Advertisement

Ankylosing Spondylitis

  • Yan Wang
  • Quanbo Ji
Chapter

Abstract

Ankylosing spondylitis (AS) represents a common, highly heritable prototype of an interrelated group of chronic inflammatory rheumatic diseases now referred to as spondyloarthritis (SpA), which characteristically affects the axial skeleton in the spine and bilateral sacroiliac joints, resulting in structural and functional impairments, such as inflammatory back pain, asymmetrical peripheral oligoarthritis (predominantly of lower limbs), enthesitis, and specific organ involvement including psoriasis, acute anterior uveitis (AAU), inflammatory bowel disease (IBD), and the so-called extra-articular manifestations (EAM) [1–4]. The past decade yields major advances in the recognition of AS as an entity, the understanding of genetic and pathophysiological mechanisms, and the management due to the new clinical and imaging techniques or therapies [3]. Proteomic and genomic findings while in an early stage have potential both as diagnostic/prognostic tools to investigate the pathogenesis of AS [5]. The strongest known contributing factor is the main histocompatibility complex (MHC) class I molecule human leukocyte antigen-B27 (HLA-B27); several other genes and genetic regions still remain to be identified [4, 6]. The blockers of tumor necrosis factor (TNF), a major therapeutic advance, have allowed patients refractory to conventional treatment [3]. However, whether the available nonsteroidal anti-inflammatory drugs and the treatment with physiotherapy or the other biological treatments is as yet unclear [7]. In addition, the development of defining better strategies and techniques for early diagnosis, therapeutic modulation, and induction of drug-free remission remains one of the major challenges in AS for clinical practice for the next decade.

References

  1. 1.
    Stolwijk C, van Tubergen A, Castillo-Ortiz JD, et al. Prevalence of extra-articular manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(1):65–73.CrossRefPubMedGoogle Scholar
  2. 2.
    Elewaut D, Matucci-Cerinic M. Treatment of ankylosing spondylitis and extra-articular manifestations in everyday rheumatology practice. Rheumatology (Oxford). 2009;48(9):1029–35.CrossRefGoogle Scholar
  3. 3.
    Dougados M, Baeten D. Spondyloarthritis. Lancet. 2011;377(9783):2127–37.CrossRefPubMedGoogle Scholar
  4. 4.
    Braun J, Sieper J. Ankylosing spondylitis. Lancet. 2007;369(9570):1379–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Thomas GP, Brown MA. Genetics and genomics of ankylosing spondylitis. Immunol Rev. 2010;233(1):162–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Bowness P. Hla-B27. Annu Rev Immunol. 2015;33:29–48.CrossRefPubMedGoogle Scholar
  7. 7.
    Braun J, Baraliakos X. Imaging of axial spondyloarthritis including ankylosing spondylitis. Ann Rheum Dis. 2011;70(Suppl 1):i97–103.CrossRefPubMedGoogle Scholar
  8. 8.
    Costantino F, Talpin A, Said-Nahal R, et al. Prevalence of spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort. Ann Rheum Dis. 2015;74(4):689–93.CrossRefPubMedGoogle Scholar
  9. 9.
    Brown MA, Laval SH, Brophy S, et al. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann Rheum Dis. 2000;59(11):883–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liu Y, Jiang L, Cai Q, et al. Predominant association of HLA-B*2704 with ankylosing spondylitis in Chinese Han patients. Tissue Antigens. 2010;75(1):61–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Lopez-Larrea C, Sujirachato K, Mehra NK, et al. HLA-B27 subtypes in Asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens. 1995;45(3):169–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Rana MK, Luthra-Guptasarma M. Multi-modal binding of a ‘Self’ peptide by HLA-B*27:04 and B*27:05 allelic variants, but not B*27:09 or B*27:06 variants: fresh support for some theories explaining differential disease association. Protein J. 2016;35(5):346–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Reveille JD. The genetic basis of spondyloarthritis. Ann Rheum Dis. 2011;70(Suppl 1):i44–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Miceli-Richard C, Zouali H, Said-Nahal R, et al. Significant linkage to spondyloarthropathy on 9q31-34. Hum Mol Genet. 2004;13(15):1641–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Guncan S, Bilge NS, Cansu DU, et al. The role of MEFV mutations in the concurrent disorders observed in patients with familial Mediterranean fever. Eur J Rheumatol. 2016;3(3):118–21.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Davidson SI, Liu Y, Danoy PA, et al. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese. Ann Rheum Dis. 2011;70(2):289–92.CrossRefPubMedGoogle Scholar
  17. 17.
