Advertisement

An Enhanced Region-Based Model for Segmentation Images with Intensity Inhomogeneity

  • Haiping YuEmail author
  • Xiaoli Lin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 986)

Abstract

Segmentation of images with intensity inhomogeneity is always challenging due to low resolution, blurred boundaries and poor illumination. Although existing image segmentation methods were widely used, there exists some shortcomings in segmenting intensity inhomogeneous images, such as not considering the spatial interrelation within the central pixel and its neighborhood. Therefore, this paper proposes an enhanced region-based active contour model for segmenting images with intensity inhomogeneity. In this model, a range-based adaptive bilateral filter is utilized to preserve edge structures and resist the noise of the image. Then an effective energy functional is constructed into the level set framework. With the permission of keeping the original shape of the image, a regularization term is utilized to refrain from the process of re-initialization and speed up the curve evolution. In the end, some experiments on synthetic and real images and contrast with the classic segmentation models are executed. The proposed model is more accuracy than other classic models.

Keywords

Image segmentation Region-based model Level set 

Notes

Acknowledgments

We would like to thank the editors and the reviewers for their pertinent comments. This work was supported in part by the National Natural Science Foundation of China (Grant No. 61502356) and the Hubei Provincial Department of Education Science and Technology Research Project (No. B2016590).

