterization and photocatalytic activity. Fuel 198:31–41CrossRefGoogle Scholar
  9. Grover IS, Prajapat RC, Singh S et al (2017) Highly photoactive Au-TiO2 nanowires for improved photo-degradation of propiconazole fungicide under UV/sunlight irradiation. Sol Energy 144:612–618CrossRefGoogle Scholar
  10. Kalantaria K, Kalbasia M, Sohrabia M et al (2017) Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles. Ceram Int 43:973–981CrossRefGoogle Scholar
  11. Kaur T, Sraw A, Toor AP et al (2016) Utilization of solar energy for the degradation of carbendazim and propiconazole by Fe doped TiO2. Sol Energy 125:65–76Google Scholar
  12. Kruanetr S, Wanchanthuek R (2017) Studies on preparation and characterization of Fe/TiO2 catalyst in photocatalysis applications. Mater Res Express 4(7):076507CrossRefGoogle Scholar
  13. Manjunatha KN, Paul S (2015) Investigation of optical properties of nickel oxide thin films deposited on different substrates. Appl Surf Sci 352:10–15CrossRefGoogle Scholar
  14. Maulidiyah TA, Nurwahidah AT, Wibowo D et al (2017) Photoelectrocatalyst of Fe co-doped N-TiO2/Ti nanotubes: pesticide degradation of thiamethoxam under UV–visible lights. Environ Nanotechnol Monit Manag 8:103–111Google Scholar
  15. Moctezuma E, Leyva E, Monreal E et al (1999) Photocatalytic degradation of the herbicide “Paraquat”. Chemosphere 39:511–517CrossRefGoogle Scholar
  16. Montañez JP, Gómez S, Pierella LB et al (2015) Photodegradation of herbicide dicamba with TiO2 immobilized on HZSM-11 zeolite. Int J Environ Res 9(4):1237–1244Google Scholar
  17. Sakee U, Wanchanthuek R (2017) Catalytic activity of bimetallic Zn/TiO2 catalyst for degradation of herbicide paraquat: synthesis and characterization. Mater Res Express 4(11):115504CrossRefGoogle Scholar
  18. Shamsedini N, Dehghani M, Nasseri S et al (2017) Photocatalytic degradation of atrazine herbicide with illuminated Fe+3-TiO2 nanoparticles. J Environ Health Sci 15:7CrossRefGoogle Scholar
  19. Shibin OM, Yesodharan S, Yesodharan EP (2015) Sunlight induced photocatalytic degradation of herbicide diquat in water in presence of ZnO. J Environ Chem Eng 3(2):1107–1116Google Scholar
  20. Toor AP, Verma A, Jotshi CK et al (2005) Photocatalytic degradation of 3,4-dichlorophenol using TiO2 in a shallow pond slurry reactor. Indian J Chem Techn 12:75–81Google Scholar
  21. Toor AP, Yadav N, Wanchoo RK (2013) Enhancement in photocatalytic activity of nano-TiO2 photocatalyst by carbon doping. Mater Sci Forum 757:271–284CrossRefGoogle Scholar
  22. Verma A, Prakash NT, Toor AP (2014) Photocatalytic degradation of herbicide isoproturon in TiO2 Aqueous Suspensions: study of reaction intermediates and degradation pathways. Environ Prog Sustain Energy 33(2):402–409Google Scholar
  23. Wei TY, Wan CC (1991) Heterogeneous photocatalytic oxidation of phenol with titanium dioxide powders. Ind Eng Chem Res 30(6):1293–1300CrossRefGoogle Scholar
  24. Zahedi F, Behpour M, Ghoreishi SM et al (2015) Photocatalytic degradation of paraquat herbicide in the presence TiO2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Sol Energy 120:287–295CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Manpreet Kaur
    • 1
  • Anoop Verma
    • 2
  • Hema Setia
    • 3
    Email author
  • Amrit Pal Toor
    • 4
  1. 1.Energy Research CentrePanjab UniversityChandigarhIndia
  2. 2.School of Energy and EnvironmentThapar Institute of Engineering and TechnologyPatialaIndia
  3. 3.University Institute of Engineering and TechnologyPanjab UniversityChandigarhIndia
  4. 4.Dr SSB University Institute of Chemical Engineering and TechnologyPanjab UniversityChandigarhIndia

Personalised recommendations