Advertisement

Research Progress of Inverse Synthetic Aperture Radar (ISAR) Imaging of Moving Target via Quadratic Frequency Modulation (QFM) Signal Model

  • Yong WangEmail author
  • Aijun Liu
  • Qingxiang Zhang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 516)

Abstract

ISAR imaging of dynamic target is very significant in real applications. Plenty of available outcomes have been acquired by the scholars in the near years. Considering the accuracy and the computational complexity, the radar echo can be described as multicomponent QFM signal after envelope alignment with initial phase calibration. Many parametric algorithms in this case have been developed recently. This paper provides a comprehensive summarization of the ISAR imaging approach with QFM signal model in recent years, with the aim to introduce the research progress of it to the researchers and interested readers.

Keywords

ISAR Complex motion QFM signal 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China under grant 61622107 and 61471149.

References

  1. 1.
    Berizzi F, Mese ED, Diani M, Martorella M. High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: modeling and performance analysis. IEEE Trans Image Process. 2001;10(12):1880–90.zbMATHGoogle Scholar
  2. 2.
    Pastina D, Bucciarelli M, Lombardo P. Multistatic and MIMO distributed ISAR for enhanced cross-range resolution of rotating targets. IEEE Trans Geosci Remote Sens. 2010;48(8):3300–17.Google Scholar
  3. 3.
    Zhao LF, Wang L, Bi GA, Yang L. An autofocus technique for high-resolution inverse synthetic aperture radar imagery. IEEE Trans GRS. 2014;52(10):6392–403.Google Scholar
  4. 4.
    Xu G, Xing MD, Bao Z. High-resolution inverse synthetic aperture radar imaging of maneuvering targets with sparse aperture. Electron Lett. 2015;51(3):287–9.Google Scholar
  5. 5.
    Liu L, Zhou F, Tao ML, Sun PG, Zhang ZJ. Adaptive translational motion compensation method for ISAR imaging under low SNR based on particle swarm optimization. IEEE J Sel Top Appl Earth Observations Remote Sens. 2015;8(11):5146–57.Google Scholar
  6. 6.
    Wang JF, Liu XZ. Improved global range alignment for ISAR. IEEE Trans AES. 2007;43(3):1070–5.Google Scholar
  7. 7.
    Pastina D. Rotation motion estimation for high resolution ISAR and hybrid SAR/ISAR target imaging. In: IEEE radar conference; 2008. p. 1–6.Google Scholar
  8. 8.
    Hu JM, Zhou W, Fu YW, Li X, Jing N. Uniform rotational motion compensation for ISAR based on phase cancellation. IEEE Geosci Remote Sens Lett. 2011;8(4):636–40.Google Scholar
  9. 9.
    Yeh CM, Xu J, Peng YN, Xia XG, Wang XT. Rotational motion estimation for ISAR via triangle pose difference of two range-Doppler images. IET Radar Sonar Navig. 2010;4(4):528–36.Google Scholar
  10. 10.
    Zhu DY, Wang L, Yu YS, Tao QN, Zhu ZD. Robust ISAR range alignment via minimizing the entropy of the average range profile. IEEE Geosci Remote Sens Lett. 2009;6(2):204–8.Google Scholar
  11. 11.
    Walker JL. Range-Doppler imaging of rotating objects. IEEE Trans AES. 1980;16(1):23–52.Google Scholar
  12. 12.
    Rao W, Li G, Wang XQ, Xia XG. Adaptive sparse recovery by parametric weighted L1 minimization for ISAR imaging of uniformly rotating targets. IEEE J Sel Top Appl Earth Observations Remote Sens. 2013;6(2):942–52.Google Scholar
  13. 13.
    Cohen L. Time-frequency distribution-A review. Proceedings of IEEE. 1989;77(7):941–81.Google Scholar
  14. 14.
    Xing MD, Wu RB, Li YC, Bao Z. New ISAR imaging algorithm based on modified Wigner-Ville distribution. IET Proc-Radar Sonar Navig. 2009;3(1):70–80.Google Scholar
  15. 15.
    Xia XG, Wang GY, Chen VC. Quantitative SNR analysis for ISAR imaging using joint time-frequency analysis-Short time fourier transform. IEEE Trans AES. 2002;38(2):649–59.Google Scholar
  16. 16.
