Advertisement

Arithmetic of Cuspidal Representations

  • Colin J. BushnellEmail author
Chapter
Part of the Progress in Mathematics book series (PM, volume 328)

Abstract

Here, F is a non-Archimedean local field of residual characteristic p. We are concerned with the irreducible, cuspidal representations of the general linear groups \(\mathrm {GL}(n, F)\). A complete classification of these representations has been known for a long time. It is achieved using rather complicated objects, the simple types and simple characters. The methods it requires have been useful more widely, and the general scheme is now known to apply to many more groups, including \(\mathrm {GL}(m, D)\) (where D is a central F-division algebra), orthogonal groups \(\mathrm {SO}(n)\), symplectic groups \(\mathrm {Sp}(2n)\), (both for p not equal to 2) and even a couple of exceptional groups. In some cases, it is known that the common classification conforms to the requirements of Functoriality. The most interesting, and presently the most difficult, instance of Functoriality is the basic connection between the irreducible cuspidal representations of \(\mathrm {GL}(n, F)\) and the irreducible, n-dimensional representations of the Weil group of F. These notes describe the classification of the cuspidal representations, introducing the results and techniques currently necessary for making this connection more explicit, given that it is known to exist.

References

  1. 1.
    J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula. Ann. Math. Stud. 120 (1989) Princeton University PressGoogle Scholar
  2. 2.
    C. Blondel, G. Henniart, S.A.R. Stevens, Jordan blocks of cuspidal representations of symplectic groups. arXiv:1704.03545v1
  3. 3.
    P. Broussous, Extension du formalisme de Bushnell-Kutzko au cas d’une algèbre à division. Proc. Lond. Math. Soc. 77(3), 292–326 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Broussous, B. Lemaire, Building of \(GL(m, D)\) and centralizers. Transform. Groups 7(1), 15–50 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Bruhat, J. Tits, Groupes réductifs sur un corps local. I, Données radicielles valuées. Publ. Math. Inst. Hautes Etudes Scientifiques 41, 5–251 (1972)CrossRefGoogle Scholar
  6. 6.
    C.J. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of \(GL_N\). J. reine angew. Math. 375(376), 184–210 (1987)MathSciNetzbMATHGoogle Scholar
  7. 7.
    C.J. Bushnell, A. Fröhlich, Non-abelian congruence Gauss sums and \(p\)-adic simple algebras. Proc. Lond. Math. Soc. 50(3), 207–264 (1985)Google Scholar
  8. 8.
    C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) I: simple characters. Publ. Math. Inst. Hautes Etudes Scientifiques 83, 105–233 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) II: wildly ramified supercuspidals. Astérisque 254 (1999)Google Scholar
  10. 10.
    C.J. Bushnell, G. Henniart, Local Rankin-Selberg convolution for \(GL(n)\): divisibility of the conductor. Math. Ann. 321, 455–461 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) III: explicit base change and Jacquet-Langlands correspondence. J. reine angew. Math. 508, 39–100 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) IV: simple characters and base change. Proc. Lond. Math. Soc. (3) 87, 337–362 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    C.J. Bushnell, G. Henniart, The essentially tame local Langlands correspondence, I. J. Am. Math. Soc. 18, 685–710 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    C.J. Bushnell, G. Henniart, The essentially tame local Langlands correspondence, II: totally ramified representations. Compos. Math. 141, 979–1011 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    C.J. Bushnell, G. Henniart, The Local Langlands Conjecture for GL(2), Grundlehren der mathematischen Wissenschaften, vol. 335 (Springer, 2006)Google Scholar