    Lau MC, Keith P, Costello ME, et al. Genetic association of ankylosing spondylitis with TBX21 influences T-bet and pro-inflammatory cytokine expression in humans and SKG mice as a model of spondyloarthritis. Ann Rheum Dis. 2017;76(1):261–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Sieper J, Braun J, Rudwaleit M, et al. Ankylosing spondylitis: an overview. Ann Rheum Dis. 2002;61(Suppl 3):iii8–18.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen DY, Chen YM, Hung WT, et al. Immunogenicity, drug trough levels and therapeutic response in patients with rheumatoid arthritis or ankylosing spondylitis after 24-week golimumab treatment. Ann Rheum Dis. 2015;74(12):2261–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Sieper J, Braun J, Kingsley GH. Report on the fourth international workshop on reactive arthritis. Arthritis Rheum. 2000;43(4):720–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Ciccia F, Accardo-Palumbo A, Rizzo A, et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis. 2014;73(8):1566–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Onderdonk AB, Richardson JA, Hammer RE, et al. Correlation of cecal microflora of HLA-B27 transgenic rats with inflammatory bowel disease. Infect Immun. 1998;66(12):6022–3.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16(5):448–57.CrossRefPubMedGoogle Scholar
  24. 24.
    Evans DM, Spencer CC, Pointon JJ, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43(8):761–7.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ciccia F, Guggino G, Rizzo A, et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis. 2015;74(9):1739–47.CrossRefPubMedGoogle Scholar
  26. 26.
    Lin S, Qiu M, Chen J. IL-4 modulates macrophage polarization in ankylosing spondylitis. Cell Physiol Biochem. 2015;35(6):2213–22.CrossRefPubMedGoogle Scholar
  27. 27.
    Ciccia F, Alessandro R, Rizzo A, et al. Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis. Rheumatology (Oxford). 2014;53(1):104–13.CrossRefGoogle Scholar
  28. 28.
    Sezgin M, Tecer D, Kanik A, et al. Serum RDW and MPV in ankylosing spondylitis: can they show the disease activity? Clin Hemorheol Microcirc. 2017;65(1):1–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Steinbrich-Zollner M, Grun JR, Kaiser T, et al. From transcriptome to cytome: integrating cytometric profiling, multivariate cluster, and prediction analyses for a phenotypical classification of inflammatory diseases. Cytometry A. 2008;73(4):333–40.CrossRefPubMedGoogle Scholar
  30. 30.
    Aufdermaur M. Pathogenesis of square bodies in ankylosing spondylitis. Ann Rheum Dis. 1989;48(8):628–31.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wendling D, Claudepierre P. New bone formation in axial spondyloarthritis. Joint Bone Spine. 2013;80(5):454–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Chen HA, Chen CH, Lin YJ, et al. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol. 2010;37(10):2126–32.CrossRefPubMedGoogle Scholar
  33. 33.
    Lv Q, Li Q, Zhang P, et al. Disorders of MicroRNAs in peripheral blood mononuclear cells: as novel biomarkers of ankylosing spondylitis and provocative therapeutic targets. Biomed Res Int. 2015;2015:504208.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Appel H, Wu P, Scheer R, et al. Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis. J Rheumatol. 2011;38(11):2445–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Atagunduz P, Appel H, Kuon W, et al. HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum. 2005;52(3):892–901.CrossRefPubMedGoogle Scholar
  36. 36.
    del Rio-Martinez P, Navarro-Compan V, Diaz-Miguel C, et al. Similarities and differences between patients fulfilling axial and peripheral ASAS criteria for spondyloarthritis: results from the Esperanza cohort. Semin Arthritis Rheum. 2016;45(4):400–3.CrossRefPubMedGoogle Scholar
  37. 37.
    Baraliakos X, Braun J. Spondyloarthritides. Best Pract Res Clin Rheumatol. 2011;25(6):825–42.CrossRefPubMedGoogle Scholar
  38. 38.
    Braun J, Sieper J. Classification criteria for rheumatoid arthritis and ankylosing spondylitis. Clin Exp Rheumatol. 2009;27(4 Suppl 55):S68–73.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Tan S, Wang R, Ward MM. Syndesmophyte growth in ankylosing spondylitis. Curr Opin Rheumatol. 2015;27(4):326–32.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dougados M, van der Linden S, Juhlin R, et al. The european spondylarthropathy study group preliminary criteria for the classification of spondylarthropathy. Arthritis Rheum. 1991;34(10):1218–27.CrossRefPubMedGoogle Scholar
  41. 41.
    Sieper J, Poddubnyy D. New evidence on the management of spondyloarthritis. Nat Rev Rheumatol. 2016;12(5):282–95.CrossRefPubMedGoogle Scholar
  42. 42.
    Prajzlerova K, Grobelna K, Pavelka K, et al. An update on biomarkers in axial spondyloarthritis. Autoimmun Rev. 2016;15(6):501–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Maksymowych WP. Biomarkers in axial spondyloarthritis. Curr Opin Rheumatol. 2015;27(4):343–8.CrossRefPubMedGoogle Scholar
  44. 44.
    de Vlam K. Soluble and tissue biomarkers in ankylosing spondylitis. Best Pract Res Clin Rheumatol. 2010;24(5):671–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen CH, Yu DT, Chou CT. Biomarkers in spondyloarthropathies. Adv Exp Med Biol. 2009;649:122–32.CrossRefPubMedGoogle Scholar
  46. 46.
    Di Minno MN, Iervolino S, Zincarelli C, et al. Cardiovascular effects of Etanercept in patients with psoriatic arthritis: evidence from the cardiovascular risk in rheumatic diseases database. Expert Opin Drug Saf. 2015;14(12):1905–13.CrossRefPubMedGoogle Scholar
  47. 47.
    Durham LE, Taams LS, Kirkham BW. Psoriatic arthritis. Br J Hosp Med. 2016;77(7):C102–8.CrossRefGoogle Scholar
  48. 48.
    Dal Pont E, D’Inca R, Caruso A, et al. Non-invasive investigation in patients with inflammatory joint disease. World J Gastroenterol. 2009;15(20):2463–8.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Deodhar A, Strand V, Kay J, et al. The term ‘non-radiographic axial spondyloarthritis’ is much more important to classify than to diagnose patients with axial spondyloarthritis. Ann Rheum Dis. 2016;75(5):791–4.CrossRefPubMedGoogle Scholar
  50. 50.
    van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27(4):361–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Baraliakos X, Listing J, Rudwaleit M, et al. Progression of radiographic damage in patients with ankylosing spondylitis: defining the central role of syndesmophytes. Ann Rheum Dis. 2007;66(7):910–5.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Yang CH, Wu TH, Chiou YY, et al. Imaging quality and diagnostic reliability of low-dose computed tomography lumbar spine for evaluating patients with spinal disorders. Spine J. 2014;14(11):2682–90.CrossRefPubMedGoogle Scholar
  53. 53.
    Baraliakos X, Hermann KG, Landewe R, et al. Assessment of acute spinal inflammation in patients with ankylosing spondylitis by magnetic resonance imaging: a comparison between contrast enhanced T1 and short tau inversion recovery (STIR) sequences. Ann Rheum Dis. 2005;64(8):1141–4.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Braun J, Golder W, Bollow M, et al. Imaging and scoring in ankylosing spondylitis. Clin Exp Rheumatol. 2002;20(6 Suppl 28):S178–84.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Weber U, Jurik AG, Lambert RG, et al. Imaging in spondyloarthritis: controversies in recognition of early disease. Curr Rheumatol Rep. 2016;18(9):58.CrossRefPubMedGoogle Scholar
  56. 56.
