Microbe-based Inoculants: Role in Next Green Revolution

  • Naveen Kumar Arora
  • Tahmish Fatima
  • Isha Mishra
  • Sushma Verma


Increasing food demand, with growing population, has been a major concern throughout the globe. The aim can only be achieved with the onset of next green revolution being much defined by sustainable approaches. The past green revolution had its negative impact due to excessive use of agrochemicals contaminating the environment and further challenging the food security. Henceforth, designing the blueprint of next green revolution requires the application of effective and sustainable approaches which enhance the yield of plants while still maintaining the decorum of sustainability. In this regard, microbes have been concluded as the best players finding their roles in plant growth promotion and also stress management. Currently, there are several bacterial-, fungal-based inoculants available in the market along with genetically modified organisms, forming the base of upcoming green revolution. Thus, the future of sustainable agriculture is related to the efficiency and action of these microbes.


Microbial inoculants Green revolution Environmental sustainability Plant growth-promoting rhizobacteria (PGPR) Stress 


  1. Abd-Alla MH, El-Enany AWE, Nafady NA, Khalaf DM, Morsy FM (2014) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58CrossRefGoogle Scholar
  2. Abhilash PC, Dubey RK, Tripathi V, Gupta VK, Singh HB (2016) Plant growth-promoting microorganisms for environmental sustainability. Trends Biotechnol 34(11):847–850CrossRefGoogle Scholar
  3. Abou-el-Seoud II, Abdel-Megeed A (2012) Impact of rock materials and biofertilizations on P and K availability for maize (Zea Maize) under calcareous soil conditions. Saudi J Biol Sci 19(1):55–63CrossRefGoogle Scholar
  4. Achal V, Savant VV, Sudhakara Reddy M (2007) Phosphate solubilization by wide type strain and UV-induced mutants of Aspergillus tubingensis. Soil Biol Biochem 39(2):695–699CrossRefGoogle Scholar
  5. Adak A, Prasanna R, Babu S, Bidyarani N, Verma S, Pal M, Shivay YS, Nain L (2016) Micronutrient enrichment mediated by plant-microbe interactions and rice cultivation practices. J Plant Nutr 39(9):1216–1232CrossRefGoogle Scholar
  6. Adams DG, Duggan PS (2008) Cyanobacteria-bryophytes symbioses. J Exp Bot 59:1047–1058CrossRefGoogle Scholar
  7. Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12CrossRefGoogle Scholar
  8. Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929CrossRefGoogle Scholar
  9. Adesemoye AO, Yuen GY, Watts DB (2017) Microbial inoculants for optimized plant nutrient use in integrated pest and input management systems. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, SingaporeGoogle Scholar
  10. Adnan M, Shah Z, Fahad S, Arif M, Alam M, Khan IA, Mian IA, Basir A, Ullah H, Arshad MS, Rehman I, Saud S, Ihsan MZ, Jamal Y, Amanullah Hammad HM, Nasim W (2017) Phosphate-solubilizing bacteria nullify the antagonistic effect of soil calcification on bioavailability of phosphorus in alkaline soils. Sci Rep 7:16131CrossRefGoogle Scholar
  11. Aeron A, Kumar S, Pandey P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Maheshwari DK (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin/Heidelberg, pp 1–36Google Scholar
  12. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saudi Univ Sci 26:1–20CrossRefGoogle Scholar
  13. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313CrossRefGoogle Scholar
  14. Ahmed E, Holmström SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208CrossRefGoogle Scholar
  15. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12CrossRefGoogle Scholar
  16. Alexander M (1977) Introduction to soil microbiology. Wiley, New York, AseA, P. E. A, pp 33–399Google Scholar
  17. Ali MP, Huang D, Nachman G, Ahmed N, Begum MA, Rabbi MF (2014) Will climate change affect outbreak patterns of planthoppers in Bangladesh? PLoS ONE 9(3):e91678CrossRefGoogle Scholar
  18. Alloway BJ (2004) Zinc in soils and crop nutrition. IZA Publications, International Zinc Association, Brussels, pp 1–116Google Scholar
  19. Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971CrossRefGoogle Scholar
  20. Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072CrossRefGoogle Scholar
  21. Ambika R, Senthilkumar G, Panneerselvam A, Sengottaian N (2015) Determination of gibberellic acid from Rhizobium (maize) by thin layer chromatography. World J Pharm Res 4(6):967–973Google Scholar
  22. Anitha D, Vijaya T, Reddy NV et al (2013) Microbial endophytes and their potential for improved bioremediation and biotransformation: a review. Indo Am J Pharm Res 3:6408–6417Google Scholar
  23. Arora NK (2018a) Agricultural sustainability and food security. Environ Sustain 1(3):217–219CrossRefGoogle Scholar
  24. Arora NK (2018b) Biodiversity conservation for sustainable future. Environ Sustain 1(2):109–111CrossRefGoogle Scholar
  25. Arora NK, Mishra J (2016) Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl Soil Ecol 107:405–407CrossRefGoogle Scholar
  26. Arora N, Kang S, Maheshwari D (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81(6):673–677Google Scholar
  27. Arora NK, Singhal V, Maheshwari DK (2006) Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World J Microbiol Biotechnol 22(6):603–606CrossRefGoogle Scholar
  28. Arora NK, Kim MJ, Kang SC, Maheshwari DK (2007) Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Can J Microbiol 53(2):2017–2212CrossRefGoogle Scholar
  29. Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari D (ed) Plant growth and health promoting bacteria, Microbiology monographs, vol 18. Springer, Berlin/Heidelberg, pp 97–116CrossRefGoogle Scholar
  30. Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari D (ed) Bacteria in agrobiology: stress management. Springer, Berlin/HeidelbergGoogle Scholar
  31. Arora NK, Verma M, Mishra J (2017) Rhizobial bioformulations: past, present and future. In: Mehnaz S (ed) Rhizotrophs: plant growth promotion to bioremediation, Microorganisms for sustainability, vol 2. Springer, Singapore, pp 69–99CrossRefGoogle Scholar
  32. Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1(4):309–350CrossRefGoogle Scholar
  33. Arst HN, Peñalva MA (2003) pH regulation in Aspergillus and parallels with higher eukaryotic regulatory systems. Trends Genet 19:224–231CrossRefGoogle Scholar
  34. Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10CrossRefGoogle Scholar
  35. Ayala S, Rao EVS (2002) Perspectives of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci 82(7):797–807Google Scholar
  36. Bae H, Morrison E, Chanton JP, Ogram A (2018) Methanogens are major contributors to nitrogen fixation in soils of the Florida everglades. Appl Environ Microbiol 84:7CrossRefGoogle Scholar
  37. Baez-Rogelio A, Morales-García YE, Quintero-Hernández V, Muñoz-Rojas J (2017) Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol 10(1):19–21CrossRefGoogle Scholar
  38. Bailey KL, Boyetchko SM, Längle T (2010) Social and economic drivers shaping the future of biological control: a Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biol Control 52:221–229CrossRefGoogle Scholar
  39. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444CrossRefGoogle Scholar
  40. Bansal RK, Dahiya RS, Lakshminarayana K, Suneja S, Anand RC, Narula N (1999) Effect of rhizospheric bacteria on plant growth of wheat infected with Heterodera avenae. Nematol Mediterr 27:311–314Google Scholar
  41. Barker R, Herdt RW, Rose B (1985) The rice economy of Asia: Resources for the Future. Johns Hopkins University Press, Washington, DC, p 324Google Scholar
  42. Barria C, Malecki M, Arraiano CM (2013) Bacterial adaptation to cold. Microbiology 159:2437–2443CrossRefGoogle Scholar
  43. Becerra-Castro C, Monterroso C, Prieto-Fernández A, Rodríguez-Lamas L, Loureiro-Viñas M, Acea MJ, Kidd PS (2012) Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria. J Hazard Mater 217:350–359CrossRefGoogle Scholar
  44. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6(3):206–212CrossRefGoogle Scholar
  45. Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051CrossRefGoogle Scholar
  46. Berti AD, Greve NJ, Christensen QH, Thomas MG (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol 189:6312–6323CrossRefGoogle Scholar
  47. Bhardwaj G, Cameotra S, Chopra H (2013) Biosurfactants from fungi: a review. J Pet Environ Biotechnol 4:6CrossRefGoogle Scholar
  48. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350CrossRefGoogle Scholar
  49. Biermann BJ, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105CrossRefGoogle Scholar
  50. Biopesticide Registration Action Document (BRAD) (2008) Bacillus thuringiensis Cry1A.105 and Cry2Ab2 insecticidal proteins and the genetic material necessary for their production in corn [PC Codes 006515 (Cry2Ab2), 006514 (Cry1A.105)] U.S. Environmental Protection Agency. Available:
  51. Biopesticides Registration Action Document (BRAD) (2010) Trichoderma gamsii strain ICC 080 PC Code: 119207. U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division. Available:
  52. Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350CrossRefGoogle Scholar
  53. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69:3280–3287CrossRefGoogle Scholar
  54. Bolduc RA, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopestic 2:104Google Scholar
  55. Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K (2001) Influence of microbial populations and residue quality on aggregate stability. Appl Soil Ecol 16:195–208CrossRefGoogle Scholar
  56. Bouguyon E, Brun F, Meynard D et al (2015) Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1. Nat Plants 1:15015CrossRefGoogle Scholar
  57. Boyer LR, Brain P, Xu XM, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculums of two arbuscular mycorrhizal fungi: effects of population dynamics of fungi species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25:215–227CrossRefGoogle Scholar
  58. Brookes G, Barfoot P (2015) Environmental impacts of GM crop use 1996–2013: impacts on pesticide use and carbon emissions. GM Crops Food 6(2):103–133CrossRefGoogle Scholar
  59. Çalgan D, Sivaci-Güner S (1993) Effects of 2, 4-D and methylparathion on growth and nitrogen fixation in cyanobacterium Gloeocapsa. Int J Environ Stud 43:307–311CrossRefGoogle Scholar
  60. Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  61. Calvo-Polanco M, Molina S, Zamarreño AM, García-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029CrossRefGoogle Scholar
  62. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84CrossRefGoogle Scholar
  63. Carvajal-Muñoz CJS, Carmona-Garcia CE (2012) Benefits and limitations of biofertilization in agricultural practice. Livest Res Rural Dev 24(3), Article #43Google Scholar
  64. Carvalho F (2017) Pesticides, environment and food safety. Food Energy Secur 6(2):48–60CrossRefGoogle Scholar
  65. Castagnola A, Jurat-Fuentes JL (2012) Bt crops: past and future. In: Sansinenea E (ed) Bacillus thuringiensis biotechnology, vol 392. Springer, New York, pp 283–304CrossRefGoogle Scholar
  66. Cely MVT, De Oliveira AG, de Freitas VF, de Luca MB, Barazetti AR, Santos IMO, Andrade G (2016) Inoculant of arbuscular mycorrhizal fungi (Rhizophagus clarus) increase yield of soybean and cotton under field conditions. Front Microbiol 7:720CrossRefGoogle Scholar