    Bao Z, Sun CY, Xing MD. Time-frequency approaches to ISAR imaging of maneuvering targets and their limitations. IEEE Trans AES. 2001;37(3):1091–9.Google Scholar
  17. 17.
    Chen VC, Miceli WJ. Time-varying spectral analysis for radar imaging of maneuvering targets. IEE Proc-Radar Sonar Navig. 1998;145(5):262–8.Google Scholar
  18. 18.
    Trintinalia LC, Ling H. Joint time-frequency ISAR using adaptive processing. IEEE Trans Antennas Propag. 1997;45(2):221–7.Google Scholar
  19. 19.
    Chen VC, Ling H. Time-frequency transforms for radar imaging and signal analysis. Artech House; 2002.Google Scholar
  20. 20.
    Stankovic L, Dakovic M, Thayaparan T. Time-frequency signal analysis with applications. Artech House, Boston; 2013, 3.Google Scholar
  21. 21.
    Wang GY, Bao Z, Sun XB. Inverse synthetic aperture radar imaging of non-uniformly rotating targets. Opt Eng. 1996;35(10):3007–11.Google Scholar
  22. 22.
    Bao Z, Wang GY, Luo L. Inverse synthetic aperture radar imaging of maneuvering targets. Opt Eng. 1998;37(5):1582–8.Google Scholar
  23. 23.
    Wang Y, Jiang Y. ISAR imaging of three-dimensional rotation target based on two-order match Fourier transform. IET Signal Process. 2012;6(2):159–69.MathSciNetGoogle Scholar
  24. 24.
    Wang Y, Kang J, Jiang YC. ISAR imaging of maneuvering target based on the local polynomial Wigner distribution and integrated high order ambiguity function for cubic phase signal model. IEEE J Sel Top Appl Earth Observations Remote Sens. 2014;7(7):2971–91.Google Scholar
  25. 25.
    Li YC, Xing MD, Su JH, Quan YH, Bao Z. A new algorithm of ISAR imaging for maneuvering targets with low SNR. IEEE Trans AES. 2013;49(1):543–57.Google Scholar
  26. 26.
    Wang Y, Jiang YC. Inverse synthetic aperture radar imaging of maneuvering target based on the product generalized cubic phase function. IEEE Geosci Remote Sens Lett. 2011;8(5):958–62.Google Scholar
  27. 27.
    Wang Y, Jiang YC. ISAR imaging of a ship target using product high order matched-phase transform. IEEE Geosci Remote Sens Lett. 2009;6(4):658–61.Google Scholar
  28. 28.
    Wang C, Wang Y, Li SB. ISAR imaging of ship targets with complex motion based on match Fourier transform for cubic chirps model. IET Radar Sonar Navig. 2013;7(9):994–1003.Google Scholar
  29. 29.
    Wang Y, Zhao B, Kang J. Asymptotic statistical performance of local polynomial Wigner distribution for the parameters estimation of cubic phase signal with application in ISAR imaging of ship target. IEEE J Sel Top Appl Earth Observations Remote Sens. 2015;8(3):1087–98.Google Scholar
  30. 30.
    Wang Y, Zhao B. Inverse synthetic aperture radar imaging of non-uniformly rotating target based on the parameters estimation of multi-component quadratic frequency-modulation signals. IEEE Sens J. 2015;15(7):4053–61.Google Scholar
  31. 31.
    Wang Y, Lin YC. ISAR imaging of non-uniformly rotating target via range-instantaneous-Doppler-derivatives algorithm. IEEE J Sel Top Appl Earth Observations Remote Sens. 2014;7(1):167–76.Google Scholar
  32. 32.
    Bai X, Tao R, Wang ZJ, Wang Y. ISAR imaging of a ship target based on parameter estimation of multicomponent quadratic frequency-modulation signals. IEEE Trans GRS. 2014;52(2):1418–29.Google Scholar
  33. 33.
    Wang Y. Inverse synthetic aperture radar imaging of manoeuvring target based on range-instantaneous-Doppler and range-instantaneous-chirp-rate algorithms. IET Radar Sonar Navig. 2012;6(9):921–8.Google Scholar
  34. 34.
    Li YC, Wu RB, Xing MD, Bao Z. Inverse synthetic aperture radar imaging of ship target with complex motion. IET Proc-Radar Sonar Navig. 2008;2(6):395–403.Google Scholar
  35. 35.
    Wu L, Wei XZ, Yang DG, Wang HQ, Li X. ISAR imaging of targets with complex motion based on discrete chirp Fourier transform for cubic chirps. IEEE Trans GRS. 2012;50(10):4201–12.Google Scholar