    Toprak H, Kilic E, Serter A, et al. Doppler US in rheumatic diseases with special emphasis on rheumatoid arthritis and spondyloarthritis. Diagn Interv Radiol. 2014;20(1):72–7.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Arend CF. Role of sonography and magnetic resonance imaging in detecting deltoideal acromial enthesopathy: an early finding in the diagnosis of spondyloarthritis and an under-recognized cause of posterior shoulder pain. J Ultrasound Med. 2014;33(4):557–61.CrossRefPubMedGoogle Scholar
  58. 58.
    Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. N Engl J Med. 2016;374(26):2563–74.CrossRefPubMedGoogle Scholar
  59. 59.
    Slobodin G, Eshed I. Non-radiographic axial spondyloarthritis. IMAJ. 2015;17(12):770–6.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kok HK, Mumtaz A, O’Brien C, et al. Imaging the patient with sacroiliac pain. Can Assoc Radiol J. 2016;67(1):41–51.CrossRefPubMedGoogle Scholar
  61. 61.
    van der Linden S, Akkoc N, Brown MA, et al. The ASAS criteria for axial Spondyloarthritis: strengths, weaknesses, and proposals for a way forward. Curr Rheumatol Rep. 2015;17(9):62.CrossRefPubMedGoogle Scholar
  62. 62.
    Lubrano E, Parsons WJ, Marchesoni A, et al. The definition and measurement of axial psoriatic arthritis. J Rheumatol Suppl. 2015;93:40–2.CrossRefPubMedGoogle Scholar
  63. 63.
    Akkoc N, Khan MA. ASAS classification criteria for axial spondyloarthritis: time to modify. Clin Rheumatol. 2016;35(6):1415–23.CrossRefPubMedGoogle Scholar
  64. 64.
    Wendling D. An overview of investigational new drugs for treating ankylosing spondylitis. Expert Opin Investig Drugs. 2016;25(1):95–104.CrossRefPubMedGoogle Scholar
  65. 65.
    Palazzi C, D’Angelo S, Gilio M, et al. Pharmacological therapy of spondyloarthritis. Expert Opin Pharmacother. 2015;16(10):1495–504.CrossRefPubMedGoogle Scholar
  66. 66.
    Del Rosso A, Maddali-Bongi S. Mind body therapies in rehabilitation of patients with rheumatic diseases. Complement Ther Clin Pract. 2016;22:80–6.CrossRefPubMedGoogle Scholar
  67. 67.
    Moon KH, Kim YT. Medical treatment of ankylosing spondylitis. Hip Pelvis. 2014;26(3):129–35.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lubrano E, Astorri D, Taddeo M, et al. Rehabilitation and surgical management of ankylosing spondylitis. Musculoskelet Surg. 2013;97(Suppl 2):S191–5.CrossRefPubMedGoogle Scholar
  69. 69.
    Hoving JL, Lacaille D, Urquhart DM, et al. Non-pharmacological interventions for preventing job loss in workers with inflammatory arthritis. Cochrane Database Syst Rev. 2014;11:CD010208.Google Scholar
  70. 70.
    Van Tubergen A, Boonen A, Landewe R, et al. Cost effectiveness of combined spa-exercise therapy in ankylosing spondylitis: a randomized controlled trial. Arthritis Rheum. 2002;47(5):459–67.CrossRefPubMedGoogle Scholar
  71. 71.
    Dagfinrud H, Kvien TK, Hagen KB. The Cochrane review of physiotherapy interventions for ankylosing spondylitis. J Rheumatol. 2005;32(10):1899–906.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Kroon FP, van der Burg LR, Ramiro S, et al. Non-steroidal anti-inflammatory drugs (NSAIDs) for axial spondyloarthritis (ankylosing spondylitis and non-radiographic axial spondyloarthritis). Cochrane Database Syst Rev. 2015;7:CD010952.Google Scholar
  73. 73.
    Fendler C, Baraliakos X, Braun J. Glucocorticoid treatment in spondyloarthritis. Clin Exp Rheumatol. 2011;29(5 Suppl 68):S139–42.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Siu S, Haraoui B, Bissonnette R, et al. Meta-analysis of tumor necrosis factor inhibitors and glucocorticoids on bone density in rheumatoid arthritis and ankylosing spondylitis trials. Arthritis Care Res. 2015;67(6):754–64.CrossRefGoogle Scholar
  75. 75.
