Automatic Modulation Recognition in Wireless Communication Systems Using Feature-Based Approach

  • Tarik Adnan AlmohamadEmail author
  • M. F. M. Salleh
  • Mohd Nazri Mahmud
  • Adnan Haider Yusef Sa’d
  • Samir A. Al-Gailani
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 547)


We propose a novel scheme for automatic recognition of four digital modulation types in the domain of wireless communication systems. The presented scheme exploits the distinct features reflected by two dimensional asynchronous sampled In-phase-Quadrature data’ histograms (ASIQ) for the recognition of various digital modulation types. The effect of the medium between the transmitter and receiver is only limited to additive white Gaussian noise (AWGN). The proposed work utilizes support vector machine (SVM) tool for the recognition of various and popular digital modulation types. Simulation results from the proposed technique showed accurate discrimination among four digital signals with various bit rates of 100% total classification accuracy. The simulation was carried out over a broad range of signal-to-noise-ratio (SNR) of 0–35 dB with a step of 0.5. The proposed method exploits the existed structure of coherent receivers to construct two-dimensional histograms without the need for any added hardware devices. Therefore, it provides a promising solution and cost-effective identification technique for modulation types in next wireless communication systems.


Modulation recognition Asynchronous sampled images Wireless communication systems 


  1. 1.
    Zhu, Z., Nandi, A.K.: Automatic Modulation Classification: Principles, Algorithms and Applications. Wiley, Chichester, UK (2015)Google Scholar
  2. 2.
    Dobre, O.A.: Signal identification for emerging intelligent radios: classical problems and new challenges. IEEE Instrum. Meas. Mag. 18, 11–18 (2015)CrossRefGoogle Scholar
  3. 3.
    Almohamad, T.A., Salleh, M.F.M., Mahmud, M.N., Sa’D, A.H.Y.: Simultaneous determination of modulation types and signal-to-noise ratios using feature-based approach. IEEE Access 6, 9262–9271 (2018)Google Scholar
  4. 4.
    Ramkumar, B.: Automatic modulation classification for cognitive radios using cyclic feature detection. IEEE Circuits Syst. Mag. 9, 27–45 (2009)CrossRefGoogle Scholar
  5. 5.
    Shi, Q., Karasawa, Y.: Automatic modulation identification based on the probability density function of signal phase. IEEE Trans. Commun. 60, 1033–1044 (2012)CrossRefGoogle Scholar
  6. 6.
    Hazza, A., Shoaib, M., Alshebeili, S.A., Fahad, A.: An overview of feature-based methods for digital modulation classification. In: 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA), pp. 1–6 (2013)Google Scholar
  7. 7.
    Dobre, O.A., Abdi, A., Bar-Ness, Y., Su, W.: Survey of automatic modulation classification techniques: classical approaches and new trends. IET Commun. 1, 137–156 (2007)CrossRefGoogle Scholar
  8. 8.
    Huang, S., Yao, Y., Wei, Z., Feng, Z., Zhang, P.: Automatic modulation classification of overlapped sources using multiple cumulants. IEEE Trans. Veh. Technol. 66, 6089–6101 (2017)CrossRefGoogle Scholar
  9. 9.
    Ho, K.C., Prokopiw, W., Chan, Y.T.: Modulation identification of digital signals by the wavelet transform. IEE Proc. Radar Sonar Navig. 147, 169–176 (2000)CrossRefGoogle Scholar
  10. 10.
    Khan, F.N., Teow, C.H., Kiu, S.G., Tan, M.C., Zhou, Y., Al-Arashi, W.H., et al.: Automatic modulation format/bit-rate classification and signal-to-noise ratio estimation using asynchronous delay-tap sampling. Comput. Electr. Eng. 47, 126–133 (2015)CrossRefGoogle Scholar
  11. 11.
    Bkassiny, M., Li, Y., Jayaweera, S.K.: A survey on machine-learning techniques in cognitive radios. IEEE Commun. Surv. Tutor. 15, 1136–1159 (2013)CrossRefGoogle Scholar
  12. 12.
    Shawe-Taylor, J., Sun, S.: A review of optimization methodologies in support vector machines. Neurocomputing 74, 3609–3618 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tarik Adnan Almohamad
    • 1
    Email author
  • M. F. M. Salleh
    • 1
  • Mohd Nazri Mahmud
    • 1
  • Adnan Haider Yusef Sa’d
    • 1
  • Samir A. Al-Gailani
    • 1
  1. 1.School of Electrical and Electronic Engineering, Seri AmpanganUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations