Advertisement

Physical Modelling of Gallium Nitride (GaN) Based Double Barrier Quantum Well Device

  • W. N. N. Zaharim
  • N. Z. I. Hashim
  • M. F. Packeer Mohamed
  • A. A. Manaf
  • M. A. Md. ZawawiEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 547)

Abstract

This paper describes the physical simulation of Al0.3Ga0.7N/GaN-based double barrier resonant tunnelling diode (RTD) with cubic-GaN structure using Silvaco ATLAS. Cubic-GaN is interesting for vertical transport devices due to the absence of internal polarization. Proper selection of material parameters is vital in order to optimize the device performance. The relationship between current-voltage (I-V) characteristic, particularly the negative differential resistance (NDR) with respect to variation in barrier composition, well width and barrier thickness are studied in detail. RTDs with clear NDR are demonstrated with peak-to-valley-current ratio (PVCR) of 7.19 and peak current density of 3.77 mA/cm2 at room temperature. The optimum barrier thickness for a given composition is determined by using the ratio of current magnitude at resonant peak to the width of the resonance, and also used as figure of merit for the device. Finally, optimum parameters for the promising cubic Al0.3Ga0.7N/GaN RTD are proposed.

Keywords

AlGaN/GaN Cubic-GaN Resonant tunneling diode Silvaco 

Notes

Acknowledgements

The authors are thankful to Universiti Sains Malaysia for the financial assistance through Short Term Grant 304/PELECT/60313047.

References

  1. 1.
    Bayram, C., Vashaei, Z., Razeghi, M.: Reliability in room-temperature negative differential resistance characteristics of low-aluminum content AlGaN/GaN double-barrier resonant tunneling diodes. Appl. Phys. Lett. 97(18), 181109 (2010).  https://doi.org/10.1063/1.3515418
  2. 2.
    Boucherit, M., Soltani, A., Monroy, E., Rousseau, M., Deresmes, D., Berthe, M., Jaeger, J.C.D.: Investigation of the negative differential resistance reproducibility in AlN/GaN double-barrier resonant tunnelling diodes. Appl. Phys. Lett. 99(18), 182109 (2011).  https://doi.org/10.1063/1.3659468CrossRefGoogle Scholar
  3. 3.
    Petrychuk, M.V., Belyaev, A.E., Kurakin, A.M., Danylyuk, S.V., Klein, N., Vitusevich, S.A.: Mechanisms of current formation in resonant tunneling AlN∕GaN heterostructures. Appl. Phys. Lett. 91(22), 222112 (2007).  https://doi.org/10.1063/1.2817752CrossRefGoogle Scholar
  4. 4.
    Chowdhury, S., Chattaraj, S., Biswas, D.: Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate. J. Semicond. 36(4), 044001 (2015).  https://doi.org/10.1088/1674-4926/36/4/044001CrossRefGoogle Scholar
  5. 5.
    Singh, M.M., Siddiqui, M.J., Saxena, A.: Comparative simulation of GaAs and GaN based double barriers-resonant tunneling diode. Procedia Comput. Sci. 85, 581–587 (2016).  https://doi.org/10.1016/j.procs.2016.05.224CrossRefGoogle Scholar
  6. 6.
    Kurakin, A.: Transport and Noise Properties of AlGaN/GaN Heterostructures for High-Frequency Applications. Doctor of Philosophy, Research Center in the Helmholtz Association (2008)Google Scholar
  7. 7.
    Chang, L.L., Esaki, L., Tsu, R.: Resonant tunneling in semiconductor double barriers. Appl. Phys. Lett. 24(12), 593–595 (1974)CrossRefGoogle Scholar
  8. 8.
    Zainal, N., Novikov, S.V., Mellor, C.J., Foxon, C.T., Kent, A.J.: Current-voltage characteristics of zinc-blende (cubic) Al0.3Ga0.7N/GaN double barrier resonant tunneling diodes. Appl. Phys. Lett. 97, 112102 (2010).  https://doi.org/10.1063/1.3488819
  9. 9.
    Zainal, N., Walker, P., Kent, A.J.: Modelling of cubic AlxGa1−xN/GaN resonant tunnel diode structures. Phys. Status Solidi (C) Curr. Top. Solid State Phys. 7(7–8), 2262–2264 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • W. N. N. Zaharim
    • 1
  • N. Z. I. Hashim
    • 1
  • M. F. Packeer Mohamed
    • 1
  • A. A. Manaf
    • 2
  • M. A. Md. Zawawi
    • 1
    Email author
  1. 1.School of Electrical & Electronic Engineering, Engineering CampusUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Collaborative Microelectronic Design Excellence Centre, Sains@USM Level 1Bayan LepasMalaysia

Personalised recommendations