Advertisement

Immunomodulatory Aspects of Medicinal Mushrooms

  • Seema Patel
Chapter

Abstract

Mushrooms, the macrofungi, are enigmatic in their composition, which renders some of them umami-flavored edible, some medicinal, some hallucinogenic/psychoactive, while some lethal. In current times, appreciation and demand of the medicinal mushrooms is rising, with the validation of their efficacy as antioxidant, anti-inflammatory, immunomodulatory, anticancer, endocrine restorative, etc. Containing a rich repertoire of bioactive components as β-glucan, phenolics, peptides, and sterols, they have attracted the attention of researchers. Ganoderma lucidum, Hericium erinaceus, Grifola frondosa, Lentinus edodes, Inonotus obliquus, and Cordyceps sinensis are some of the most popular medicinal mushrooms. The immunomodulation, anti-inflammation, and anticancer attributes of the mycochemicals mostly rely on the inhibition of mTOR translational pathway, cell apoptosis, G1 phase cell cycle arrest, downregulation of cyclins A and B1, upregulation of p21 and p27, and induction of cytokines (TNF-α, IL-2, and IFN- γ), among others. Further attention can facilitate the identification of components of biological interest from mushrooms. In this regard, this chapter discusses the biological effects of some major mushroom mycochemicals.

Keywords

Mushrooms Polysaccharides Beta-glucan Lectins Peptides Immunomodulation 

Abbreviations

ChtBDs

Chitin-binding domains

HUVECs

Human umbilical vein endothelial cells

MMP

Matrix metalloproteinase

PSA

Prostate-specific antigen

RIP

Ribosome-inactivating proteins

TIMP

Tissue inhibitor of metalloproteinase

TLR

Toll-like receptors

Notes

Conflict of Interest

There is no conflict of interest in the submission of this manuscript.

References

  1. Akiyama H, Endo M, Matsui T et al (2011) Agaritine from Agaricus blazei Murrill induces apoptosis in the leukemic cell line U937. Biochim Biophys Acta Gen Subj 1810:519–525.  https://doi.org/10.1016/j.bbagen.2011.02.010 CrossRefGoogle Scholar
  2. Antonini G, Pitari G, Caccuri AM et al (1997) Inhibition of human placenta glutathione transferase P1-1 by the antibiotic calvatic acid and its diazocyanide analogue. Eur J Biochem 245:663–667.  https://doi.org/10.1111/j.1432-1033.1997.00663.x PubMedCrossRefGoogle Scholar
  3. Asahi T, Wu X, Shimoda H et al (2016) A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenation. Biosci Biotechnol Biochem 80:313–317.  https://doi.org/10.1080/09168451.2015.1083396 PubMedCrossRefGoogle Scholar
  4. Avanzo Caglič P, Renko M, Turk D et al (2014) Fungal β-trefoil trypsin inhibitors cnispin and cospin demonstrate the plasticity of the β-trefoil fold. Biochim Biophys Acta Proteins Proteomics 1844:1749–1756.  https://doi.org/10.1016/j.bbapap.2014.07.004 CrossRefGoogle Scholar
  5. Bas M, Yurttagul M (2004) Mushroom toxins and mushroom poisoning. SENDROM 16:60–65Google Scholar
  6. Batbayar S, Lee DH, Kim HW (2012) Immunomodulation of fungal β-glucan in host defense signaling by dectin-1. Biomol Ther (Seoul) 20:433–445.  https://doi.org/10.4062/biomolther.2012.20.5.433 (Title in lower case)PubMedCrossRefGoogle Scholar
  7. Cateni F, Zacchigna M, Altieri T et al (2015) Antioxidant properties of oak bracket mushroom, Pseudoinonotus dryadeus (higher basidiomycetes): a mycochemical study. Int J Med Mushrooms 17:627–637.  https://doi.org/10.1615/IntJMedMushrooms.v17.i7.30 PubMedCrossRefGoogle Scholar
  8. Chen NH, Zhong JJ (2009) Ganoderic acid Me induces G1 arrest in wild-type p53 human tumor cells while G1/S transition arrest in p53-null cells. Process Biochem 44:928–933.  https://doi.org/10.1016/j.procbio.2009.03.018 CrossRefGoogle Scholar
  9. Chen W, Zhao Z, Chen SF, Li YQ (2008a) Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour Technol 99:3187–3194.  https://doi.org/10.1016/j.biortech.2007.05.049 PubMedCrossRefGoogle Scholar
  10. Chen W, Zhao Z, Li L et al (2008b) Hispolon induces apoptosis in human gastric cancer cells through a ROS-mediated mitochondrial pathway. Free Radic Biol Med 45:60–72.  https://doi.org/10.1016/j.freeradbiomed.2008.03.013 PubMedCrossRefGoogle Scholar
  11. Chen NH, Liu JW, Zhong JJ (2010) Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacol Rep 62:150–163.  https://doi.org/10.1016/S1734-1140(10)70252-8 PubMedCrossRefGoogle Scholar
  12. Cheung Y-H, Sheridan CM, Lo ACY, Lai WW (2012) Lectin from Agaricus bisporus inhibited S phase cell population and Akt phosphorylation in human RPE cells. Invest Ophthalmol Vis Sci 53:7469–7475.  https://doi.org/10.1167/iovs.12-10589 CrossRefGoogle Scholar
  13. Chiang PC, Lin SC, Pan SL et al (2010) Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem Pharmacol 79:162–171.  https://doi.org/10.1016/j.bcp.2009.08.022 PubMedCrossRefGoogle Scholar
  14. Cho JT, Han JH (2016) A case of mushroom poisoning with Russula subnigricans: development of rhabdomyolysis, acute kidney injury, cardiogenic shock, and death. J Korean Med Sci 31:1164–1167.  https://doi.org/10.3346/jkms.2016.31.7.1164 (Title in lower case)PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chu KT, Xia L, Ng TB (2005) Pleurostrin, an antifungal peptide from the oyster mushroom. Peptides 26:2098–2103.  https://doi.org/10.1016/j.peptides.2005.04.010 PubMedCrossRefGoogle Scholar
  16. Colin Slaughter J (1999) The naturally occurring furanones: formation and function from pheromone to food. Biol Rev Camb Philos Soc 74:259–276PubMedCrossRefGoogle Scholar
  17. Córdoba M, Ríos AH (2012) Biotechnological applications and potential uses of the mushroom Trametes versicolor. Vitae Rev la Fac Quim Farm 19:70–76Google Scholar
  18. Cui FJ, Li Y, Xu YY et al (2007) Induction of apoptosis in SGC-7901 cells by polysaccharide-peptide GFPS1b from the cultured mycelia of Grifola frondosa GF9801. Toxicol Vitr 21:417–427.  https://doi.org/10.1016/j.tiv.2006.10.004 PubMedCrossRefGoogle Scholar
  19. Dotan N, Wasser SP, Mahajna J (2011) Inhibition of the androgen receptor activity by Coprinus comatus substances. Nutr Cancer 63:1316–1327.  https://doi.org/10.1080/01635581.2011.607542 PubMedCrossRefGoogle Scholar
  20. Dworecka-Kaszak B (2014) Cordyceps fungi as natural killers, new hopes for medicine and biological control factors. Ann Parasitol 60:151–158Google Scholar
  21. Erden A, Esmeray K, Karagöz H et al (2013) Acute liver failure caused by mushroom poisoning: a case report and review of the literature. Int Med Case Rep J 6:85–90.  https://doi.org/10.2147/IMCRJ.S53773 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fujita R, Liu J, Shimizu K et al (2005) Anti-androgenic activities of Ganoderma lucidum. J Ethnopharmacol 102:107–112.  https://doi.org/10.1016/j.jep.2005.05.041 PubMedCrossRefGoogle Scholar
  23. Grob CS, Danforth AL, Chopra GS et al (2011) Pilot study of psilocybin treatment for anxiety in patients with advanced-stage cancer. Arch Gen Psychiatry 68:71–78.  https://doi.org/10.1001/archgenpsychiatry.2010.116 PubMedCrossRefGoogle Scholar
  24. Gu YH, Leonard J (2006) In vitro effects on proliferation, apoptosis and colony inhibition in ER-dependent and ER-independent human breast cancer cells by selected mushroom species. Oncol Rep 15:417–423.  https://doi.org/10.3892/or.15.2.417 CrossRefGoogle Scholar
  25. Guan G-P, Zhang G-Q, Wu Y-Y et al (2011) Purification and characterization of a novel serine protease from the mushroom Pholiota nameko. J Biosci Bioeng 111:641–645.  https://doi.org/10.1016/j.jbiosc.2011.02.009 PubMedCrossRefGoogle Scholar
  26. Guo Y-J, Deng G-F, Xu X-R et al (2012) Antioxidant capacities, phenolic compounds and polysaccharide contents of 49 edible macro-fungi. Food Funct 3:1195–1205.  https://doi.org/10.1039/c2fo30110e PubMedCrossRefGoogle Scholar
  27. Hsu YL, Kuo PL, Cho CY et al (2007) Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway. Food Chem Toxicol 45:1249–1257.  https://doi.org/10.1016/j.fct.2007.01.005 PubMedCrossRefGoogle Scholar
  28. Huang HY, Chieh SY, Tso TK et al (2011) Orally administered mycelial culture of Phellinus linteus exhibits antitumor effects in hepatoma cell-bearing mice. J Ethnopharmacol 133:460–466.  https://doi.org/10.1016/j.jep.2010.10.015 PubMedCrossRefGoogle Scholar
  29. Ina K, Kataoka T, Ando T (2013) The use of lentinan for treating gastric cancer. Anticancer Agents Med Chem 13:681–688.  https://doi.org/10.2174/1871520611313050002 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Jang K-J, Han M-H, Lee B-H et al (2010) Induction of apoptosis by ethanol extracts of Ganoderma lucidum in human gastric carcinoma cells. J Acupunct Meridian Stud 3:24–31.  https://doi.org/10.1016/S2005-2901(10)60004-0 PubMedCrossRefGoogle Scholar
  31. Jaspers NGJ, Raams A, Kelner MJ et al (2002) Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription- and replication-coupled repair pathways. DNA Repair (Amst) 1:1027–1038.  https://doi.org/10.1016/S1568-7864(02)00166-0 CrossRefGoogle Scholar
  32. Javed S, Ahmad M, Ahmad M et al (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21.  https://doi.org/10.4103/0975-7406.106559 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Jeong JW, Jin CY, Park C et al (2011) Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol Vitr 25:817–824.  https://doi.org/10.1016/j.tiv.2011.02.001 CrossRefGoogle Scholar
  34. Jia Z-Q, Chen Y, Yan Y-X, Zhao J-X (2014) Iso-suillin isolated from Suillus luteus, induces G1 phase arrest and apoptosis in human hepatoma SMMC-7721 cells. Asian Pac J Cancer Prev 15:1423–1428.  https://doi.org/10.7314/APJCP.2014.15.3.1423 PubMedCrossRefGoogle Scholar
  35. Jin XY, Lee SH, Kim JY et al (2006) Polyozellin inhibits nitric oxide production by down-regulating LPS-induced activity of NF-kappaB and SAPK/JNK in RAW 264.7 cells. Planta Med 72:857–859.  https://doi.org/10.1055/s-2006-946640 PubMedCrossRefGoogle Scholar
  36. Jo W-S, Hossain MA, Park S-C (2014) Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiology 42:215–220.  https://doi.org/10.5941/MYCO.2014.42.3.215 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jung B, Yang E-J, Bae J-S (2016) Suppressive effects of polyozellin on TGFBIp-mediated septic responses in human endothelial cells and mice. Nutr Res 36:380–389.  https://doi.org/10.1016/j.nutres.2015.12.009 PubMedCrossRefGoogle Scholar
  38. Kikuchi Y, Seta K, Ogawa Y et al (2014) Chaga mushroom-induced oxalate nephropathy. Clin Nephrol 81:440–444.  https://doi.org/10.5414/CN107655 PubMedCrossRefGoogle Scholar
  39. Kim JH, Lee JS, Song K-S et al (2004) Polyozellin isolated from Polyozellus multiplex induces phase 2 enzymes in mouse hepatoma cells and differentiation in human myeloid leukaemic cell lines. J Agric Food Chem 52:451–455.  https://doi.org/10.1021/jf034748n PubMedCrossRefGoogle Scholar
  40. Kim J-S, Sapkota K, Park S-E et al (2006) A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. J Microbiol 44:622–631Google Scholar
  41. Kim HS, Kim JY, Kang JS et al (2010) Cordlan polysaccharide isolated from mushroom Cordyceps militaris induces dendritic cell maturation through toll-like receptor 4 signalings. Food Chem Toxicol 48:1926–1933.  https://doi.org/10.1016/j.fct.2010.04.036 PubMedCrossRefGoogle Scholar
  42. Ko J-L, Hsu C-I, Lin R-H et al (1995) A new fungal immunomodulatory protein, FIP-fve isolated from the edible mushroom, Flammulina velutipes and its complete amino acid sequence. Eur J Biochem 228:244–249.  https://doi.org/10.1111/j.1432-1033.1995.0244n.x PubMedCrossRefGoogle Scholar
  43. Kondo K, Watanabe A, Akiyama H, Maitani T (2008) The metabolisms of agaritine, a mushroom hydrazine in mice. Food Chem Toxicol 46:854–862.  https://doi.org/10.1016/j.fct.2007.10.022 PubMedCrossRefGoogle Scholar
  44. Kozarski M, Klaus A, Jakovljevic D et al (2015) Antioxidants of edible mushrooms. Molecules 20:19489–19525PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kumar VB, Yuan TC, Liou JW et al (2011) Antroquinonol inhibits NSCLC proliferation by altering PI3K/mTOR proteins and miRNA expression profiles. Mutat Res Fundam Mol Mech Mutagen 707:42–52.  https://doi.org/10.1016/j.mrfmmm.2010.12.009 CrossRefGoogle Scholar
  46. Lai LK, Abidin NZ, Abdullah N, Sabaratnam V (2010) Anti-Human Papillomavirus (HPV) 16 E6 activity of Ling Zhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.: Fr.) P. Karst. (Apyllophoromycetideae) extracts. Int J Med Mushroom 12:279–286.  https://doi.org/10.1615/IntJMedMushr.v12.i3.70 CrossRefGoogle Scholar
  47. Lam YW, Ng TB, Wang HX (2001) Antiproliferative and antimitogenic activities in a peptide from puffball mushroom Calvatia caelata. Biochem Biophys Res Commun 289:744–749.  https://doi.org/10.1006/bbrc.2001.6036 PubMedCrossRefGoogle Scholar
  48. Lee JS, Hong EK (2010) Hericium erinaceus enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells. Cancer Lett 297:144–154.  https://doi.org/10.1016/j.canlet.2010.05.006 PubMedCrossRefGoogle Scholar
  49. Lee WY, Park Y, Ahn JK (2007) Improvement of ergone production from mycelial culture of Polyporus umbellatus. Mycobiology 35:82.  https://doi.org/10.4489/MYCO.2007.35.2.082 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lee YS, Kim YH, Shin EK et al (2010) Anti-angiogenic activity of methanol extract of Phellinus linteus and its fractions. J Ethnopharmacol 131:56–62.  https://doi.org/10.1016/j.jep.2010.05.064 PubMedCrossRefGoogle Scholar
  51. Lee SR, Jung K, Noh HJ et al (2015) A new cerebroside from the fruiting bodies of Hericium erinaceus and its applicability to cancer treatment. Bioorganic Med Chem Lett 25:5712–5715.  https://doi.org/10.1016/j.bmcl.2015.10.092 CrossRefGoogle Scholar
