Advertisement

Mycotherapy of Antrodia salmonea: A Taiwanese Medicinal Mushroom

  • Palaniyandi Karuppaiya
  • Abdul Khader Akbar
Chapter

Abstract

Generally, mushrooms possess all four functionalities of food, i.e., nutritional value, tastiness, physiological effects, and cultural aspects. For the physiological effects, mushrooms have become a valuable health food due to their several bioactive substances. Hence, they are considered as a vast and yet largely untapped source of powerful new pharmaceutical products. In particular, and most importantly for modern medicine, they represent an unlimited source of polysaccharides with antitumor and immunostimulating properties. In the present review, we have described various properties of Antrodia salmonea (syn. Taiwanofungus salmoneus), a newly identified medicinal fungal species.

Keywords

Antrodia salmonea Anticancer Antioxidant Medicinal mushroom Functional food Triterpenoid 

Abbreviations

AS

Antrodia salmonea

UPLC

Ultra performance liquid chromatography

MS

Mass spectroscopy

TNF

Tumor necrosis factor

γ-GCLC

γ-Glutamylcysteine synthetase

iNOS

Inducible nitric oxide synthase

SOD

Superoxide dismutase

COX-2

Cyclooxygenase-2

CAT

Catalase

GPx

Glutathione peroxidase

AVOs

Acidic vesicular organelles

ROS

Reactive oxygen species

References

  1. Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME (1999) Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med 221:281–293.  https://doi.org/10.1046/j.1525-1373.1999.d01-86.x CrossRefPubMedGoogle Scholar
  2. Chang TT, Chou WN (2004) Antrodia cinnamomea reconsidered and A. salmonea sp. nov. on Cunninghamia konishii in Taiwan. Bot Bull Acad Sin 45:347–352Google Scholar
  3. Chang CT, Hseu YC, Thiyagarajan V et al (2017a) Antrodia salmonea induces G2 cell-cycle arrest in human triple-negative breast cancer (MDA-MB-231) cells and suppresses tumor growth in athymic nude mice. J Ethnopharmacol 196:9–19.  https://doi.org/10.1016/j.jep.2016.12.018 CrossRefPubMedGoogle Scholar
  4. Chang CT, Korivi M, Huang HC et al (2017b) Inhibition of ROS production, autophagy or apoptosis signaling reversed the anticancer properties of Antrodia salmonea in triple-negative breast cancer (MDA-MB-231) cells. Food Chem Toxicol 103:1–17.  https://doi.org/10.1016/j.fct.2017.02.019 CrossRefPubMedGoogle Scholar
  5. Chen CH, Yang SW, Shen YC (1995) New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. J Nat Prod 58:1655–1661CrossRefGoogle Scholar
  6. Chen CY, Chien SC, Tsao NW et al (2016) Metabolite profiling and comparison of bioactivity in Antrodia cinnamomea and Antrodia salmonea fruiting bodies. Planta Med 82:244–249.  https://doi.org/10.1055/s-0035-1558141 CrossRefPubMedGoogle Scholar
  7. Cherng IH, Chiang HC, Cheng MC et al (1995) Three new triterpenoids from Antrodia cinnamomea. J Nat Prod 58:365–371CrossRefGoogle Scholar
  8. Cherng IH, Wu DP, Chiang HC (1996) Triterpenoids from Antrodia cinnamomea. Phytochemistry 41:263–267CrossRefGoogle Scholar
  9. Chiang HC, Wu DP, Cherng IW Ueng CH (1995) A sesquiterpene lactone, phenyl and biphenyl compounds from Antrodia cinnamomea. Phytochemistry 39:613–616CrossRefGoogle Scholar
  10. Chiang SS, Wang LT, Chen SY, Maul JL (2013) Antibacterial and anti-inflammatory activities of mycelia of a medicinal mushroom from Taiwan, Taiwanofungus salmoneus (higher Basidiomycetes). Int J Med Mushrooms 15(1):39–47.  https://doi.org/10.1615/IntJMedMushr.v15.i1.50 CrossRefPubMedGoogle Scholar
  11. Chien RC, Hsieh YJ, Mau JL (2015) Apoptotic effect of extract from medicinal mushroom from Taiwan Taiwanofungus salmoneus (higher Basidiomycetes) mycelium combined with or without cisplatin on hepatocellular carcinoma cells. Int J Med Mushrooms 17(6):567–577.  https://doi.org/10.1615/IntJMedMushrooms.v17.i6.70 CrossRefPubMedGoogle Scholar
  12. Chien RC, Ulziijargal E, Mau JL (2016) Quality of bread supplemented with Antrodia salmonea-fermented grains. Food Technol Biotechnol 54:180–188.  https://doi.org/10.17113/ftb.54.02.16.4336 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dai YC, Niemelä T (2002) Changbai wood-rotting fungi 13. Antrodia sensu lato. Ann Bot Fenn JSTOR 39:257–265Google Scholar
  14. Hseu YC, Lee CC, Chen YC et al (2014) Antrodia salmonea in submerged culture exhibits antioxidant activities in vitro and protects human erythrocytes and low-density lipoproteins from oxidative modification. Food Chem Toxicol 66:150–157.  https://doi.org/10.1016/j.fct.2014.01.035 CrossRefPubMedGoogle Scholar
  15. Hsieh YH, Kuo PM, Chien SC (2007) Effects of Chamaecyparis formosensis Matasumura extractives on the lipopolysaccharide-induced release of nitric oxide. Phytomedicine 14:675–680.  https://doi.org/10.1016/j.phymed.2006.11.029 CrossRefPubMedGoogle Scholar
  16. Huang KF, Huang WM, Chiang HC (2001) Phenyl compounds from Antrodia cinnamomea. Chin Pharm J 53:327–331Google Scholar
  17. Huang RL, Huang Q, Chen CF (2003) Anti-viral effects of active compounds from Antrodia camphorata on wild-type and lamivudine-resistant mutant HBV. Chin Pharm J 55:371–379Google Scholar
  18. Huang GJ, Pan CH, Liu FC, Wu TS, Wu CH (2012) Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246. 7 macrophages and the λ-carrageenan-induced paw edema model. Food Chem Toxicol 50:1485–1493.  https://doi.org/10.1016/j.fct.2012.01.041 CrossRefPubMedGoogle Scholar
  19. Lorenzen K, Anke T (1998) Basidiomycetes as a source for new bioactive natural products. Curr Org Chem 2:329–364Google Scholar
  20. Mizuno T (1999a) The extraction and development of antitumor-active polysaccharides from medicinal mushrooms in Japan. Int J Med Mushrooms 1:9–29.  https://doi.org/10.1615/IntJMedMushrooms.v1.i1.20 CrossRefGoogle Scholar
  21. Mizuno T (1999b) Bioactive substances in Hericium erinaceus (Bull.: Fr.) Pers. (Yamabushitake), and its medicinal utilization. Int J Med Mushrooms 1:105–119.  https://doi.org/10.1615/IntJMedMushrooms.v1.i2.10 CrossRefGoogle Scholar
  22. Mizuno T (2002) Medicinal properties and clinical effects on Agaricus blazei Murr. Int J Med Mushrooms 4:4.  https://doi.org/10.1615/IntJMedMushr.v4.i4.30 CrossRefGoogle Scholar
  23. Mizuno T, Yeohlui P, Kinoshita T, Zhuang C, Ito H, Mayuzumi Y (1996) Antitumor activity and chemical modification of polysaccharides from Niohshimeji mushroom, Tricholoma giganteum. Biosci Biotechnol Biochem 60:30–33.  https://doi.org/10.1271/bbb.60.30 CrossRefPubMedGoogle Scholar
  24. Mizuno T, Zhuang C, Abe K et al (1999) Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Pers.: Fr.) Pil.(Aphyllophoromycetideae). Int J Med Mushrooms 1:301–316.  https://doi.org/10.1615/IntJMedMushr.v1.i4.20 CrossRefGoogle Scholar
  25. Money NP (2016) Are mushrooms medicinal? Fungal Biol 120:449–453.  https://doi.org/10.1016/j.funbio.2016.01.006 CrossRefPubMedGoogle Scholar
  26. Ooi VEC, Liu F (1999) A review of pharmacological activities of mushroom polysaccharides. Int J Med Mushrooms 1:195–206.  https://doi.org/10.1615/IntJMedMushrooms.v1.i3.10 CrossRefGoogle Scholar
  27. Reshetnikov SV, Wasser SP, Tan KK (2001) Higher Basidiomycota as source of antitumor and immunostimulating polysaccharides. Int J Med Mushrooms 3:361–394.  https://doi.org/10.1615/IntJMedMushr.v3.i4.80 CrossRefGoogle Scholar
