Satellite Image Classification

  • Surekha Borra
  • Rohit Thanki
  • Nilanjan Dey
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter presents the traditional supervised classification methods and then focuses on the state of the art automated satellite image classification methods such as Nearest Neighbours, Naive Bayes, Support Vector Machine (SVM), Discriminant Analysis, Random Forests, Decision Trees, Semi-supervised, Convolutional neural network Models, Deep Convolutional Neural Networks and Hybrid Approaches.


Classification Deep learning Machine learning Support vector machine Supervised 


  1. 1.
    Jawak, S. D., Devliyal, P., & Luis, A. J. (2015). A comprehensive review on pixel oriented and object-oriented methods for information extraction from remotely sensed satellite images with a special emphasis on cryospheric applications. Advances in Remote Sensing, 4(3), 177.CrossRefGoogle Scholar
  2. 2.
    Dey, N., Bhatt, C., & Ashour, A. S. (2018). Big data for remote sensing: Visualization, Analysis and Interpretation. Cham: Springer.Google Scholar
  3. 3.
    Tan, K. C., Lim, H. S., & Jafri, M. M. (2011, September). Comparison of neural network and maximum likelihood classifiers for land cover classification using Landsat multispectral data. In 2011 IEEE Conference on Open Systems (ICOS) (pp. 241-244). IEEE.Google Scholar
  4. 4.
    Paneque-Gálvez, J., Mas, J. F., Moré, G., Cristóbal, J., Orta-Martínez, M., Luz, A. C., … & Reyes-García, V. (2013). Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity. International Journal of Applied Earth Observation and Geoinformation23, 372–383CrossRefGoogle Scholar
  5. 5.
    Jia, K., Wei, X., Gu, X., Yao, Y., Xie, X., & Li, B. (2014). Land cover classification using Landsat 8 operational land imager data in Beijing, China. Geocarto International, 29(8), 941–951.CrossRefGoogle Scholar
  6. 6.
    Liu, T., & Yang, X. (2015). Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 56, 42–54.CrossRefGoogle Scholar
  7. 7.
    Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Science, 18(1), 77–84.CrossRefGoogle Scholar
  8. 8.
    Jog, S., & Dixit, M. (2016, June). Supervised classification of satellite images. In 2016 Conference on Advances in Signal Processing (CASP)  (pp. 93–98). IEEE.Google Scholar
  9. 9.
    Zhang, H. (2004). The optimality of naive Bayes. AA, 1(2), 3.Google Scholar
  10. 10.
    Schütze, H., Manning, C. D., & Raghavan, P. (2008). Introduction to information retrieval (Vol. 39). Cambridge University Press.Google Scholar
  11. 11.
    McCallum, A., & Nigam, K. (1998, July). A comparison of event models for naive bayes text classification. In AAAI-98 Workshop on Learning for Text Categorization (Vol. 752, No. 1, pp. 41–48).Google Scholar
  12. 12.
    Metsis, V., Androutsopoulos, I., & Paliouras, G. (2006, July). Spam filtering with naive bayes-which naive bayes? In CEAS (Vol. 17, pp. 28–69).Google Scholar
  13. 13.
    Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of eugenics, 7(2), 179–188.CrossRefGoogle Scholar
  14. 14.
    Qian, Y., Zhou, W., Yan, J., Li, W., & Han, L. (2014). Comparing machine learning classifiers for object-based land cover classification using very high-resolution imagery. Remote Sensing, 7(1), 153–168.CrossRefGoogle Scholar
  15. 15.
    Alonso-Montesinos, J., Martínez-Durbán, M., del Sagrado, J., del Águila, I. M., & Batlles, F. J. (2016). The application of Bayesian network classifiers to cloud classification in satellite images. Renewable Energy, 97, 155–161.CrossRefGoogle Scholar
  16. 16.
    Sitthi, A., Nagai, M., Dailey, M., & Ninsawat, S. (2016). Exploring land use and land cover of geotagged social-sensing images using naive bayes classifier. Sustainability, 8(9), 921.CrossRefGoogle Scholar
  17. 17.
    Tsangaratos, P., & Ilia, I. (2016). Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. CATENA, 145, 164–179.CrossRefGoogle Scholar
  18. 18.