References

  1. 1.
    Chuang, K.S., Tzeng, H.L., Chen, S., et al.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30(1), 9–15 (2006)CrossRefGoogle Scholar
  2. 2.
    Gong, M., Liang, Y., Shi, J., et al.: Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573–584 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Han, Y., Shi, P.: An improved ant colony algorithm for fuzzy clustering in image segmentation. Neurocomputing 70(4–6), 665–671 (2007)CrossRefGoogle Scholar
  4. 4.
    Xu, J., Luo, X., Wang, G., et al.: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191, 214–223 (2016)CrossRefGoogle Scholar
  5. 5.
    Qi, C.R., Su, H., Mo, K., et al.: PointNet: deep learning on point sets for 3D classification and segmentation. Proc. Comput. Vis. Pattern Recognit. (CVPR) 1(2), 4 (2017)Google Scholar
  6. 6.
    Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40763-5_31CrossRefGoogle Scholar
  7. 7.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  8. 8.
    Cheng, J., et al.: Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans. Med. Imaging 32(6), 1019–1032 (2013)CrossRefGoogle Scholar
  9. 9.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefGoogle Scholar
  10. 10.
    Li, C., Kao, C.Y., Gore, J.C., et al.: Minimization of region-scalable fitting energy for image segmentation. In: IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, vol. 17, no. 10, p. 1940 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhao, Y., Rada, L., Chen, K., et al.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhou, S., Wang, J., Zhang, S., Liang, Y., Gong, Y.: Active contour model based on local and global intensity information for medical image segmentation. Neurocomputing 186, 107–118 (2016)CrossRefGoogle Scholar
  13. 13.
    Niu, S., Chen, Q., de Sisternes, L., et al.: Robust noise region-based active contour model via local similarity factor for image segmentation. Pattern Recognit. 61, 104–119 (2017)CrossRefGoogle Scholar
  14. 14.
    Yu, H., He, F., Pan, Y.: A novel region-based active contour model via local patch similarity measure for image segmentation. Multimed. Tools Appl. 77, 1–23 (2018)CrossRefGoogle Scholar
  15. 15.
    Sun, W., Dong, E., Qiao, H.: A fuzzy energy-based active contour model with adaptive contrast constraint for local segmentation. Signal Image Video Process. 12(1), 91–98 (2018)CrossRefGoogle Scholar
  16. 16.
    Haiping, Yu., Huali, Z.: Regularized level set method by incorporating local statistical information and global similarity compatibility for image segmentation. In: Huang, D.-S., Bevilacqua, V., Prashan, P. (eds.) ICIC 2015. LNCS, vol. 9225, pp. 388–399. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22180-9_38CrossRefGoogle Scholar
  17. 17.
    Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recognit. 43(4), 1199–1206 (2010)CrossRefGoogle Scholar
  18. 18.
    Zhang, K., Zhang, L., Lam, K.M., et al.: A level set approach to image segmentation with intensity inhomogeneity. IEEE Trans. Cybern. 46(2), 546–557 (2016)CrossRefGoogle Scholar
  19. 19.
    Zhang, B., Allebach, J.P.: Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans. Image Process. 17(5), 664–678 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Farbman, Z., Fattal, R., Lischinski, D., et al.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. (TOG) 27(3), 67 (2008)CrossRefGoogle Scholar
  21. 21.
    Kang, X., Li, S., Benediktsson, J.A.: Spectral–spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52(5), 2666–2677 (2014)CrossRefGoogle Scholar
  22. 22.
    Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 16(11), 2787–2801 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Adams, S., Dirr, N., Peletier, M.A., et al.: From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage. Commun. Math. Phys. 307(3), 791 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Fritzsch, P., Ramos, A.: The gradient flow coupling in the Schrödinger functional. J. High Energy Phys. 2013(10), 8 (2013)CrossRefGoogle Scholar
  25. 25.
    Wang, L., He, L., Mishra, A., et al.: Active contours driven by local Gaussian distribution fitting energy. Signal Process. 89(12), 2435–2447 (2009)CrossRefGoogle Scholar
  26. 26.
    Zhang, K., Zhang, L., Song, H., et al.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668–676 (2010)CrossRefGoogle Scholar
  27. 27.
    Zhou, Y., He, F., Qiu, Y.: Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Sci. China Inf. Sci. 60(6), 068102 (2017)CrossRefGoogle Scholar
  28. 28.
    Zhou, Y., He, F., Qiu, Y.: Optimization of parallel iterated local search algorithms on graphics processing unit. J. Supercomput. 72(6), 2394–2416 (2016)CrossRefGoogle Scholar
  29. 29.
    Alsmirat, M.A., Jararweh, Y., Al-Ayyoub, M., et al.: Accelerating compute intensive medical imaging segmentation algorithms using hybrid CPU-GPU implementations. Multimed. Tools Appl. 76(3), 3537–3555 (2017)CrossRefGoogle Scholar
  30. 30.
    Xia, Z., Wang, X., Zhang, L., et al.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 11(11), 2594–2608 (2016)CrossRefGoogle Scholar
  31. 31.
    Gonde, A.B., Murala, S., Vipparthi, S.K., Maheshwari, R., Balasubramanian, R.: 3D local transform patterns: a new feature descriptor for image retrieval. In: Raman, B., Kumar, S., Roy, P.P., Sen, D. (eds.) Proceedings of International Conference on Computer Vision and Image Processing. AISC, vol. 460, pp. 495–507. Springer, Singapore (2017).  https://doi.org/10.1007/978-981-10-2107-7_45CrossRefGoogle Scholar
  32. 32.
    Lu, X., Zheng, X., Li, X.: Latent semantic minimal hashing for image retrieval. IEEE Trans. Image Process. 26(1), 355–368 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Liu, Y., Lu, Y., Yang, X., et al.: Amplified stimulated emission in up conversion nanoparticles for super-resolution nanoscopy. Nature 543(7644), 229 (2017)CrossRefGoogle Scholar
  34. 34.
    Shi, X., Garcia III, G., Van De Weghe, J.C., et al.: Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat. Cell Biol. 19(10), 1178 (2017)CrossRefGoogle Scholar
  35. 35.
    Mo, G.C.H., Ross, B., Hertel, F., et al.: Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat. Methods 14(4), 427 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Wuhan College of Foreign Languages and Foreign AffairsWuhanChina
  2. 2.City College of Wuhan University of Science and TechnologyWuhanChina
  3. 3.Wuhan University of Science and TechnologyWuhanChina

Personalised recommendations