  52. León F, Brouard I, Torres F et al (2008) A new ceramide from Suillus luteus and its cytotoxic activity against human melanoma cells. Chem Biodivers 5:120–125.  https://doi.org/10.1002/cbdv.200890002 CrossRefGoogle Scholar
  53. Li YQ, Wang SF (2006) Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol Lett 28:837–841.  https://doi.org/10.1007/s10529-006-9007-9 PubMedCrossRefGoogle Scholar
  54. Li G, Kim DH, Kim TD et al (2004) Protein-bound polysaccharide from Phellinus linteusinduces G 2/M phase arrest and apoptosis in SW480 human colon cancer cells. Cancer Lett 216:175–181.  https://doi.org/10.1016/j.canlet.2004.07.014 PubMedCrossRefGoogle Scholar
  55. Li YR, Liu QH, Wang HX, Ng TB (2008) A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochim Biophys Acta Gen Subj 1780:51–57.  https://doi.org/10.1016/j.bbagen.2007.09.004 CrossRefGoogle Scholar
  56. Li YG, Ji DF, Zhong S et al (2011) Anti-tumor effects of proteoglycan from Phellinus linteus by immunomodulating and inhibiting Reg IV/EGFR/Akt signaling pathway in colorectal carcinoma. Int J Biol Macromol 48:511–517.  https://doi.org/10.1016/j.ijbiomac.2011.01.014 PubMedCrossRefGoogle Scholar
  57. Liao CH, Hsiao YM, Lin CH et al (2008) Induction of premature senescence in human lung cancer by fungal immunomodulatory protein from Ganoderma tsugae. Food Chem Toxicol 46:1851–1859.  https://doi.org/10.1016/j.fct.2008.01.044 PubMedCrossRefGoogle Scholar
  58. Lima ADL, Costa Fortes R, Carvalho Garbi Novaes MR, Percário S (2012) Poisonous mushrooms: a review of the most common intoxications. Nutr Hosp 27:402–408PubMedGoogle Scholar
  59. Lindequist U, Niedermeyer THJ, Jülich W-D (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2:285–299.  https://doi.org/10.1093/ecam/neh107 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Liu F yan, Luo K wang, Yu Z ming, et al (2009) Suillin from the mushroom Suillus placidus as potent apoptosis inducer in human hepatoma HepG2 cells. Chem Biol Interact 181:168–174.  https://doi.org/10.1016/j.cbi.2009.07.008 PubMedCrossRefGoogle Scholar
  61. Lizárraga-Guerra R, Guth H, López MG (1997) Identification of the most potent odorants in Huitlacoche (Ustilago maydis) and Austern Pilzen (Pleurotus sp.) by aroma extract dilution analysis and static head-space samples. J Agric Food Chem 45:1329–1332.  https://doi.org/10.1021/jf960650f (Title in lower case)CrossRefGoogle Scholar
  62. Lu H, Li X, Zhang J et al (2014) Effects of cordycepin on HepG2 and EA.hy926 cells: potential antiproliferative, antimetastatic and anti-angiogenic effects on hepatocellular carcinoma. Oncol Lett 7:1556–1562.  https://doi.org/10.3892/ol.2014.1965 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Luo XJ, Li LL, Deng QP et al (2011) Grifolin, a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur J Cancer 47:316–325.  https://doi.org/10.1016/j.ejca.2010.09.021 CrossRefGoogle Scholar
  64. Ma B-J, Ruan Y, Liu J-K (2008) Chemical constituents study on the fruiting bodies of Lactarius rufus. Zhong Yao Cai 31:233–234Google Scholar
  65. Mansour A, Daba A, Baddour N et al (2012) Schizophyllan inhibits the development of mammary and hepatic carcinomas induced by 7,12 dimethylbenz(α)anthracene and decreases cell proliferation: comparison with tamoxifen. J Cancer Res Clin Oncol 138:1579–1596.  https://doi.org/10.1007/s00432-012-1224-0 PubMedCrossRefGoogle Scholar
  66. Mansour MK, Tam JM, Khan NS et al (2013) Dectin-1 activation controls maturation of β-1,3-glucan-containing phagosomes. J Biol Chem 288:16043–16054.  https://doi.org/10.1074/jbc.M113.473223 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Masuda Y, Inoue M, Miyata A et al (2009) Maitake β-glucan enhances therapeutic effect and reduces myelosuppression and nephrotoxicity of cisplatin in mice. Int Immunopharmacol 9:620–626.  https://doi.org/10.1016/j.intimp.2009.02.005 PubMedCrossRefGoogle Scholar
