Local Gamma Factors, Converse Theorems and Related Problems

  • Chufeng NienEmail author
Part of the Progress in Mathematics book series (PM, volume 328)


This paper reviews the development of Local Converse Theorems and related results on distinction for representations of general linear groups over finite and p-adic fields.


Generic representation Whittaker models Gamma factors Local Converse Theorem Distinguished representation Gauss sum 

2000 Mathematics Subject Classification.

Primary 20C33 Secondary 11L05 



This work was supported by the Ministry of Science and Technology, Taiwan 105-2115-M-006-010-MY2.


  1. 1.
    M. Adrian, B. Liu, S. Stevens, P. Xu, On the Jacquet conjecture on the local converse problem for \(p\)-adic \({\rm GL}_N\). Represent. Theor. 20, 1–13 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Adrian, B. Liu, Some results on simple supercuspidal representations of \({\rm GL}_n(F)\). J. Number Theor. 160, 117–147 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Adrian, B. Liu, S. Stevens, K.-F. Tam, On the sharpness of the bound for the Local Converse Theorem of \(p\)-adic \({\rm GL}\)(prime). To appear in Proc. Amer. Math. Soc. (2017)Google Scholar
  4. 4.
    J. Arthur, Functoriality and the Trace Formula. preprintGoogle Scholar
  5. 5.
    C.J. Bushnell, G. Henniart, Langlands parameters for epipelagic representations of \({\rm GL}_n\). Math. Ann. 358(1–2), 433–463 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. Braverman, D. Kazhdan, \(\gamma \)-functions of representations and lifting. With an appendix by V. Vologodsky. GAFA 2000 (Tel Aviv, 1999). Geometric Functional Analysis, Special Volume, Part I, pp. 237–278 (2000)CrossRefGoogle Scholar
  7. 7.
    J. Chai, Bessel functions and local converse conjecture of Jacquet. To appear in J. Eur. Math. Soc. (JEMS)Google Scholar
  8. 8.
    J.-P.J. Chen, The \(n\times (n-2)\) Local Converse Theorem for \({\rm GL}(n)\) over a \(p\)-adic field. J. Number Theor. 120(2), 193–205 (2006)CrossRefGoogle Scholar
  9. 9.
    J. Cogdell, I. Piatetski-Shapiro, Converse theorems for \({\rm GL}_n\). Publications Mathématiques de l’IHÉS (79), 157–214 (1994)Google Scholar
  10. 10.
    J. Cogdell, I. Piatetski-Shapiro, Converse theorems for \({\rm GL}_n\). II. J. Reine Angew. Math. 507, 165–188 (1999)Google Scholar
  11. 11.
    S.I. Gelfand, Representation of the full linear group over a finite field. Math. USSR Sbornik 12(1), 13–39 (1970)CrossRefGoogle Scholar
  12. 12.
    J.A. Green, The characters of the finite general linear groups. Trans. Amer. Math. Soc. 80, 402–447 (1955)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Hakim, Distinguished \(p\)-adic representations. Duke Math. J. 62(1), 1–22 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    G. Henniart, Characterization of the local Langlands correspondence by \(\epsilon \)-factors of pairs. Invent. Math. 113(2), 339–350 (1993)MathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Hakim, O. Offen, Distinguished representations of \({\rm GL}(n)\) and Local Converse Theorems. Manuscripta Math. 148(1–2), 1–27 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Jacquet, B. Liu, On the Local Converse Theorem for \(p\)-adic \({\rm GL}_n\). To appear in Amer. J. MathGoogle Scholar
  17. 17.
    D. Jiang, C. Nien, S. Stevens, Towards the Jacquet conjecture on the Local Converse Problem for \(p\)-adic \({\rm GL}_n\). J. Eur. Math. Soc. (JEMS) 17(4), 991–1007 (2015)Google Scholar
  18. 18.
    H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions. Amer. J. Math. 105, 367–464 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Nien, A proof of finite field analogue of Jacquet’s conjecture. Amer J. Math. 136(3), 653–674 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    C. Nien, \(n\times 1\) Local Gamma factors and Gauss Sum. Finite Fields Appl. 46, 255–270 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    C. Nien, Gamma factors and quadratic extension over finite fields. manuscripta math. 158(1–2), 31–54 (2019)MathSciNetCrossRefGoogle Scholar
  22. 22.
    C. Nien, L. Zhang, Converse Theorem meets Gauss sums, with an appendix by Zhiwei Yun. submittedGoogle Scholar
  23. 23.
    O. Offen, On local root numbers and distinction. J. Reine Angew. Math. 652, 165–205 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Y. Ok, Distinction and Gamma factors at \(\frac{1}{2}\): supercuspidal case. Ph.D. Thesis, Columbia University (1997)Google Scholar
  25. 25.
    V. Paškūnas, S. Stevens, On the realization of maximal simple types and epsilon factors of pairs. Amer. J. Math. 130, 1211–1261 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    E.-A. Roditty, On gamma factors and Bessel functions for representations of general linear groups over finite field. M.Sc. Thesis, Tel-Aviv University (2010)Google Scholar
  27. 27.
    P. Xu, A remark on the simple cuspidal representations of \({\rm GL}(n, F)\). Preprint, available at

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and StatisticsHunan Normal UniversityChangsha, HunanChina

Personalised recommendations