    Chen J, Lin S, Liu C. Sulfasalazine for ankylosing spondylitis. Cochrane Database Syst Rev. 2014;11:CD004800.Google Scholar
  76. 76.
    Cipriani P, Ruscitti P, Carubbi F, et al. Methotrexate: an old new drug in autoimmune disease. Expert Rev Clin Immunol. 2014;10(11):1519–30.CrossRefPubMedGoogle Scholar
  77. 77.
    Yang Z, Zhao W, Liu W, et al. Efficacy evaluation of methotrexate in the treatment of ankylosing spondylitis using meta-analysis. Int J Clin Pharmacol Ther. 2014;52(5):346–51.CrossRefPubMedGoogle Scholar
  78. 78.
    Chen J, Veras MM, Liu C, et al. Methotrexate for ankylosing spondylitis. Cochrane Database Syst Rev. 2013;2:CD004524.Google Scholar
  79. 79.
    Davis JC Jr, Huang F, Maksymowych W. New therapies for ankylosing spondylitis: etanercept, thalidomide, and pamidronate. Rheum Dis Clin N Am. 2003;29(3):481–94.CrossRefGoogle Scholar
  80. 80.
    Haibel H, Rudwaleit M, Braun J, et al. Six months open label trial of leflunomide in active ankylosing spondylitis. Ann Rheum Dis. 2005;64(1):124–6.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kaltwasser JP, Nash P, Gladman D, et al. Efficacy and safety of leflunomide in the treatment of psoriatic arthritis and psoriasis: a multinational, double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum. 2004;50(6):1939–50.CrossRefPubMedGoogle Scholar
  82. 82.
    Viapiana O, Gatti D, Idolazzi L, et al. Bisphosphonates vs infliximab in ankylosing spondylitis treatment. Rheumatology (Oxford). 2014;53(1):90–4.CrossRefGoogle Scholar
  83. 83.
    Katsicas MM, Russo R. Biologic agents in juvenile spondyloarthropathies. Pediatr Rheumatol Online J. 2016;14(1):17.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Callhoff J, Sieper J, Weiss A, et al. Efficacy of TNF alpha blockers in patients with ankylosing spondylitis and non-radiographic axial spondyloarthritis: a meta-analysis. Ann Rheum Dis. 2015;74(6):1241–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Machado MA, Barbosa MM, Almeida AM, et al. Treatment of ankylosing spondylitis with TNF blockers: a meta-analysis. Rheumatol Int. 2013;33(9):2199–213.CrossRefPubMedGoogle Scholar
  86. 86.
    Elalouf O, Elkayam O. Long-term safety and efficacy of infliximab for the treatment of ankylosing spondylitis. Ther Clin Risk Manag. 2015;11:1719–26.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Maxwell LJ, Zochling J, Boonen A, et al. TNF-alpha inhibitors for ankylosing spondylitis. Cochrane Database Syst Rev. 2015;4:CD005468.Google Scholar
  88. 88.
    Murdaca G, Spano F, Contatore M, et al. Pharmacogenetics of etanercept: role of TNF-alpha gene polymorphisms in improving its efficacy. Expert Opin Drug Metab Toxicol. 2014;10(12):1703–10.CrossRefPubMedGoogle Scholar
  89. 89.
    Scott LJ. Etanercept: a review of its use in autoimmune inflammatory diseases. Drugs. 2014;74(12):1379–410.CrossRefPubMedGoogle Scholar
  90. 90.
    Murdaca G, Spano F, Contatore M, et al. Immunogenicity of infliximab and adalimumab: what is its role in hypersensitivity and modulation of therapeutic efficacy and safety? Expert Opin Drug Saf. 2016;15(1):43–52.CrossRefPubMedGoogle Scholar
  91. 91.
    Lapadula G, Marchesoni A, Armuzzi A, et al. Adalimumab in the treatment of immune-mediated diseases. Int J Immunopathol Pharmacol. 2014;27(1 Suppl):33–48.CrossRefPubMedGoogle Scholar
  92. 92.