  68. Matsuura M, Saikawa Y, Inui K et al (2009) Identification of the toxic trigger in mushroom poisoning. Nat Chem Biol 5:465–467.  https://doi.org/10.1038/nchembio.179 PubMedCrossRefGoogle Scholar
  69. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412PubMedCrossRefGoogle Scholar
  70. Ng TB, Lam YW, Wang H (2003) Calcaelin, a new protein with translation-inhibiting, antiproliferative and antimitogenic activities from the mosaic puffball mushroom Calvatia caelata. Planta Med 69:212–217.  https://doi.org/10.1055/s-2003-38492 PubMedCrossRefGoogle Scholar
  71. Ng TB, Ngai PHK, Xia L (2006) An agglutinin with mitogenic and antiproliferative activities from the mushroom Flammulina velutipes. Mycologia 98:167–171.  https://doi.org/10.3852/mycologia.98.2.167 CrossRefGoogle Scholar
  72. Ngai PHK, Zhao Z, Ng TB (2005) Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides 26:191–196.  https://doi.org/10.1016/j.peptides.2004.09.011 PubMedCrossRefGoogle Scholar
  73. Ning X, Luo Q, Li C et al (2014) Inhibitory effects of a polysaccharide extract from the Chaga medicinal mushroom, Inonotus obliquus (higher Basidiomycetes), on the proliferation of human neurogliocytoma cells. Int J Med Mushrooms 16:29–36PubMedCrossRefGoogle Scholar
  74. Passie T, Seifert J, Schneider U, Emrich HM (2002) The pharmacology of psilocybin. Addict Biol 7:357–364PubMedCrossRefGoogle Scholar
  75. Patel S (2015) Emerging bioresources with nutraceutical and pharmaceutical prospects. Springer, ChamCrossRefGoogle Scholar
  76. Patel S (2017) A critical review on serine protease: key immune manipulator and pathology mediator. Allergol Immunopathol (Madr).  https://doi.org/10.1016/j.aller.2016.10.011 PubMedCrossRefGoogle Scholar
  77. Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2:1–15.  https://doi.org/10.1007/s13205-011-0036-2 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Patel S, Goyal A (2017) Chitin and chitinase: role in pathogenicity, allergenicity and health. Int J Biol Macromol 97:331–338.  https://doi.org/10.1016/j.ijbiomac.2017.01.042 PubMedCrossRefGoogle Scholar
  79. Patra S (2016) Return of the psychedelics: psilocybin for treatment resistant depression. Asian J Psychiatr 24:51–52.  https://doi.org/10.1016/j.ajp.2016.08.010 PubMedCrossRefGoogle Scholar
  80. Pohleven J, Obermajer N, Sabotič J et al (2009) Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta Gen Subj 1790:173–181.  https://doi.org/10.1016/j.bbagen.2008.11.006 CrossRefGoogle Scholar
  81. Rop O, Mlcek J, Jurikova T (2009) Beta-glucans in higher fungi and their health effects. Nutr Rev 67:624–631.  https://doi.org/10.1111/j.1753-4887.2009.00230.x PubMedCrossRefGoogle Scholar
  82. Sabotič J, Bleuler-Martinez S, Renko M et al (2012) Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of Coprinopsis cinerea fruiting bodies. J Biol Chem 287:3898–3907.  https://doi.org/10.1074/jbc.M111.285304 PubMedCrossRefGoogle Scholar
  83. Shi BJ, Nie XH, Chen LZ et al (2007) Anticancer activities of a chemically sulfated polysaccharide obtained from Grifola frondosa and its combination with 5-Fluorouracil against human gastric carcinoma cells. Carbohydr Polym 68:687–692.  https://doi.org/10.1016/j.carbpol.2006.08.003 CrossRefGoogle Scholar
  84. Suárez Arango C, Nieto IJ (2013) Biotechnological cultivation of edible macrofungi: an alternative for obtaining nutraceutics. Rev Iberoam Micol 30:1–8.  https://doi.org/10.1016/j.riam.2012.03.011 PubMedCrossRefGoogle Scholar
  85. Szeto YT, Lau PC, Kalle W, Pak SC (2013) Direct human DNA protection by Coriolus versicolor (Yunzhi) extract. Pharm Biol 51:851–855.  https://doi.org/10.3109/13880209.2013.767839 PubMedCrossRefGoogle Scholar
  86. Thyagarajan-Sahu A, Lane B, Sliva D (2011) ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK. BMC Complement Altern Med.  https://doi.org/10.1186/1472-6882-11-74