    Pham, B. T., Bui, D. T., Pourghasemi, H. R., Indra, P., & Dholakia, M. B. (2017). Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 128(1–2), 255–273.CrossRefGoogle Scholar
  19. 19.
    Xia, M., Lu, W., Yang, J., Ma, Y., Yao, W., & Zheng, Z. (2015). A hybrid method based on extreme learning machine and k-nearest neighbor for cloud classification of ground-based visible cloud image. Neurocomputing, 160, 238–249.CrossRefGoogle Scholar
  20. 20.
    Son, N. T., Chen, C. F., Chang, N. B., Chen, C. R., Chang, L. Y., & Thanh, B. X. (2015). Mangrove mapping and change detection in Ca Mau Peninsula, Vietnam, using Landsat data and object-based image analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 503–510.CrossRefGoogle Scholar
  21. 21.
    Nair, M., & Bindhu, J. S. (2016). Supervised techniques and approaches for satellite image classification. International Journal of Computer Applications134(16).CrossRefGoogle Scholar
  22. 22.
    González, M. P., Bonaccorso, E., & Papeş, M. (2015). Applications of geographic information systems and remote sensing techniques to conservation of amphibians in northwestern Ecuador. Global Ecology and Conservation, 3, 562–574.CrossRefGoogle Scholar
  23. 23.
    Serban, C., & Maftei, C. (2011). Thermal analysis of climate regions using remote sensing and grid computing. arXiv preprint arXiv:1101.4474.
  24. 24.
    Yen, S. H., & Wang, C. J. (2006). SVM based watermarking technique. Tamkang Journal of Science and Engineering, 9(2), 141–150.MathSciNetGoogle Scholar
  25. 25.
    Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.zbMATHCrossRefGoogle Scholar
  26. 26.
    Hsu, C. W., Chang, C. C., & Lin, C. J. (2016). A practical guide to support vector classification. Retrieved February, 2018, from
  27. 27.
    Liaw, A., & Wiener, M. (2002). Classification and Regression by Random Forest. R news, 2(3), 18–22.Google Scholar
  28. 28.
    Dalponte, M., Ørka, H. O., Ene, L. T., Gobakken, T., & Næsset, E. (2014). Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sensing of Environment, 140, 306–317.CrossRefGoogle Scholar
  29. 29.
    Schmedtmann, J., & Campagnolo, M. L. (2015). Reliable crop identification with satellite imagery in the context of common agriculture policy subsidy control. Remote Sensing, 7(7), 9325–9346.CrossRefGoogle Scholar
  30. 30.
    Zhang, F., Du, B., & Zhang, L. (2015). Saliency-guided unsupervised feature learning for scene classification. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 2175–2184.CrossRefGoogle Scholar
  31. 31.
    Rao, C. R. (1948). The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society. Series B (Methodological)10(2), 159–203.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. R. (1999, August). Fisher discriminant analysis with kernels. In  Proceedings of the 1999 IEEE Signal Processing Society Workshop on Neural Networks for Signal Processing (pp. 41–48). IEEE.Google Scholar
  33. 33.
    Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American statistical association, 84(405), 165–175.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Raschka, S. (2014). Linear discriminant analysis. Retrieved August, 2018, from
  35. 35.
    Saxena, R. (2017). How decision tree algorithm works. Retrieved August, 2018, from
  36. 36.
    Kulkarni, A. D., & Shrestha, A. (2017). Multispectral image analysis using decision trees. International Journal of Advanced Computer Science and Applications, 8(6), 11–18.Google Scholar
  37. 37.
    Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81–106.Google Scholar
  38. 38.
    Ghose, M. K., Pradhan, R., & Ghose, S. S. (2010). Decision tree classification of remotely sensed satellite data using spectral separability matrix. International Journal of Advanced Computer Science and Applications, 1(5), 93–101.Google Scholar
  39. 39.
    Liaw, A., & Wiener, M. (2002). Classification and regression by random forest. R news, 2(3), 18–22.Google Scholar
  40. 40.
    Segal, M. R. (2004). Machine learning benchmarks and random forest regression. Netherlands: Kluwer Academic Publishers.Google Scholar
  41. 41.
    Cootes, T. F., Ionita, M. C., Lindner, C., & Sauer, P. (2012, October). Robust and accurate shape model fitting using random forest regression voting. In European Conference on Computer Vision (pp. 278–291). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  42. 42.
