Advertisement

Causes of the Imbalance Between Exploration and Exploitation in Evolutionary Computation

  • Zhe ChenEmail author
  • Chengjun Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 986)

Abstract

Evolutionary algorithms have been used in more and more research fields. However, it is very usual that an optimal of nontrivial problems cannot be found by an evolutionary algorithm. In fact, only if the balance between exploration and exploitation is achieved in runs, good solutions can be obtained. In this paper, we observe the changing trend of genotype diversity in runs, which cannot obtain the optimal, of different EAs. Then, we illustrate the main cause of the imbalance between exploration and exploitation in different situations.

Keywords

Evolutionary algorithm Exploration and exploitation Diversity Causes 

References

  1. 1.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. Evol. Comput. 6(5), 443–462 (2002)CrossRefGoogle Scholar
  2. 2.
    Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: an analysis of measures and correlation with fitness. IEEE Trans. Evol. Comput. 8(1), 47–62 (2004)CrossRefGoogle Scholar
  3. 3.
    Chang, P.C., Huang, W.H., Ting, C.J.: Dynamic diversity control in genetic algorithm for mining unsearched solution space in TSP problems. Expert Syst. Appl. 37(3), 1863–1878 (2010)CrossRefGoogle Scholar
  4. 4.
    Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)CrossRefGoogle Scholar
  5. 5.
    Eiben, A.E., Schippers, C.A.: On evolutionary exploration and exploitation. Fundamenta Informaticae 35(1–4), 35–50 (1998)zbMATHGoogle Scholar
  6. 6.
    Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Towards an understanding of locality in genetic programming. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 901–908. ACM (2010)Google Scholar
  7. 7.
    Izzo, D., Getzner, I., Hennes, D., Simões, L.F.: Evolving solutions to TSP variants for active space debris removal. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pp. 1207–1214. ACM (2015)Google Scholar
  8. 8.
    Mavrovouniotis, M., Müller, F.M., Yang, S.: Ant colony optimization with local search for dynamic traveling salesman problems (2016)Google Scholar
  9. 9.
    Paenke, I., Jin, Y., Branke, J.: Balancing population-and individual-level adaptation in changing environments. Adapt. Behav. 17(2), 153–174 (2009)CrossRefGoogle Scholar
  10. 10.
    Pan, G., Li, K., Ouyang, A., Li, K.: Hybrid immune algorithm based on greedy algorithm and delete-cross operator for solving TSP. Soft Comput. 20(2), 555–566 (2016)CrossRefGoogle Scholar
  11. 11.
    Reinelt, G.: TSPLIB—A traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)CrossRefGoogle Scholar
  12. 12.
    Suganthan, P.N., et al.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. KanGAL Rep. 2005005, 2005 (2005)Google Scholar
  13. 13.
    Syswerda, G.: Uniform crossover in genetic algorithms (1989)Google Scholar
  14. 14.
    Tao, G., Michalewicz, Z.: Inver-over operator for the TSP. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 803–812. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0056922CrossRefGoogle Scholar
  15. 15.
    Wang, Y., Li, H.X., Huang, T., Li, L.: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl. Soft Comput. 18, 232–247 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Computer ScienceChina University of GeosciencesWuhanChina
  2. 2.Hubei Key Laboratory of Intelligent Geo-Information ProcessingChina University of GeosciencesWuhanChina

Personalised recommendations