  36. 36.
    Wang Y, Zhang QX, Zhao B. Inverse synthetic aperture radar imaging of maneuvering target based on cubic chirps model with time varying amplitudes. J Appl Remote Sens. 2016;10(1):1–10.Google Scholar
  37. 37.
    Wang Y, Xu RQ, Zhang QX, Zhao B. ISAR imaging of maneuvering target based on the quadratic frequency modulation signal model with time varying amplitude. IEEE J Sel Top Appl Earth Observations Remote Sens. 2017;10(3):1012–24.Google Scholar
  38. 38.
    Zheng JB, Su T, Zhu WT, Liu QH. ISAR imaging of targets with complex motions based on the Keystone time-chirp rate distribution. IEEE Geosci Remote Sens Lett. 2014;11(7):1275–9.Google Scholar
  39. 39.
    Zheng JB, Su T, Zhang L, Zhu WT, Liu QH. ISAR imaging of targets with complex motion based on the chirp rate-quadratic chirp rate distribution. IEEE Trans GRS. 2014;52(11):7276–89.Google Scholar
  40. 40.
    Zheng JB, Su T, Zhu WT, Zhang L, Liu Z, Liu QH. ISAR imaging of nonuniformly rotating target based on a fast parameter estimation algorithm of cubic phase signal. IEEE Trans GRS. 2015;53(9):4727–40.Google Scholar
  41. 41.
    Zheng JB, Liu HW, Liao GS, Su T, Liu Z, Liu QH. ISAR imaging of targets with complex motions based on a noise-resistant parameter estimation algorithm without nonuniform axis. IEEE Sens J. 2016;16(8):2509–18.Google Scholar
  42. 42.
    Zheng JB, Liu HW, Liao GS, Su T, Liu Z, Liu QH. ISAR imaging of nonuniformly rotating targets based on generalized decoupling technique. IEEE J Sel Top Appl Earth Observations Remote Sens. 2016;9(1):520–32.Google Scholar
  43. 43.
    Zheng JB, Su T, Liao GS, Liu HW, Liu Z, Liu QH. ISAR imaging of fluctuating ships based on a fast bilinear parameter estimation algorithm. IEEE J Sel Top Appl Earth Observations Remote Sens. 2015;8(8):3954–66.Google Scholar
  44. 44.
    Li YY, Su T, Zheng JB, He XH. ISAR imaging of targets with complex motions based on modified Lv’s distribution for cubic phase signal. IEEE J Sel Top Appl Earth Observations Remote Sens. 2015;8(10):4775–84.Google Scholar
  45. 45.
    Lv Q, Su T, Zheng JB. Inverse synthetic aperture radar imaging of targets with complex motion based on the local polynomial ambiguity function. J Appl Remote Sens. 2016;10(1):1–18.Google Scholar
  46. 46.
    Li D, Zhan MY, Zhang XZ, Fang ZP, Liu HQ. ISAR imaging of nonuniformly rotating target based on the multicomponent CPS model under low SNR environment. IEEE Trans AES. 2017;53(3):1119–35.Google Scholar
  47. 47.
    Li D, Gui XG, Liu HQ, Su J, Xiong H. An ISAR imaging algorithm for maneuvering targets with low SNR based on parameter estimation of multicomponent quadratic FM signals and nonuniform FFT. IEEE J Sel Top Appl Earth Observations Remote Sens. 2016;9(12):5688–702.Google Scholar
  48. 48.
    Wang Y, Jiang YC. Approach for high resolution inverse synthetic aperture radar imaging of ship target with complex motion. IET Signal Proc. 2013;7(2):146–57.MathSciNetGoogle Scholar
  49. 49.
    Wang Y, Jiang YC. ISAR imaging for three-dimensional rotation targets based on adaptive Chirplet decomposition. Multidimension Syst Signal Process. 2010;21(1):59–71.MathSciNetzbMATHGoogle Scholar
  50. 50.
    Wang Y, Zhao B, Jiang YC. Inverse synthetic aperture radar imaging of targets with complex motion based on cubic Chirplet decomposition. IET Signal Proc. 2015;9(5):419–29.Google Scholar
  51. 51.
    Wang Y. Radar imaging of non-uniformly rotating target via a novel approach for multi-component AM-FM signal parameter estimation. Sensors. 2015;15(3):6905–23.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Research Institute of Electronic Engineering Technology, Harbin Institute of TechnologyHarbinChina
  2. 2.Department of Communication EngineeringWeihai Campus of Harbin Institute of TechnologyShandongChina

Personalised recommendations