    Dassenakis, M., Paraskevopoulou, V., Cartalis, C., Adaktilou, N., & Katsiabani, K. (2011). Remote sensing in coastal water monitoring: Applications in the eastern Mediterranean Sea (IUPAC Technical Report). Pure and Applied Chemistry, 84(2), 335–375.CrossRefGoogle Scholar
  43. 43.
    Almendros-Jiménez, J. M., Domene, L., & Piedra-Fernández, J. A. (2013). A framework for ocean satellite image classification based on ontologies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 1048–1063.CrossRefGoogle Scholar
  44. 44.
    Alganci, U., Sertel, E., & Kaya, S. (2018). Determination of the olive trees with object-based classification of Pleiades satellite image. International Journal of Environment and Geoinformatics 5, 132–139.CrossRefGoogle Scholar
  45. 45.
    Goldblatt, R., Stuhlmacher, M. F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., … & Balling, R. C. (2018). Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment205, 253–275.CrossRefGoogle Scholar
  46. 46.
    Classification Tutorial. (2018). Retrieved October, 2018, from
  47. 47.
    Huan, X. I. E., & Lohmann, P. (2008). A new binary encoding algorithm for the integration of hyperspectral data and DSM.Google Scholar
  48. 48.
    Girouard, G., Bannari, A., El Harti, A., & Desrochers, A. (2004, July). Validated spectral angle mapper algorithm for geological mapping: Comparative study between QuickBird and Landsat-TM. In XXth ISPRS Congress, Geo-imagery Bridging Continents, Istanbul, Turkey (pp. 12–23).Google Scholar
  49. 49.
    Shivakumar, B. R., & Rajashekararadhya, S. V. (2017, February). Performance évaluation of spectral angle mapper and spectral correlation mapper classifiers over multiple remote sensor data. In 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT),  (pp. 1–6). IEEE.Google Scholar
  50. 50.
    Petropoulos, G. P., Vadrevu, K. P., Xanthopoulos, G., Karantounias, G., & Scholze, M. (2010). A comparison of spectral angle mapper and artificial neural network classifiers combined with Landsat TM imagery analysis for obtaining burnt area mapping. Sensors, 10(3), 1967–1985.CrossRefGoogle Scholar
  51. 51.
    Hamida, A. B., Benoit, A., Lambert, P., & Amar, C. B. (2018). 3-D Deep learning approach for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing.Google Scholar
  52. 52.
    Goldblatt, R., Stuhlmacher, M. F., Tellman, B., Clinton, N., Hanson, G., Georgescu, M., … & Balling, R. C. (2018). Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sensing of Environment205, 253–275.CrossRefGoogle Scholar
  53. 53.
    Sahiner, B., Chan, H. P., Petrick, N., Wei, D., Helvie, M. A., Adler, D. D., et al. (1996). Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images. IEEE Transactions on Medical Imaging, 15(5), 598–610.CrossRefGoogle Scholar
  54. 54.
    Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1), 98–113.CrossRefGoogle Scholar
  55. 55.
    Zou, Q., Ni, L., Zhang, T., & Wang, Q. (2015). Deep learning based feature selection for remote sensing scene classification. IEEE Geoscience and Remote Sensing Letters 12(11), 2321–2325.CrossRefGoogle Scholar
  56. 56.
    Zhao, W., & Du, S. (2016). Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4544–4554.CrossRefGoogle Scholar
  57. 57.
    Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782.CrossRefGoogle Scholar
  58. 58.
    Arkeman, Y., Buono, A., & Hermadi, I. (2017, January). Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm. In IOP Conference Series: Earth and Environmental Science (Vol. 54, No. 1, p. 012102). IOP Publishing.Google Scholar
  59. 59.
    Bergado, J. R., Persello, C., & Stein, A. (2018). Recurrent multiresolution convolutional networks for VHR image classification. arXiv preprint arXiv:1806.05793.
  60. 60.
    Duarte, D., Nex, F., Kerle, N., & Vosselman, G. (2018). Satellite image classification of building damages using airborne and satellite image samples in a deep learning approach. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences4(2).Google Scholar
  61. 61.
    Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., et al. (2018). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 133–144.CrossRefGoogle Scholar
  62. 62.