  28. Ryvarden L (1991) Genera of polypores: nomenclature and taxonomy, Synopsis fungorum Series 5. Fungiflora AS, OsloGoogle Scholar
  29. Shen YC, Yang SW, Lin CS et al (1997) Zhankuic acid F: a new metabolite from a Formosan fungus Antrodia cinnamomea. Planta Med 63:86–88.  https://doi.org/10.1055/s-2006-957614 CrossRefPubMedGoogle Scholar
  30. Shen CC, Kuo YC, Huang RL et al (2003) New ergostane and lanostane from Antrodia camphorata. J Chin Med 14:247–258CrossRefGoogle Scholar
  31. Shen CC, Shen YC, Wang YH et al (2006) New lanostanes and naphthoquinones isolated from Antrodia salmonea and their antioxidative burst activity in human leukocytes. Planta Med 72:199–203.  https://doi.org/10.1055/s-2005-916175 CrossRefPubMedGoogle Scholar
  32. Shen CC, Wang YW, Chang TS et al (2007) Anti-inflammatory ergostanes from the basidiomata of Antrodia salmonea. Planta Med 73:1208–1213.  https://doi.org/10.1055/s-2007-981591 CrossRefPubMedGoogle Scholar
  33. Shen CC, Lin CF, Huang YL et al (2008) Bioactive components from the mycelium of Antrodia salmonea. J Chin Chem Soc 55:854–857.  https://doi.org/10.1002/jccs.200800127 CrossRefGoogle Scholar
  34. Tzianabos AO (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biological function. Clin Microbiol Rev 13:523–533CrossRefGoogle Scholar
  35. Ulziijargal E, Mau JL (2011) Nutrient compositions of culinary-medicinal mushroom fruiting bodies and mycelia. Int J Med Mushrooms 13(4):343–349.  https://doi.org/10.1615/IntJMedMushr.v13.i4.40 CrossRefPubMedGoogle Scholar
  36. Wang SY, Chang HN, Lin KT et al (2003) Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem 51:1506–1512.  https://doi.org/10.1021/jf0259415 CrossRefPubMedGoogle Scholar
  37. Wang HC, Chu FH, Chien SC et al (2013) Establishment of the metabolite profile for an Antrodia cinnamomea health food product and investigation of its chemoprevention activity. J Agric Food Chem 61:8556–8564.  https://doi.org/10.1021/jf402849b CrossRefPubMedGoogle Scholar
  38. Wasser SP, Weis AL (1999) Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives. Int J Med Mushrooms 1:31–62.  https://doi.org/10.1615/IntJMedMushrooms.v1.i1.30 CrossRefGoogle Scholar
  39. Wu DP, Chiang HC (1995) Constituents of Antrodia cinnamomea. J Chin Chem Soc 42:797–800CrossRefGoogle Scholar
  40. Wu SH, Yu ZH, Dai YC et al (2004) Taiwanofungus, a polypore new genus. Fungal Sci 19:109–116Google Scholar
  41. Yang SW, Shen YC, Chen CH (1996) Steroids and triterpenoids of Antrodia cinnamomea – a fungus parasitic on Cinnamomum micranthum. Phytochemistry 41:1389–1392.  https://doi.org/10.1016/0031-9422(95)00767-9 CrossRefGoogle Scholar
  42. Yang HL, Chang HC, Lin SW et al (2014) Antrodia salmonea inhibits TNF-α-induced angiogenesis and atherogenesis in human endothelial cells through the down-regulation of NF-κB and up-regulation of Nrf2 signaling pathways. J Ethnopharmacol 151:394–406.  https://doi.org/10.1016/j.jep.2013.10.052 CrossRefPubMedGoogle Scholar
  43. Yang HL, Lin SW, Lee CC et al (2015) Induction of Nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in lipopolysaccharide-stimulated RAW264. 7 macrophages. Food Funct 6:229–240.  https://doi.org/10.1039/c4fo00869c CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Palaniyandi Karuppaiya
    • 1
  • Abdul Khader Akbar
    • 2
  1. 1.Institute of Nutrition, College of Biopharmaceutical and Food SciencesChina Medical UniversityTaichungTaiwan
  2. 2.Department of BotanyC. Abdul Hakeem CollegeVelloreIndia

Personalised recommendations