Advertisement

Color Correction Method for Digital Camera Based on Variable-Exponent Polynomial Regression

  • Yingjie Zhou
  • Kun GaoEmail author
  • Yue Guo
  • Zeyang Dou
  • Haobo Cheng
  • Zhuoyi Chen
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 516)

Abstract

Subject to the response uniformity of photoelectric sensors, the captured raw images always have serious chroma distortions. How to determine the mapping matrix between RGB and XYZ color spaces is important for the color distortion correction. However, the commonly used algorithms cannot give consideration to the precision and the adaptability. A more reasonable mapping algorithm based on variable-exponent polynomial regression is proposed to evaluate the mapping matrix coefficients. Variable-exponent regularization with the Lρ-norm (1 < ρ < 2) combines the features of lasso regression and ridge regression methods, owning both the sparsity and smoothing properties. The optimal solution for the variable-exponent regularization is given using lagged fix-point iteration method. Data from the standard color correction experiments are used to test the variable-exponent, lasso, ridge, and least-squares regression algorithms with different polynomial regression models. The results demonstrate that the proposed algorithm has the best performance.

Keywords

Color correction Polynomial regression Regularization Variable-exponent 

References

  1. 1.
    Zhang XS, Gao SB, Li RX, et al. A retinal mechanism inspired color constancy model. IEEE Trans Image Process. 2016;25(3):1219–32.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wang Y, Xu H. Colorimetric characterization for scanner based on polynomial regression models. Acta Opt Sin. (in Chinese). 2007; 6:035.Google Scholar
  3. 3.
    Kim SJ, Koh K, Lustig M, Boyd S. An interior-point method for large-scale-regularized least squares. IEEE J Sel Top Sig Process. 2007;1(4):606–17.CrossRefGoogle Scholar
  4. 4.
    Zhang J, Yang Y, Zhang J. A MEC-BP-Adaboost neural network-based color correction algorithm for color image acquisition equipment. Optik. 2016;127(2):776–80.CrossRefGoogle Scholar
  5. 5.
    Wang X, Zhang D. An optimized tongue image color correction scheme. IEEE Trans Inf Technol Biomed. 2010;14(6):1355–64.CrossRefGoogle Scholar
  6. 6.
    Zhuo L, Zhang J, Dong P, et al. An SA–GA–BP neural network-based color correction algorithm for TCM tongue images. Neurocomputing. 2014;134:111–6.CrossRefGoogle Scholar
  7. 7.
    Finlayson GD, Drew MS. Constrained least-squares regression in color spaces. J Electron Imaging. 1997;6(4):484–93.CrossRefGoogle Scholar
  8. 8.
    Finlayson GD, Mackiewicz M, Hurlbert A. Color correction using root-polynomial regression. IEEE Trans Image Process. 2015;24(5):1460–70.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Xu Z, Zhang H, Wang Y, Chang X, Liang Y. L1/2 regularization. Sci China Inform Sci. 2010;53(6):1159–69.CrossRefGoogle Scholar
  10. 10.
    Li F, Justin J, Yeung S. Regularization (L2/L1/Maxnorm/Dropout), http://cs231n.github.io/neural-networks-2/#reg 2017.
  11. 11.
    Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc. 2011;73(3):273–82.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Galligani E. Lagged diffusivity fixed point iteration for solving steady-state reaction diffusion problems. Int J Comput Math. 2012;89(8):998–1016.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dou Z, Gao K, Zhang B, Yu X, Han L, Zhu Z. Realistic image rendition using a variable exponent functional model for retinex. Sensors. 2016;16(6):832.CrossRefGoogle Scholar
  14. 14.
    International Organization for Standardization. Graphic technology and photography-color characterization of digital still cameras (DSCs). ISO17321-1.2012.Google Scholar
  15. 15.
    Schmittmann O, Schulze LP. A true-color sensor and suitable evaluation algorithm for plant recognition. Sensors. 2017;17(8):1823.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yingjie Zhou
    • 1
  • Kun Gao
    • 1
    Email author
  • Yue Guo
    • 1
  • Zeyang Dou
    • 1
  • Haobo Cheng
    • 1
  • Zhuoyi Chen
    • 2
  1. 1.School of OptoelectronicsBeijing Institute of TechnologyBeijingChina
  2. 2.Beijing Institute of Spacecraft System EngineeringBeijingChina

Personalised recommendations