    Breiman, L. (1996). Stacked regressions. Machine learning, 24(1), 49–64.Google Scholar
  63. 63.
    Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.CrossRefGoogle Scholar
  64. 64.
    He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).Google Scholar
  65. 65.
    Zhong, Z., Li, J., Ma, L., Jiang, H., & Zhao, H. (2017, July). Deep residual networks for hyperspectral image classification. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1824–1827). IEEE.Google Scholar
  66. 66.
    Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017, July). Densely connected convolutional networks. In CVPR (Vol. 1, No. 2, p. 3).Google Scholar
  67. 67.
    Kanellopoulos, I., Wilkinson, G. G., Roli, F., & Austin, J. (Eds.). (2012). Neurocomputation in remote sensing data analysis: Proceedings of concerted action COMPARES (connectionist methods for pre-processing and analysis of remote sensing data). Springer Science & Business Media.Google Scholar
  68. 68.
    Waske, B., & Benediktsson, J. A. (2007). Fusion of support vector machines for classification of multisensor data. IEEE Transactions on Geoscience and Remote Sensing, 45(12), 3858–3866.CrossRefGoogle Scholar
  69. 69.
    Salah, M. (2017). A survey of modern classification techniques in remote sensing for improved image classification. Journal of Geomatics, 11(1), 21.Google Scholar
  70. 70.
    Crnojević, V., Lugonja, P., Brkljač, B. N., & Brunet, B. (2014). Classification of small agricultural fields using combined Landsat-8 and RapidEye imagery: Case study of Northern Serbia. Journal of Applied Remote Sensing, 8(1), 083512.CrossRefGoogle Scholar
  71. 71.
    Al-Taei, M. S. M., & Al-Ghrairi, A. H. T. (2016). Satellite Image Classification using moment and SVD method. International Journal of Computer (IJC), 23(1), 10–34.Google Scholar
  72. 72.
    Jin, W., Gong, F., Zeng, X., & Fu, R. (2016). Classification of clouds in satellite imagery using adaptive fuzzy sparse representation. Sensors, 16(12), 2153.CrossRefGoogle Scholar
  73. 73.
    Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the 20th International conference on Machine learning (ICML-03) (pp. 912–919).Google Scholar
  74. 74.
    Zhu, X. (2006). Semi-supervised learning literature survey. Computer Science, University of Wisconsin-Madison, 2(3), 4–60.Google Scholar
  75. 75.
    Zhu, X. (2011). Semi-supervised learning. In Encyclopedia of machine learning (pp. 892–897). Boston, MA: Springer.Google Scholar
  76. 76.
    Camps-Valls, G., Marsheva, T. V. B., & Zhou, D. (2007). Semi-supervised graph-based hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3044–3054.CrossRefGoogle Scholar
  77. 77.
    Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1–38.MathSciNetzbMATHGoogle Scholar
  78. 78.
    Jackson, Q., & Landgrebe, D. A. (2001). An adaptive classifier design for high-dimensional data analysis with a limited training data set. IEEE Transactions on Geoscience and Remote Sensing, 39(12), 2664–2679.CrossRefGoogle Scholar
  79. 79.
    Vapnik, V. (1998). Statistical learning theory (Vol. 3). New York: Wiley.Google Scholar
  80. 80.
    Bruzzone, L., Chi, M., & Marconcini, M. (2005, July). Transductive SVMs for semi supervised classification of hyperspectral data. In Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2005 (Vol. 1, pp. 4-pp). IEEE.Google Scholar
  81. 81.
    Chung, F. R. (1996). Spectral graph theory (CBMS regional conference series in mathematics, No. 92).Google Scholar
  82. 82.
    Jordan, M. I., Sejnowski, T. J., & Poggio, T. A. (Eds.). (2001). Graphical models: Foundations of neural computation. MIT Press.Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Surekha Borra
    • 1
  • Rohit Thanki
    • 2
  • Nilanjan Dey
    • 3
  1. 1.Department of Electronics and Communication EngineeringK.S. Institute of TechnologyBengaluruIndia
  2. 2.Faculty of Technology and Engineering, Department of ECEC. U. Shah UniversityWadhwan cityIndia
  3. 3.Department of Information TechnologyTechno India College of TechnologyKolkataIndia

Personalised recommendations