  67. Chakravarty P, Sidhu SS (1987) Effect of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi. Eur J Forest Pathol 17:204–210CrossRefGoogle Scholar
  68. Chang HB, Lin CW, Huang HJ (2005) Zinc induced cell death in rice (Oryza sativa L.) roots. Plant Growth Regul 46:261–266CrossRefGoogle Scholar
  69. Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160(1):75–81CrossRefGoogle Scholar
  70. Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Sussmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188:4024–4036CrossRefGoogle Scholar
  71. Chen W, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL et al (2016) Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 8:32950CrossRefGoogle Scholar
  72. Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Ahammed GJ (2017) Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol 8:2516CrossRefGoogle Scholar
  73. Cheng G, Dai M, Ahmed S, Hao H, Wang X, Yuan Z (2016) Antimicrobial drugs in fighting against antimicrobial resistance. Front Microbiol 7:470Google Scholar
  74. Chern WS (2006) Genetically Modified Organisms (GMOs) and Sustainability in Agriculture. Paper presented at the International Association of Agricultural Economists Conference, Gold Coast, AustraliaGoogle Scholar
  75. Chin-A-Woeng TFC, Bloemberg GV, Van Der Bij AJ, Van Der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy HV, De Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 11:1069–1077CrossRefGoogle Scholar
  76. Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289CrossRefGoogle Scholar
  77. Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959CrossRefGoogle Scholar
  78. Corbell N, Loper JE (1995) A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 177:6230–6236CrossRefGoogle Scholar
  79. D’aes J, De Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2(3):359–372CrossRefGoogle Scholar
  80. Dalrymple DG et al (1974) Development and spread of high-yielding varieties of wheat and rice in the less developed nations. Tech rep, United States, Department of Agriculture, Economic Research ServiceGoogle Scholar
  81. Damalas C, Koutroubas SD (2018) Current status and recent developments in biopesticide use. Agriculture 8(1):13CrossRefGoogle Scholar
  82. Das B (2017) Green Revolution and its impact on Indian agriculture. Imp J Interdiscip Res 3(9):535–537Google Scholar
  83. Das D, Mandal M (2015) Advanced Technology of Fertilizer Uses for crop production. In: Sinha S, Pant KK, Bajpai S (eds) Fertilizer technology-I synthesis. Studium Press, LLC, USA, pp 101–150Google Scholar
  84. David P, Raj RS, Linda R, Rhema SB (2014) Molecular characterization of phosphate solubilizing bacteria (PSB) and plant growth promoting rhizobacteria (PGPR) from pristine soils. Int J Innov Sci Eng Technol 1:317–324Google Scholar
  85. Daviére JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151CrossRefGoogle Scholar
  86. Davis J, Haglund C (1999) Life cycle inventory (LCI) of fertiliser production. Fertiliser products used in Sweden and Western Europe. SIK-Report No. 654. Masters thesis, Chalmers University of TechnologyGoogle Scholar
  87. Dawson TL (2008) It must be green: meeting society’s environmental concerns. Color Technol 124:67–78CrossRefGoogle Scholar
  88. Dawwam GE, Elbeltagy A, Emara HM, Abbas IH, Hassan MM (2013) Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci 58(2):195–201CrossRefGoogle Scholar
  89. de Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LM (2015) Characterization of plant growth-promoting bacteria associated with rice cropped in iron stressed soils. Ann Microbiol 65:951–964CrossRefGoogle Scholar
  90. de Vries FT, Hoffland E, van Eekeren N, Brussaard L, Bloem J (2006) Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol Biochem 38:2092–2103CrossRefGoogle Scholar
  91. Debode J, De Maeyer K, Perneel M, Pannecoucque J, De Backer G, Höfte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196CrossRefGoogle Scholar
  92. Delaney SM, Mavrodi DV, Bonsall RF, Thomashow LS (2001) phzO, a gene for biosynthesis of 2-hydroxylate phenazine compounds in Pseudomonas aureofaciens 30-84. J Bacteriol 183(1):318–327CrossRefGoogle Scholar
  93. Desai SA (2017) Isolation and characterization of gibberellic acid (GA3) producing rhizobacteria from sugarcane roots. Biosci Discov 8(3):488–494Google Scholar
  94. Dolatabadian A, Sanavy S, Ghanati F, Gresshoff PM (2012) Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. S Afr J Bot 79:9CrossRefGoogle Scholar
  95. Dolatabadian A, Sanavy S, Ghanati F, Gresshoff PM (2013) Agrobacterium rhizogenes transformed soybean roots differ in their nodulation and nitrogen fixation response to genistein and salt stress. World J Microbiol Biotechnol 29:1327–1339CrossRefGoogle Scholar
  96. Drew MC, Hole PC, Picchioni GA (1990) Inhibition by NaCl of net CO2 fixation and yield of cucumber. J Am Soc Hortic Sci 115:472–477CrossRefGoogle Scholar
  97. Dutta SK, Hollowell GP, Hashem FM, Kuykendall LD (2003) Enhanced bioremediation of soil containing 2,4-dinitrotoluene by a genetically modified Sinorhizobium meliloti. Soil Biol Biochem 35:667–675CrossRefGoogle Scholar
  98. Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864CrossRefGoogle Scholar
  99. Egamberdieva D, Hua M, Reckling M, Wirth S, Bellingrath-Kimura SD (2018) Potential effects of biochar-based microbial inoculants in agriculture. Environ Sustain 1(1):19–24CrossRefGoogle Scholar
  100. Erayya, Jagdish J, Sajeesh PK, Vinod U (2013) Nuclear polyhedrosis virus (NPV), a potential biopesticide: a review. J Agric Sci 1(8):30–33Google Scholar