  16. 16.
    C.J. Bushnell, G. Henniart, The essentially tame local Langlands correspondence, III: the general case. Proc. Lond. Math. Soc. 101(3), 497-553 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    C.J. Bushnell, G. Henniart, Intertwining of simple characters in GL(n). Int. Math. Res. Not. (2012).  https://doi.org/10.1093/imrn/rns162MathSciNetCrossRefGoogle Scholar
  18. 18.
    C.J. Bushnell, G. Henniart, Langlands parameters for epipelagic representations of GL\(_n\). Math. Ann. 358, 433–463 (2014)Google Scholar
  19. 19.
    C.J. Bushnell, G. Henniart, To an effective local Langlands correspondence. Memoirs Am. Math. Soc. 231(1087), v+88 (2014)Google Scholar
  20. 20.
    C.J. Bushnell, G. Henniart, Modular local Langlands correspondence for GL\(_n\). Int. Math. Res. Not. (2014).  https://doi.org/10.1093/imrn/rnt063CrossRefGoogle Scholar
  21. 21.
    C.J. Bushnell, G. Henniart, Higher ramification and the local Langlands correspondence. Ann. Math. 185(2)(3), 919–955 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    C.J. Bushnell, G. Henniart, Local Langlands correspondence and ramification for Carayol representations. arXiv: 1611.09258v2
  23. 23.
    C.J. Bushnell, G. Henniart, P.C. Kutzko, Local Rankin-Selberg convolutions for GL\(_n\): explicit conductor formula. J. Am. Math. Soc. 11, 703–730 (1998)Google Scholar
  24. 24.
    C.J. Bushnell, G. Henniart, P.C. Kutzko, Correspondance de Langlands locale pour GL(n) et conducteurs de paires. Ann. Scient. École Norm. Sup. 31(4), 537–560 (1998)MathSciNetCrossRefGoogle Scholar
  25. 25.
    C.J. Bushnell, P.C. Kutzko, The admissible dual of \(GL(N)\) via compact open subgroups. Ann. Math. Stud. 129 (1993) Princeton University PressGoogle Scholar
  26. 26.
    C.J. Bushnell, P.C. Kutzko, The admissible dual of \(SL(N)\) I. Ann. Scient. École Normale Sup. 26(4), 261–279 (1993)Google Scholar
  27. 27.
    C.J. Bushnell, P.C. Kutzko, The admissible dual of \(SL(N)\) II. Proc. Lond. Math. Soc. 68(3), 317–379 (1994)Google Scholar
  28. 28.
    C.J. Bushnell, P.C. Kutzko, Smooth representations of \(p\)-adic reductive groups; structure theory via types. Proc. Lond. Math. Soc. 77(3), 582–634 (1998)Google Scholar
  29. 29.
    C.J. Bushnell, P.C. Kutzko, Semisimple types for \(GL(N)\). Compos. Math. 119, 53–97 (1999)CrossRefGoogle Scholar
  30. 30.
    H. Carayol, Représentations cuspidales du groupe linéaire. Ann. Scient. École Norm. Sup. 17(4), 191–225 (1984)MathSciNetCrossRefGoogle Scholar
  31. 31.
    P. Deligne, Les corps locaux de caractéristique \(p\), limite de corps locaux de caractéristique \(0\). Appendice: théorie de la ramification, et fonctions de Herbrand, pour des extensions non galoisiennes (Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984), pp. 150–157Google Scholar
  32. 32.
    G. Glauberman, Correspondences of characters for relatively prime operator groups. Can. J. Math. 20, 1465–1488 (1968)MathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Godement, H. Jacquet, Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, vol. 260 (Springer, 1972)Google Scholar