  87. Tohtahon Z, Xue J, Han J et al (2017) Cytotoxic lanostane triterpenoids from the fruiting bodies of Piptoporus betulinus. Phytochemistry 143:98–103.  https://doi.org/10.1016/j.phytochem.2017.07.013 PubMedCrossRefGoogle Scholar
  88. Tong H, Xia F, Feng K et al (2009) Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresour Technol 100:1682–1686.  https://doi.org/10.1016/j.biortech.2008.09.004 PubMedCrossRefGoogle Scholar
  89. Tsai WC, Rao YK, Lin SS et al (2010) Methylantcinate A induces tumor specific growth inhibition in oral cancer cells via Bax-mediated mitochondrial apoptotic pathway. Bioorganic Med Chem Lett 20:6145–6148.  https://doi.org/10.1016/j.bmcl.2010.08.006 CrossRefGoogle Scholar
  90. Tylš F, Páleníček T, Horáček J (2014) Psilocybin – summary of knowledge and new perspectives. Eur Neuropsychopharmacol 24:342–356PubMedPubMedCentralCrossRefGoogle Scholar
  91. Valverde ME, Hernández-Pérez T, Paredes-López O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol 2015:376387.  https://doi.org/10.1155/2015/376387 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Ványolós A, Dékány M, Kovács B et al (2016) Gymnopeptides A and B, cyclic octadecapeptides from the mushroom Gymnopus fusipes. Org Lett 18:2688–2691.  https://doi.org/10.1021/acs.orglett.6b01158 PubMedCrossRefGoogle Scholar
  93. Vaz JA, Almeida GM, Ferreira ICFR et al (2012) Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: identification of phenolic acids with cytotoxic potential. Food Chem 132:482–486.  https://doi.org/10.1016/j.foodchem.2011.11.031 PubMedCrossRefGoogle Scholar
  94. Vetter J (2007) Chitin content of cultivated mushrooms Agaricus bisporus, Pleurotus ostreatus and Lentinula edodes. Food Chem 102:6–9.  https://doi.org/10.1016/j.foodchem.2006.01.037 CrossRefGoogle Scholar
  95. Wachtel-Galor S, Yuen J, Buswell JA, Benzie IFF (2011) Ganoderma lucidum (Lingzhi or Reishi). In: Benzie IFF, Wachtel-Galor S, editors. Herbal Medicine: Biomolecular and Clinical Aspects. 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2011. Chapter 9.Google Scholar
  96. Walton JD, Hallen-Adams HE, Luo H (2010) Ribosomal biosynthesis of the cyclic peptide toxins of Amanita mushrooms. Biopolymers 94:659–664.  https://doi.org/10.1002/bip.21416 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wang HX, Ng TB (2001) Isolation of pleuturegin, a novel ribosome-inactivating protein from fresh sclerotia of the edible mushroom Pleurotus tuber-regium. Biochem Biophys Res Commun 288:718–721.  https://doi.org/10.1006/bbrc.2001.5816 PubMedCrossRefGoogle Scholar
  98. Wang H, Ng TB (2004) Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides 25:1–5.  https://doi.org/10.1016/j.peptides.2003.11.014 PubMedCrossRefGoogle Scholar
  99. Wang J, Hu F, Luo Y et al (2014) Estrogenic and anti-estrogenic activities of hispolon from Phellinus lonicerinus (Bond.) Bond. et sing. Fitoterapia 95:93–101.  https://doi.org/10.1016/j.fitote.2014.03.007 PubMedCrossRefGoogle Scholar
  100. Wong C-K, Bao Y-X, Wong EL-Y et al (2005) Immunomodulatory activities of Yunzhi and Danshen in post-treatment breast cancer patients. Am J Chin Med 33:381–395.  https://doi.org/10.1142/S0192415X05002990 PubMedCrossRefGoogle Scholar
  101. Wu Z, Li Y (2017) Grifolin exhibits anti-cancer activity by inhibiting the development and invasion of gastric tumor cells. Oncotarget 8:21454–21460.  https://doi.org/10.18632/oncotarget.15250 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Wu Y, Wang H, Ng TB (2011) Purification and characterization of a lectin with antiproliferative activity toward cancer cells from the dried fruit bodies of Lactarius flavidulus. Carbohydr Res 346:2576–2581.  https://doi.org/10.1016/j.carres.2011.09.005 PubMedCrossRefGoogle Scholar
