Satellite Image Enhancement and Analysis

  • Surekha Borra
  • Rohit Thanki
  • Nilanjan Dey
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Geographic Information System (GIS) stores large volumes of spectral data (raw facts) acquired by sensors located at the satellite and convert them into features and information in order to provide answers to many questions and for easy retrieval and display based on the user needs. The conversion of data to information involves a lot of processing. The preprocessing, especially, is required for the following reasons:
  • To restore the satellite image quality in the presence of known or unknown degradations and noises.

  • To extract or highlight hidden details in the satellite image.

  • To extract regions or statistical and nonstatistical features of interest for analysis and classification purposes.

  • To geometrically correct the images for mapping and georeferencing.

This chapter describes various image enhancement methods, noise removal methods, image stitching and interpolation methods, segmentation, multivariate image processing techniques, and other image transformations.


Gaussian noise Edge detection Features Filters Salt and pepper 


  1. 1.
    Dey, N., Bhatt, C., & Ashour, A. S. (2018). Big data for remote sensing: Visualization, analysis and interpretation. Cham: Springer.Google Scholar
  2. 2.
    Gonzalez, R., & Woods, R. (2008). Digital image processing. Upper Saddle River: Pearson Education India.Google Scholar
  3. 3.
    Gonzalez, R., Woods, R., & Eddins, L. (2009). Digital image processing using MATLAB. New Delhi: TATA McGraw-Hill Education.Google Scholar
  4. 4.
    Al-Amri, S. S., Kalyankar, N. V., & Khamitkar, S. D. (2010). A comparative study of removal noise from remote sensing image. arXiv preprint arXiv:1002.1148.
  5. 5.
    Bhosale, N. P., & Manza, R. R. (2013). Analysis of effect of noise removal filters on noisy remote sensing images. International Journal of Scientific & Engineering Research (IJSER), 4(10), 1151.Google Scholar
  6. 6.
    Bhosale, N. P., & Manza, R. R. (2012). A review on noise removal techniques from remote sensing images. In National Conference, CMS (Vol. 274).Google Scholar
  7. 7.
    Thanki, R. M., & Kothari, A. M. (2018). Digital image processing using SCILAB. Germany: Springer.Google Scholar
  8. 8.
    Samanta, S., Mukherjee, A., Ashour, A. S., Dey, N., Tavares, J. M. R., Abdessalem Karâa, W. B., … Hassanien, A. E. (2018). Log transform based optimal image enhancement using firefly algorithm for autonomous mini unmanned aerial vehicle: An application of aerial photography. International Journal of Image and Graphics, 18(4), 1850019.CrossRefGoogle Scholar
  9. 9.
    Rekik, A., Zribi, M., Hamida, A. B., & Benjelloun, M. (2007). Review of satellite image segmentation for an optimal fusion system based on the edge and region approaches. International Journal of Computer Science and Network Security, 7(10), 242–250.Google Scholar
  10. 10.
    Wang, C. (2009). Large-scale 3D environmental modelling and visualisation for flood hazard warning. Doctoral dissertation, University of Bradford.Google Scholar
  11. 11.
    Prewitt, J. M., & Mendelsohn, M. L. (1966). The analysis of cell images. Annals of the New York Academy of Sciences, 128(3), 1035–1053.CrossRefGoogle Scholar
  12. 12.
    Tsai, D. M., & Wang, H. J. (1998). Segmenting focused objects in complex visual images. Pattern Recognition Letters, 19(10), 929–940.CrossRefGoogle Scholar
  13. 13.
    Kapur, J. N., Sahoo, P. K., & Wong, A. K. (1985). A new method for gray-level picture thresholding using the entropy of the histogram. Computer Vision, Graphics, and Image Processing, 29(3), 273–285.CrossRefGoogle Scholar
  14. 14.
    Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.CrossRefGoogle Scholar
  15. 15.
    Cumani, A. (1991). Edge detection in multispectral images. CVGIP: Graphical Model and Image Processing, 53(1), 40–51.zbMATHGoogle Scholar
  16. 16.
    Davies, E. R. (2004). Machine vision: Theory, algorithms, practicalities. Amsterdam: Elsevier.Google Scholar
  17. 17.
    Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 679–698.CrossRefGoogle Scholar
  18. 18.
    Wang, C., Su, W., Gu, H., & Shao, H. (2012, October). Edge detection of SAR images using incorporate shift-invariant DWT and binarization method. In 2012 IEEE 11th International Conference on Signal Processing (ICSP) (Vol. 1, pp. 745–748). IEEE.Google Scholar
  19. 19.
    Solomon, C., & Breckon, T. (2011). Fundamentals of digital image processing: A practical approach with examples in Matlab (pp. 267–269). USA: Wiley.Google Scholar
  20. 20.
    Capel, D. (2004). Image mosaicing. In Image mosaicing and super-resolution (pp. 47–79). London: Springer.CrossRefGoogle Scholar
  21. 21.
    Ahmed, S. (2014). Image mosaicing. Retrieved October, 2018, from
  22. 22.
    Shi, W., Tian, Y., & Liu, K. (2007). An integrated method for satellite image interpolation. International Journal of Remote Sensing, 28(6), 1355–1371.CrossRefGoogle Scholar
  23. 23.
    Moser, G., De Giorgi, A., & Serpico, S. B. (2016). Multiresolution supervised classification of panchromatic and multispectral images by Markov random fields and graph cuts. IEEE Transactions on Geoscience and Remote Sensing, 54(9), 5054–5070.CrossRefGoogle Scholar
  24. 24.
    Kumar, D. N. (2014). Remote sensing. Retrieved July, 2018, from
  25. 25.
    Kauth, R. J., & Thomas, G. S. (1976). The tasseled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, Purdue University of West Lafayette, Indiana (pp. 4B-41–4B-51).Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Surekha Borra
    • 1
  • Rohit Thanki
    • 2
  • Nilanjan Dey
    • 3
  1. 1.Department of Electronics and Communication EngineeringK.S. Institute of TechnologyBengaluruIndia
  2. 2.Faculty of Technology and Engineering, Department of ECEC. U. Shah UniversityWadhwan cityIndia
  3. 3.Department of Information TechnologyTechno India College of TechnologyKolkataIndia

Personalised recommendations