  34. 34.
    J.A. Green, The characters of the finite general linear groups. Trans. Am. Math. Soc. 80, 402–447 (1955)MathSciNetCrossRefGoogle Scholar
  35. 35.
    V. Heiermann, Sur l’espace des représentations irréductibles du groupe de Galois d’un corps local. C. R. Acad. Sci. Paris Sér. I Math. 323(6), 571–576 (1996)Google Scholar
  36. 36.
    G. Henniart, Représentations du groupe de Weil d’un corps local. L’Ens. Math. Sér II(26), 155–172 (1980)zbMATHGoogle Scholar
  37. 37.
    G. Henniart, Correspondance de Langlands-Kazhdan explicite dans le cas non ramifié. Math. Nachr. 158, 7–26 (1992)MathSciNetCrossRefGoogle Scholar
  38. 38.
    G. Henniart, Caractérisation de la correspondance de Langlands par les facteurs \(\varepsilon \) de paires. Invent. Math. 113, 339–350 (1993)MathSciNetCrossRefGoogle Scholar
  39. 39.
    G. Henniart, R. Herb, Automorphic induction for \(GL(n)\) (over local non archimedean fields). Duke Math. J. 78, 131–192 (1995)MathSciNetCrossRefGoogle Scholar
  40. 40.
    G. Henniart, B. Lemaire, Formules de caractères pour l’induction automorphe. J. reine angew. Math. 645, 41–84 (2010)MathSciNetzbMATHGoogle Scholar
  41. 41.
    G. Henniart, B. Lemaire, Changement de base et induction automorphe pour GL\(_n\) en caractéristique non nulle. Mém. Soc. Math. France 108 (2010)Google Scholar
  42. 42.
    R.E. Howe, Tamely ramified supercuspidal representations of \(GL_n\). Pac. J. Math. 73, 437–460 (1977)CrossRefGoogle Scholar
  43. 43.
    R.E. Howe, Some qualitative results on the representation theory of \(GL_n\) over a \(p\) -adic field. Pac. J. Math. 73, 479–538 (1977)CrossRefGoogle Scholar
  44. 44.
    R.E. Howe, A. Moy, Hecke algebra isomorphisms for \(GL(n)\) over a \(p\) -adic field. J. Alg. 131, 388–424 (1990)MathSciNetCrossRefGoogle Scholar
  45. 45.
    I.M. Isaacs, Character Theory of Finite Groups (A.M.S. Chelsea Publishing, 2006)Google Scholar
  46. 46.
    H. Jacquet, B. Liu, On the local converse theorem for \(p\)-adic \(GL(n)\). Am. J. Math. arXiv:1601.03656
  47. 47.
    H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions. Am. J. Math. 105, 367–483 (1983)MathSciNetCrossRefGoogle Scholar
  48. 48.
    J.-L. Kim, Supercuspidal representations: an exhaustion theorem. J. Am. Math. Soc. 20, 273–320 (2007)MathSciNetCrossRefGoogle Scholar
  49. 49.
    T. Kondo, On Gaussian sums attached to the general linear groups over finite fields. J. Math. Soc. Jap. 15, 244–255 (1963)MathSciNetCrossRefGoogle Scholar
  50. 50.
    P.C. Kutzko, On the supercuspidal representations of \(GL_2\), I. Am. J. Math. 100, 43–60 (1978)CrossRefGoogle Scholar
  51. 51.
    P.C. Kutzko, On the supercuspidal representations of \(GL_2\), II. Am. J. Math. 100, 705–716 (1978)CrossRefGoogle Scholar
  52. 52.
    P.C. Kutzko, The Langlands conjecture for \(GL_2\) of a local field. Ann. Math. 112, 381–412 (1980)MathSciNetCrossRefGoogle Scholar
  53. 53.
    P.C. Kutzko, The exceptional representations of \(GL_2\). Compos. Math. 51, 3–14 (1984)Google Scholar
  54. 54.
    P.C. Kutzko, Towards a classification of the supercuspidal representations of \(GL_N\). J. Lond. Math. Soc. 37(2), 265–274 (1988)Google Scholar
  55. 55.
    B. Lemaire, Comparison of lattice filtrations and Moy-Prasad filtrations. J. Lie Theory 19, 29–54 (2009)MathSciNetzbMATHGoogle Scholar
  56. 56.