  103. Wu H-T, Lu F-H, Su Y-C et al (2014) In vivo and in vitro anti-tumor effects of fungal extracts. Molecules 19:2546–2556.  https://doi.org/10.3390/molecules19022546 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Yap H-YY, Fung S-Y, Ng S-T et al (2015) Shotgun proteomic analysis of tiger milk mushroom (Lignosus rhinocerotis) and the isolation of a cytotoxic fungal serine protease from its sclerotium. J Ethnopharmacol 174:437–451.  https://doi.org/10.1016/j.jep.2015.08.042 PubMedCrossRefGoogle Scholar
  105. Ye M, Luo X, Li L et al (2007) Grifolin, a potential antitumor natural product from the mushroom Albatrellus confluens, induces cell-cycle arrest in G1 phase via the ERK1/2 pathway. Cancer Lett 258:199–207.  https://doi.org/10.1016/j.canlet.2007.09.001 PubMedCrossRefGoogle Scholar
  106. Ye L, Zhang J, Zhou S et al (2009) Preparation of a novel sulfated glycopeptide complex and inhibiting L1210 cell lines property in vitro. Carbohydr Polym 77:276–279.  https://doi.org/10.1016/j.carbpol.2008.12.031 CrossRefGoogle Scholar
  107. Yeh CT, Rao YK, Yao CJ et al (2009) Cytotoxic triterpenes from Antrodia camphorata and their mode of action in HT-29 human colon cancer cells. Cancer Lett 285:73–79.  https://doi.org/10.1016/j.canlet.2009.05.002 PubMedCrossRefGoogle Scholar
  108. Youn M-J, Kim J-K, Park S-Y et al (2008) Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J Gastroenterol 14:511–517.  https://doi.org/10.3748/wjg.14.511 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Zan X, Cui F, Li Y et al (2015) Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis. Int J Biol Macromol 76:242–253.  https://doi.org/10.1016/j.ijbiomac.2015.01.060 PubMedCrossRefGoogle Scholar
  110. Zhang M, Zhang L, Cheung PCK, Ooi VEC (2004) Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of Pleurotus tuber-regium. Carbohydr Polym 56:123–128.  https://doi.org/10.1016/j.carbpol.2004.01.005 CrossRefGoogle Scholar
  111. Zhang G, Sun J, Wang H, Ng TB (2010a) First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine 17:775–781.  https://doi.org/10.1016/j.phymed.2010.02.001 PubMedCrossRefGoogle Scholar
  112. Zhang G, Wang H, Zhang X, Ng T (2010b) Helvellisin, a novel alkaline protease from the wild ascomycete mushroom Helvella lacunosa. J Biosci Bioeng 109:20–24.  https://doi.org/10.1016/j.jbiosc.2009.06.022 PubMedCrossRefGoogle Scholar
  113. Zhang GQ, Wang YF, Zhang XQ et al (2010c) Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima. Process Biochem 45:627–633.  https://doi.org/10.1016/j.procbio.2009.12.010 CrossRefGoogle Scholar
  114. Zhao JK, Wang HX, Ng TB (2009) Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon 53:360–366.  https://doi.org/10.1016/j.toxicon.2008.12.009 PubMedCrossRefGoogle Scholar
  115. Zhao Y, Shen X, Chao X et al (2011) Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Biochim Biophys Acta 1810:384–390.  https://doi.org/10.1016/j.bbagen.2010.12.005 PubMedCrossRefGoogle Scholar
  116. Zhao J-X, Zhang Q-S, Chen Y et al (2016) Iso-suillin from Suillus flavus induces apoptosis in human small cell lung cancer H446 cell line. Chinese Med J (English Ed) 129:1215–1223.  https://doi.org/10.4103/0366-6999.181961 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zheng S, Wang H, Zhang G (2011) A novel alkaline protease from wild edible mushroom Termitomyces albuminosus. Acta Biochim Pol 58:269–273Google Scholar
  118. Zhou K, Peng J, Chang N et al (2003) Purification and crystallization of flammulin, a basic protein with anti-tumor activities from Flammulina velutipes. CHINESE Chem Lett 14:713–716Google Scholar
  119. Zhu L, Tang Q, Zhou S et al (2014) Isolation and purification of a polysaccharide from the caterpillar medicinal mushroom Cordyceps militaris (Ascomycetes) fruit bodies and its immunomodulation of RAW 264.7 macrophages. Int J Med Mushrooms 16:247–257PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Seema Patel
    • 1
  1. 1.Bioinformatics and Medical Informatics Research CenterSan Diego State UniversitySan DiegoUSA

Personalised recommendations