  101. Etesami H, Emami S, Alikhani HA (2017) Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects – a review. J Soil Sci Plant Nutr 17(4):897–911CrossRefGoogle Scholar
  102. Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762CrossRefGoogle Scholar
  103. Ezezika OC, Singer PA (2010) Genetically engineered oil-eating microbes for bioremediation: prospects and regulatory challenges. Technol Soc 32:331–335CrossRefGoogle Scholar
  104. Fageria NK (2009) The use of nutrients in crop plants. CRC Press, Boca RatonGoogle Scholar
  105. Fageria NK, Baligar VC, Li YC (2009) Differential soil acidity tolerance of tropical legume cover crops. Commun Soil Sci Plant Anal 40:1148–1160CrossRefGoogle Scholar
  106. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Huang J (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci 8:1147CrossRefGoogle Scholar
  107. Fankem H, Nwaga D, Deube A, Dieng L, Merbach W, Etoa FX (2006) Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. Afr J Biotechnol 5:2450–2460Google Scholar
  108. FAO (1998) Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert, Rome, Italy, vol 66, pp 1–140Google Scholar
  109. FAO (2015) DWFI. Yield gap analysis of field crops—methods and case studies, by Sadras VO, Cassman KGG, Grassini P, Hall AJ, Bastiaanssen WGM, Laborte AG, Milne AE, Sileshi G, Steduto P. Rome, Italy: P. FAO Water Reports No. 41Google Scholar
  110. FAO (2017) Aquaculture regional reviews. FAO Fisheries and Aquaculture Department [online]. Rome. Available:
  111. Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6CrossRefGoogle Scholar
  112. Faten D, Datta R, Wusirika R (2016) Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere 157:33–41CrossRefGoogle Scholar
  113. Fernandez-Aunión C, Ben-Hamouda T, Iglesias-Guerra F, Argandona M, Reina-Bueno M, Nieto JJ, Aouani ME, Vargas C (2010) Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol 10(192):3–16Google Scholar
  114. Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Zaks DPM et al (2011) Solutions for a cultivated planet. Nature 478(7369):337–342CrossRefGoogle Scholar
  115. Frampton RA, Pitman AR, Fineran PC (2012) Advances in bacteriophage-mediated control of plant pathogens. Int J Microbiol 2012:326452CrossRefGoogle Scholar
  116. Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176(6):421–426CrossRefGoogle Scholar
  117. Friello DA, Mylroie JR, Chakrabarty AM (2001) Use of genetically engineered multi-plasmid microorganisms for rapid degradation of fuel hydrocarbons. Int Biodeterior Biodegrad 48(1–4):233–242CrossRefGoogle Scholar
  118. Fujisawa M, Takita E, Harada H, Sakurai N, Suzuki H, Ohyama K et al (2000) Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot 60(4):1319–1332CrossRefGoogle Scholar
  119. Gagné-Bourque F, Mayer BF, Charron J-B, Vali H, Bertrand A, Jabaji S (2015) Accelerated growth rate and increased drought stress resilience of the model grass Brachypodium distachyon colonized by Bacillus subtilis B26. PLoS ONE 10(6):e0130456CrossRefGoogle Scholar
  120. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892CrossRefGoogle Scholar
  121. Gao H, Qi G, Yin R, Zhang H, Li C, Zhao X (2016) Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci Rep 6:28756CrossRefGoogle Scholar
  122. García-Fraile P et al (2017) Bacterial probiotics: a truly Green Revolution. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, SingaporeGoogle Scholar
  123. Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12CrossRefGoogle Scholar
  124. Geng S, Chen Z, Han S, Wang F, Zhang J (2017) Rainfall reduction amplifies the stimulatory effect of nitrogen addition on N2O emissions from a temperate forest soil. Sci Rep 7:43329CrossRefGoogle Scholar
  125. Giorgio A, De Stradis A, Lo Cantore P, Iacobellis NS (2015) Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Front Microbiol 6:1056CrossRefGoogle Scholar
  126. Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 4:1109–1114Google Scholar
  127. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica, Article ID 963401Google Scholar
  128. Goldstein AH (2000) Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. In: Proceedings of the 4th international fertilizer association technical conference (Paris: IFA), p 220Google Scholar
  129. Gothwal R, Nigam V, Mohan M, Sasmal D, Ghosh P (2009) Screening of nitrogen fixers from rhizospehric bacterial isolates associated with important desert plants. Appl Ecol Environ Res 6:101–109CrossRefGoogle Scholar
  130. Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140CrossRefGoogle Scholar
  131. Grinter R, Milner J, Walker D (2012) Ferredoxin containing bacteriocins suggest a novel mechanism of iron uptake in Pectobacterium spp. PLoS ONE 7(3):e33033CrossRefGoogle Scholar
  132. Groudev SN (1987) Use of heterotrophic micro-organisms in mineral biotechnology. Acta Biotechnol 7:299–306CrossRefGoogle Scholar
  133. Grover M, Ali SZ, Sandhya V, Venkateswarlu B (2011) Role of microorganisms in adaptation of agricultural crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240CrossRefGoogle Scholar
  134. Ha TN (2010) Using Trichoderma species for biological control of plant pathogens in Viet Nam. J ISSAAS 16(1):17–21Google Scholar
  135. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153CrossRefGoogle Scholar
  136. Haggag W (2010) The role of biofilm exopolysaccharides on biocontrol of plant diseases. In: Elnashar M (ed) Biopolymers. Sciyo, Rijeka, pp 271–284Google Scholar
  137. Haggag WM, Abouziena HF, Abd-El-Kreem F, Habbasha S (2015) Agriculture biotechnology for management of multiple biotic and abiotic environmental stress in crops. J Chem Pharm 7(10):882–889Google Scholar
  138. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London, p 483Google Scholar
  139. Harman GE (2011) Trichoderma – not just as biocontrol anymore. Phytoparasitica 39(2):103–108CrossRefGoogle Scholar
  140. Harrison RL, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega FE, Kaya HK (eds) Insect pathology, 2nd edn. Academic Press, London, pp 73–131CrossRefGoogle Scholar
  141. Hartman WH, Richardson CJ (2013) Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes? PLoS ONE 8(3):e57127CrossRefGoogle Scholar
  142. Harvey PR, Warren RA, Wakelin S (2009) Potential to improve root access to phosphorus: the role of non-symbiotic microbial inoculants in the rhizosphere. Crop Pasture Sci 60:144–151CrossRefGoogle Scholar
  143. Helliwell KE, Scaife MA, Sasso S, Ulian Araujo A, Purton S, Smith AG (2014) Unravelling vitamin B12-responsive gene regulation in algae. Plant Physiol 165:388–397CrossRefGoogle Scholar
  144. Helman Y, Burdman S, Okon Y (2011) Plant growth promotion by rhizosphere bacteria through direct effects. In: Rosenberg E, Gophna U (eds) Beneficial microorganisms in multicellular life forms. Springer, Berlin, pp 89–103Google Scholar
  145. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25CrossRefGoogle Scholar
  146. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750Google Scholar
  147. Hubbard M, Hynes RK, Erlandson M, Bailey KL (2014) The biochemistry behind biopesticide efficacy. Sustain Chem Process 2:18Google Scholar
  148. Hunter P (2016) Plant microbiomes and sustainable agriculture: deciphering the plant microbiome and its role in nutrient supply and plant immunity has great potential to reduce the use of fertilizers and biocides in agriculture. EMBO Rep 17(12):1696–1699CrossRefGoogle Scholar
  149. Intergovernmental Panel on Climate Change (IPCC) (1996) Revised IPCC guidelines for national greenhouse gas inventories: workbook, vol 2. IPCC, LondonGoogle Scholar
  150. Investing News Network (2015) What is potash? From types of potash to potash stocks. Available online
  151. Istina IN, Widiastuti H, Joy B, Antralina M (2015) Phosphate-solubilizing microbe from Saprists peat soil and their potency to enhance oil palm growth and P uptake. Procedia Food Sci 3:426–435CrossRefGoogle Scholar
  152. Jadhav HP, Sayyed RZ (2016) Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep 3(5):135–136Google Scholar
  153. Jain HK (2010) Green Revolution: history, impact and future. Studium Press, HoustenGoogle Scholar
  154. Jaivel N, Sivakumar U, Marimuthu P (2017) Characterization of zinc solubilization and organic acid detection in Pseudomonas sp. RZ1 from rice phyllosphere. Int J Chem 5(6):272–277Google Scholar
  155. James C (1999) Preview—global review of commercialized transgenic crops: 1999, ISAAA briefs no. 12. ISAAA, IthacaGoogle Scholar
  156. James C (2011) Global status of commercialized biotech/GM crops: 2011, ISAAA brief, vol 43. ISAAA, IthacaGoogle Scholar
  157. Janaih A, Outsuka K, Hossain M (2005) Is the productivity impact of the Green Revolution in rice vanishing: empirical evidence from TPT analysis. Econ Polit Wkly 40(53):5596–5600Google Scholar
  158. Jia Q, Liu N, Xie K, Dai Y, Han S, Zhao X, Qian L, Wang Y, Zhao J, Gorovits R, Xie D, Hong Y, Liu Y (2016) CLCuMuB βc1 subverts ubiquitination by interacting with NbSKP1s to enhance Geminivirus infection in Nicotiana benthamiana. PLoS Pathog 12:e1005668CrossRefGoogle Scholar
  159. Jin CW, Ye YQ, Zheng SJ (2014) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Ann Bot 113(1):7–18CrossRefGoogle Scholar
  160. Jing K, Zongping P, Min D, Gan S, Xin Z (2014) Effects of arbuscular mycorrhizal fungi on the drought resistance of the mining area repair plant sainfoin. Int J Min Sci Technol 24:485–489CrossRefGoogle Scholar
  161. Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247–257CrossRefGoogle Scholar
  162. Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1(2):39–57Google Scholar
  163. Kadempir M, Galeshi S, Soltani A, Ghaderifar F (2014) The effect of flooding and nutrition levels on reproductive growth stages of aerenchyma formation and ethylene production in soybean (Glycine max L). Int J Adv Biol Biomed Res 2(2):487–495Google Scholar
  164. Kalawate A (2014) Microbial viral insecticides. In: Sahayaraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 47–68Google Scholar
  165. Kamran S, Shahid I, Baig DN, Rizwan M, Malik KA, Mehnaz S (2017) Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front Microbiol 8:2593CrossRefGoogle Scholar
  166. Karadeniz A, Topcuoğlu ŞF, İnan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064CrossRefGoogle Scholar
  167. Karimi N, Mohammad Javad Zarea MJ, Mehnaz S (2018) Endophytic Azospirillum for enhancement of growth and yield of wheat. Environ Sustain 1(2):149–158CrossRefGoogle Scholar
  168. Kawaguchi A, Inoue K (2012) New antagonistic strains of non-pathogenic Agrobacterium vitis to control grapevine crown gall. J Phytopathol 160:509–518CrossRefGoogle Scholar
  169. Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients. Aust J Crop Sci 7:249–254Google Scholar
  170. Khan M, Zaidi A, Wani P (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43CrossRefGoogle Scholar
  171. Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61(1):64–68CrossRefGoogle Scholar
  172. Khare E, Singh S, Maheshwari DK, Arora NK (2011) Suppression of charcoal rot of chickpea by fluorescent pseudomonas under saline stress condition. Curr Microbiol 62:1548–1553CrossRefGoogle Scholar
  173. Kim SK, Kim YC, Lee S, Kim JC, Yun MY, Kim IS (2011) Insecticidal activity of rhamnolipid isolated from Pseudomonas sp. EP-3 against green peach aphid (Myzus persicae). J Agric Food Chem 59:934–938CrossRefGoogle Scholar
  174. Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cell 37:109–117CrossRefGoogle Scholar
  175. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152CrossRefGoogle Scholar
  176. Kongshaug G (1998) Energy consumption and greenhouse gas emissions in fertilizer production. IFA technical conference, Marrakech, Morocco, p 18Google Scholar
  177. Kruger M, Kruger C, Walker C, Stockinger H, Schussler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984CrossRefGoogle Scholar
  178. Kuan KB, Othman R, Abdul Rahim K, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11(3):e0152478CrossRefGoogle Scholar
  179. Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Biofertil Biopestic 6:e129CrossRefGoogle Scholar
  180. Lampel JS, Canter GL, Dimock MB, Kelly JL, Anderson JJ, Uratani BB, Foulke JS et al (1994) Integrative cloning, expression, and stability of the cryIA(c) gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. Cynodontis. Appl Environ Microbiol 60(2):501–508Google Scholar
  181. LaSalle T, Hepperly P (2008) Regenerative organic farming: a solution to global warming. The Rodale Institute, KutztownGoogle Scholar
  182. Lenoir I, Lounes-Hadj Sahraoui A, Fontaine J (2016) Arbuscular mycorrhizal fungal-assisted phytoremediation of soil contaminated with persistent organic pollutants: a review. Eur J Soil Sci 67:624–640CrossRefGoogle Scholar
  183. Li L, Ye Y, Pan L, Zhu Y, Zheng S, Lin Y (2009) The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Biochem Biophys Res Commun 387:778–783CrossRefGoogle Scholar
  184. Liang J et al (2016) Positive biodiversity-productivity relationship predominant in global forests. Science 354:aaf895CrossRefGoogle Scholar
  185. Liao CT, Lin CH (1994) Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiol Biochem 32:479–485Google Scholar
  186. Lindow SE, Panopoulos NJ (1988) Field tests of recombinant Ice-Pseudomonas syringae for biological frost control in potato. In: Sussman M, Collins CH, Skinner FA, Stewart-Tull DE (eds) Release of genetically-engineered micro-organisms. Academic Press, San DiegoGoogle Scholar
  187. Lindsay WL (1972) Inorganic phase equilibria of micronutrients in soils. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. Soil Science Society of America, Madison, pp 41–57Google Scholar
  188. Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin producing, plant growth promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164CrossRefGoogle Scholar
  189. Long SR (1996) Rhizobium symbiosis: nod factors in perspective. Plant Cell 8:1885–1898CrossRefGoogle Scholar
  190. Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens PF-5. Eur J Plant Pathol 119:265–278CrossRefGoogle Scholar
  191. López-Arredondo DL, Leyva-González MA, Alatorre-Cobos F, Herrera-Estrella L (2013) Biotechnology of nutrient uptake and assimilation in plants. Int J Dev Biol 57:595–610CrossRefGoogle Scholar
  192. López-Pazos SA, Cortazar JE, Cerón J (2009) Cry1B and Cry3A are active against Hypothenemus hampei Ferrari (coleoptera: scolytidae). J Invertebr Pathol 101:242–245CrossRefGoogle Scholar
  193. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefGoogle Scholar
  194. MacLean AM, Finan TM, Sadowsky MJ (2007) Genomes of the symbiotic nitrogen-fixing bacteria of legumes. Plant Physiol 144:615–622CrossRefGoogle Scholar
  195. Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16CrossRefGoogle Scholar
  196. Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl Biochem Microbiol 47:333–345CrossRefGoogle Scholar
  197. Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:491206CrossRefGoogle Scholar
  198. Manaa M, Kim KD (2018) Effect of temperature and relative humidity on growth of Aspergillus and Penicillium spp. and biocontrol activity of Pseudomonas protegens AS15 against aflatoxigenic Aspergillus flavus in stored rice grains. Mycobiology 46(3):1–9Google Scholar
  199. Market Data Forecast (2018) Microbial Soil Inoculants Market By Type (Plant Growth Promoting Microorganisms (PGPMs), Bio-control Agents, And Plant-resistance Stimulants), By Crop Type (Cereals & Grains, Oilseeds & Pulses, Fruits & Vegetables, And Other Crops), By Source (Bacterial, Fungal, And Others), By Region - Global Industry Analysis, Size, Share, Growth, Trends, And Forecasts (2018-2023). ID 5373: 175  Google Scholar
  200. Maróti G, Kondorosi E (2014) Nitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis? Front Microbiol 5:326Google Scholar
  201. Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak YS, Paulitz TC, Weller DM (2012) Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl Environ Microbiol 78(3):804–812CrossRefGoogle Scholar
  202. McCoy CW (1990) Entomogenous fungi as microbial pesticides. In: Baker RR, Dunn PE (eds) New directions in biological control: alternatives for suppressing agricultural pests and diseases (UCLA symposia on molecular and cell biology). Wiley Liss, New York, pp 139–159Google Scholar
  203. Meena VS, Maurya BR, Bahadur I (2015) Potassium solubilization by bacterial strain in waste mica. J Bot 43:235–237Google Scholar
  204. Meena VS, Maurya BR, Verma JP, Meena RS (2016) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New DelhiCrossRefGoogle Scholar
  205. Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can J Microbiol 47:110–117CrossRefGoogle Scholar
  206. Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:476–494CrossRefGoogle Scholar
  207. Millner PD, Wright SF (2002) Tools for support of ecological research on arbuscular mycorrhizal fungi. Symbiosis 33:101–123Google Scholar
  208. Mishra S, Arora NK (2012) Management of black rot in cabbage by rhizospheric Pseudomonas species and analysis of 2,4-diacetylphloroglucinol by qRT-PCR. Biol Control 61(1):32–39CrossRefGoogle Scholar
  209. Mishra J, Arora NK (2016) Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 3–33Google Scholar
  210. Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? Plant microbes symbiosis: applied facets. In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 37–75Google Scholar
  211. Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706CrossRefGoogle Scholar
  212. Mishra J, Fatima T, Arora NK (2018) Role of secondary metabolites from plant growth-promoting rhizobacteria in combating salinity stress. In: Plant microbiome: stress response. Springer, Singapore, pp 127–163CrossRefGoogle Scholar
  213. Mohammed AF (2018) Effectiveness of exopolysaccharides and biofilm forming plant growth promoting rhizobacteria on salinity tolerance of faba bean (Vicia faba L.). Afr J Microbiol Res 12(17):399–404CrossRefGoogle Scholar
  214. Mohite B (2013) Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr 13(3):638–649Google Scholar
  215. Moldes AB, Paradelo R, Rubinos D, Devesa-Rey R, Cruz JM, Barral MT (2011) Ex situ treatment of hydrocarbon-contaminated soil using biosurfactants from Lactobacillus pentosus. J Agric Food Chem 59:9443–9447CrossRefGoogle Scholar
  216. Monti MR, Smania AM, Fabro G, Alvarez ME, Argaraña CE (2005) Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Appl Environ Microbiol 71(12):8864–8872CrossRefGoogle Scholar
  217. Moorman TB (1989) A review of pesticide effects on microorganisms and microbial processes related to soil fertility. J Prod Agric 2:14–23CrossRefGoogle Scholar
  218. Morel MA, Branã V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase the production. In: Goyal A (ed) Crop plant. InTech Open, London, pp 217–240Google Scholar
  219. Morel MA, Cagide C, Minteguiaga MA, Dardanelli MS, Castro-Sowinski S (2015) The pattern of secreted molecules during the co-inoculation of alfalfa plants with Sinorhizobium meliloti and Delftia sp. strain JD2: an interaction that improves plant yield. Mol Plant-Microbe Interact 28:134–142CrossRefGoogle Scholar
  220. Morel MA, Cagide C, Castro-Sowinski S (2016) The contribution of secondary metabolites in the success of bioformulations. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 235–250Google Scholar
  221. Moreno-Sarmiento N, Moreno-Rodriguez LF, Uribe D (2007) Biofertilizantes para la agricultura en Colombia. In: Izaguirre-Mayoral ML, Labandera C, Sanjuan J (eds) Biofertilizantes en Iberoamerica: Visionté cnica, cientificay empresarial. Denad Internacional, Montevideo, pp 8–45Google Scholar
  222. Mouloud G, Daoud H, Bassem J, Atef IL, Hani B (2013) New bacteriocin from Bacillus clausii strain GM17: purification, characterization, and biological activity. Appl Biochem Biotechnol 171:2186–2200CrossRefGoogle Scholar
  223. Mukhija B, Khanna V (2018) Isolation, characterization and crystal morphology study of Bacillus thuringiensis isolates from soils of Punjab. J Pure Appl Microbiol 12:189–193CrossRefGoogle Scholar
  224. Müller RD, Seton M, Zahirovic S, Williams SE, Matthews KJ, Wright NM, Shephard GE, Maloney KT, Barnett-Moore N, Hosseinpour M, Bower DJ, Cannon J (2016) Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu Rev Earth Planet Sci 44:107–138CrossRefGoogle Scholar
  225. Mulqueen P (2003) Recent advances in agrochemical formulations. Adv Colloid Interf Sci 106:83–107CrossRefGoogle Scholar
  226. Münchbach M, Nocker A, Narberhaus F (1999) Multiple small heat shock proteins in rhizobia. J Bacteriol 181:83–90Google Scholar
  227. Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED et al (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82(13):3698–3710CrossRefGoogle Scholar
  228. Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11CrossRefGoogle Scholar
  229. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726CrossRefGoogle Scholar
  230. Ngumbi E, Kloepper J (2014) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125CrossRefGoogle Scholar
  231. Nihorimbere V, Marc Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337Google Scholar
  232. Nikolic M, Römheld V (1999) Mechanism of Fe uptake by the leaf symplast: Is Fe inactivation in leaf a cause of Fe deficiency chlorosis? Plant Soil 215:229CrossRefGoogle Scholar
  233. Nitschke M, Costa SG, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21:1593–1600CrossRefGoogle Scholar
  234. Niu X, Song L, Xiao Y, Ge W (2017) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol 8:2580CrossRefGoogle Scholar
  235. Nobbe F, Hiltner L (1896) U.S. Patent 570 813. Inoculation of the soil for cultivating leguminous plantsGoogle Scholar
  236. Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, Al-Harrasi A (2018) Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res 209:21–32CrossRefGoogle Scholar
  237. O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729–5746CrossRefGoogle Scholar
  238. Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197CrossRefGoogle Scholar
  239. Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263CrossRefGoogle Scholar
  240. Omara AA, Hauka F, El-Din MN, Kassem M (2017) The role of some PGPR strains to biocontrol Rhizoctonia solani in soybean and enhancement the growth dynamics and seed yield. Environ Biodivers Soil Secur 1:47–59Google Scholar
  241. Omer MA (2010) Bioformulations of Bacillus spores for using as biofertilizer. Life Sci J 7:4Google Scholar
  242. Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Appl Soil Ecol 86:41–54CrossRefGoogle Scholar