    I.G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford University Press, 1979)Google Scholar
  57. 57.
    I.G. Macdonald, Zeta functions attached to finite general linear groups. Math. Ann. 249, 1–15 (1980)MathSciNetCrossRefGoogle Scholar
  58. 58.
    C. Mœglin, Sur la correspondance de Langlands-Kazhdan. J. Math. Pures et Appl. 69(9), 175–226 (1990)Google Scholar
  59. 59.
    L.E. Morris, Tamely ramified intertwining algebras. Invent. Math. 114, 1–54 (1993)MathSciNetCrossRefGoogle Scholar
  60. 60.
    A. Moy, G. Prasad, Unrefined minimal \(K\)-types for \(p\)-adic groups. Invent. Math. 116, 393–408 (1994)MathSciNetCrossRefGoogle Scholar
  61. 61.
    A. Moy, G. Prasad, Jacquet functors and unrefined minimal \(K\)-types. Comment. Math. Helv. 71, 98–121 (1996)MathSciNetCrossRefGoogle Scholar
  62. 62.
    V. Paskunas, Unicity of types for supercuspidal representations of GL\(_N\). Proc. Lond. Math. Soc. (3) 91, 623–654 (2005)Google Scholar
  63. 63.
    I. Reiner, Maximal Orders, London Mathematical Society Monographs (New Series), vol. 28 (Oxford University Press, 2003)Google Scholar
  64. 64.
    V. Sécherre, Représentations lisses de GL(m,D) I. Caractères simples. Bull. Soc. Math. Fr. 132(3), 327–396 (2004)Google Scholar
  65. 65.
    V. Sécherre, Représentations lisses de GL(m,D) II. \(\beta \)-extensions. Compos. Math. 141(6), 1531–1550 (2005)Google Scholar
  66. 66.
    V. Sécherre, Représentations lisses de GL(m,D) III : types simples. Ann. Scient. Éc. Norm. Sup. 38(4), 951–977 (2005)Google Scholar
  67. 67.
    V. Sécherre, S. Stevens, Représentations lisses de GL\(_m(D)\). IV. Représentations supercuspidales. J. Inst. Math. Jussieu 7(3), 527–574 (2008)Google Scholar
  68. 68.
    V. Sécherre, S. Stevens, Towards an explicit local Jacquet-Langlands correspondence beyond the cuspidal case. arXiv: 1611.04317
  69. 69.
    J-P. Serre, Corps Locaux (Hermann, Paris, 1968)Google Scholar
  70. 70.
    F. Shahidi, On certain \(L\)-functions. Am. J. Math. 103, 297–355 (1981)CrossRefGoogle Scholar
  71. 71.
    F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for \(GL(n)\). Am. J. Math. 106, 67–111 (1984)MathSciNetCrossRefGoogle Scholar
  72. 72.
    S. Stevens, Semisimple characters for \(p\)-adic classical groups. Duke Math. J. 127(1), 123–173 (2005)MathSciNetCrossRefGoogle Scholar
  73. 73.
    S. Stevens, The supercuspidal representations of \(p\)-adic classical groups. Invent. Math. 172(2), 289–352 (2008)MathSciNetCrossRefGoogle Scholar
  74. 74.
    J. Tate, Number theoretic background, in Automorphic forms, representations and \(L\)-functions ed. by A. Borel, W. Casselman. Proceedings of Symposia in Pure Mathematics, vol. 33, No. 2 (American Mathematical Society, Providence RI, 1979), pp. 3–26Google Scholar
  75. 75.
    J. Tits, Reductive groups over local fields, in Automorphic forms, representations and \(L\)-functions, ed. by A. Borel, W. Casselman. Proceedings of Symposia in Pure Mathematics, vol. 33, No. 1 (American Mathematical Society, Providence RI, 1979), pp. 29–69Google Scholar
  76. 76.
    J.-L. Waldspurger, Algèbres de Hecke et induites de représentations cuspidales, pour \(GL(N)\). J. reine angew. Math. 370, 127–191 (1986)MathSciNetzbMATHGoogle Scholar
  77. 77.
    J.-K. Yu, Construction of tame supercuspidal representations. J. Am. Math. Soc. 14, 579–622 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonStrand, LondonUK

Personalised recommendations