    Wang H, Zuo D, Sun M, et al. Randomized, placebo controlled and double-blind trials of efficacy and safety of adalimumab for treating ankylosing spondylitis: a meta-analysis. Int J Rheum Dis. 2014;17(2):142–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Goh L, Samanta A. A systematic MEDLINE analysis of therapeutic approaches in ankylosing spondylitis. Rheumatol Int. 2009;29(10):1123–35.CrossRefPubMedGoogle Scholar
  94. 94.
    Bonafede M, Fox KM, Watson C, et al. Treatment patterns in the first year after initiating tumor necrosis factor blockers in real-world settings. Adv Ther. 2012;29(8):664–74.CrossRefPubMedGoogle Scholar
  95. 95.
    Heredia S, Aparicio M, Armengol E, et al. Rituximab therapy for ankylosing spondylitis associated to demyelinating disease of the central nervous system. Joint Bone Spine. 2016;83(1):105–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Fu D, Sun W, Shen J, et al. Inflammatory pseudotumor around metal-on-polyethylene total hip arthroplasty in patients with ankylosing spondylitis: description of two cases and review of literature. World J Surg Oncol. 2015;13:57.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Guan M, Wang J, Zhao L, et al. Management of hip involvement in ankylosing spondylitis. Clin Rheumatol. 2013;32(8):1115–20.CrossRefPubMedGoogle Scholar
  98. 98.
    Van Royen BJ, De Gast A. Lumbar osteotomy for correction of thoracolumbar kyphotic deformity in ankylosing spondylitis. A structured review of three methods of treatment. Ann Rheum Dis. 1999;58(7):399–406.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Mundwiler ML, Siddique K, Dym JM, et al. Complications of the spine in ankylosing spondylitis with a focus on deformity correction. Neurosurg Focus. 2008;24(1):E6.CrossRefPubMedGoogle Scholar
  100. 100.
    Burton DC. Smith-Petersen osteotomy of the spine. Instr Course Lect. 2006;55:577–82.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Gill JB, Levin A, Burd T, et al. Corrective osteotomies in spine surgery. J Bone Joint Surg Am. 2008;90(11):2509–20.CrossRefPubMedGoogle Scholar
  102. 102.
    Liu H, Yang C, Zheng Z, et al. Comparison of smith-petersen osteotomy and pedicle subtraction osteotomy for the correction of thoracolumbar kyphotic deformity in ankylosing spondylitis: a systematic review and meta-analysis. Spine. 2015;40(8):570–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Boachie-Adjei O. Role and technique of eggshell osteotomies and vertebral column resections in the treatment of fixed sagittal imbalance. Instr Course Lect. 2006;55:583–9.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Zhang X, Zhang Z, Wang J, et al. Vertebral column decancellation: a new spinal osteotomy technique for correcting rigid thoracolumbar kyphosis in patients with ankylosing spondylitis. Bone Joint J. 2016;98-B(5):672–8.CrossRefPubMedGoogle Scholar
  105. 105.
    Wang Y, Lenke LG. Vertebral column decancellation for the management of sharp angular spinal deformity. Eur Spine J. 2011;20(10):1703–10.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Wang Y, Zhang Y, Zhang X, et al. A single posterior approach for multilevel modified vertebral column resection in adults with severe rigid congenital kyphoscoliosis: a retrospective study of 13 cases. Eur Spine J. 2008;17(3):361–72.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Wang Y, Zhang Y, Mao K, et al. Transpedicular bivertebrae wedge osteotomy and discectomy in lumbar spine for severe ankylosing spondylitis. J Spinal Disord Tech. 2010;23(3):186–91.CrossRefPubMedGoogle Scholar
  108. 108.
    Hoh DJ, Khoueir P, Wang MY. Management of cervical deformity in ankylosing spondylitis. Neurosurg Focus. 2008;24(1):E9.CrossRefPubMedGoogle Scholar
  109. 109.
    Chin KR, Ahn J. Controlled cervical extension osteotomy for ankylosing spondylitis utilizing the Jackson operating table: technical note. Spine. 2007;32(17):1926–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yan Wang
    • 1
  • Quanbo Ji
    • 1
  1. 1.Department of orthopaedicsChinese PLA General HospitalBeijingChina

Personalised recommendations