  243. Pal KK, McSpadden BG (2006) Biological control of plant pathogens. Plant Health Instruct.
  244. Pal S, Singh HB, Farooqui A, Rakshit A (2015) Fungal biofertilizers in Indian agriculture: perception, demand and promotion. J Ecofriendly Agric 10(2):101–113Google Scholar
  245. Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis Toxins: an overview of their biocidal activity. Toxins 6(12):3296–3325CrossRefGoogle Scholar
  246. Pandey N, Jain R, Pandey A, Tamta S (2018) Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 9(2):81–92CrossRefGoogle Scholar
  247. Pandya ND, Desai PV (2014) Screening and characterization of GA3 producing Pseudomonas monteilii and its impact on plant growth promotion. Int J Curr Microbiol Appl Sci 3:110–115Google Scholar
  248. Pardis, Devakumar AS (2014) Green house gas emission of major agriculture crops of southern India. 2nd international conference on sustainable environment and agriculture. IPCBEE 76:94–98Google Scholar
  249. Passari AK, Mishra VK, Leo VV, Gupta VK, Singh BP (2016) Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 193:57–73CrossRefGoogle Scholar
  250. Patel T, Saraf M (2017) Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact 12(1):480–487CrossRefGoogle Scholar
  251. Pathak D, Lone R, Koul KK (2017) Arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) association in potato (Solanum tuberosum L.): a brief review. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 401–420CrossRefGoogle Scholar
  252. Patidar M, Mali AI (2004) Effect of farmyard manure, fertilizer level on growth, yield and quality of rice. Indian J Agron 19(1):117–120Google Scholar
  253. Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439CrossRefGoogle Scholar
  254. Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves JR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1–3):1–17CrossRefGoogle Scholar
  255. Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2(5):a001446CrossRefGoogle Scholar
  256. Phadtare S (2004) Recent developments in bacterial cold-shock response. Curr Issues Mol Biol 6(2):125–136Google Scholar
  257. Phillips T (2008) Genetically modified organisms (GMOs): transgenic crops and recombinant DNA technology. Nat Educ 1(1):213Google Scholar
  258. Pingali PL (2012) Green Revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A 109(31):12302–12308CrossRefGoogle Scholar
  259. Pingali P, Raney T (2005) From the green revolution to the gene revolution: how will the poor fare? Agricultural and development economics division. The Food and Agriculture Organization of the United Nations (FAO-ESA), Working papersGoogle Scholar
  260. Pinstrup-Andersen P, Hazell PBR (1985) The impact of the green revolution and prospects for the future. Food Rev Int 1(1):1–25CrossRefGoogle Scholar
  261. PMRA – Pest Management Regulatory Agency (2006) Cost recovery initiative evaluation management response action plan. Available:
  262. Postgate JR (1982) The fundamentals of nitrogen fixation. Cambridge University Press, New YorkGoogle Scholar
  263. Postma JA, Lynch JP (2010) Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann Bot 107:829–841CrossRefGoogle Scholar
  264. Prasad N, Dasgupta S, Chakraborty M, Gupta S (2018) Isolation and characterization of biosurfactant producing bacteria for the application in enhanced oil recovery IOP conference series: earth and environmental science, volume 78, conference 1Google Scholar
  265. Prashar P, Shah S (2016) Impact of fertilizers and pesticides on soil microflora in agriculture. In: Lichtfouse E (ed) Bambara groundnut for food security in the changing African climate, vol 19. Springer, New Delhi, pp 331–362Google Scholar
  266. Probanza A, Lucas JA, Acero N, Gutierrez-Manero FJ (1996) The influence of native rhizobacteria on European alder (Alnus glutinosa [L.] Gaertn.) growth I. Characterization of growth promoting and growth inhibiting bacterial strains. Plant Soil 182:59–66CrossRefGoogle Scholar
  267. Qadir M, Quillerou E, Nangia V (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295CrossRefGoogle Scholar
  268. Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y (2017) Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol 17:131CrossRefGoogle Scholar
  269. Raaijmakers JM, de Bruijn I, de Kock MJ (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact 19:699–710CrossRefGoogle Scholar
  270. Rabie GH (2005) Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology 33:41–45CrossRefGoogle Scholar
  271. Rajesh M, Samundeeswari M, Archana B (2017) Isolation of biosurfactant producing bacteria from garbage soil. J Appl Environ Microbiol 5(2):74–78CrossRefGoogle Scholar
  272. Ramesh A, Sharma SK, Sharmaa MP, Yadava N, Joshi OP (2014) Inoculation of zinc solubilizing Bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of central India. Appl Soil Ecol 73:87–96CrossRefGoogle Scholar
  273. Rana A, Joshi M, Prasanna R, Shivay Y, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126CrossRefGoogle Scholar
  274. Rao GVR, Kumar CS, Sireesha K, Kumar PL (2015) Role of nucleopolyhedrovirus (NPVs) in the management of pests in Asia. In: Sree KS, Varma A (eds) biocontrol of lepidopteran pests, Soil biology, vol 43. Springer, Cham, pp 11–52Google Scholar
  275. Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41CrossRefGoogle Scholar
  276. Rawal P, Sharma P, Singh ND, Joshi A (2013) Evaluation of fungicides, neem bio-formulations and biocontrol agent for the management of root rot of safedmusli caused by Rhizoctonia solani. J Mycol Plant Pathol 43(30):297Google Scholar
  277. Rawat AK, Rao DLN, Sahu RK (2013) Effect of soybean inoculation with Bradyrhizobium and wheat inoculation with Azotobacter on their productivity and N turnover in a vertisol. Arch Agron Soil Sci 11:1559–1571CrossRefGoogle Scholar
  278. Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–11CrossRefGoogle Scholar
  279. Rehm G, Schmitt M (2002) Potassium for crop production. Retrieved from Regents of the University of Minnesota website:
  280. Rena R (2004) Green Revolution: Indian agricultural experience – a paradigm for Eritrea. Eritrean Stud Rev 4(1):103–130Google Scholar
  281. Rengel Z (2014) Availability of Mn, Zn and Fe in the rhizosphere. J Soil Sci Plant Nutr 15(2):397–409Google Scholar
  282. Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70(12):7404–7412CrossRefGoogle Scholar
  283. Review M (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302(1):1–17Google Scholar
  284. Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front Microbiol 7:1785CrossRefGoogle Scholar
  285. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53CrossRefGoogle Scholar
  286. Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333CrossRefGoogle Scholar
  287. Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter J et al (2000) Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ Sci Technol 34(5):846–853CrossRefGoogle Scholar
  288. Rodríguez HJ, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339CrossRefGoogle Scholar
  289. Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM et al (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290CrossRefGoogle Scholar
  290. Roossinck MJ (2013) Plant virus ecology. PLoS Pathog 9:e1003304. Scholar
  291. Rosenberg E, Ron EZ (1999) High and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162CrossRefGoogle Scholar
  292. Rostas M, Blassmann K (2009) Insects had it first: Surfactants as a defense against predators. Proc R Soc B 276:633–638CrossRefGoogle Scholar
  293. Rubio-Infante N, Moreno-Fierros L (2016) An overview of the safety and biological effects of Bacillus thuringiensis cry toxins in mammals. J Appl Toxicol 36(5):630–634CrossRefGoogle Scholar
  294. Rubiya (2006) Co-aggregated diazotrophic cultures – a novel delivery system of bioinocula for lowland rice (Oryza sativa L.). Dissertation, Annamalai UniversityGoogle Scholar
  295. Russo A, Carrozza GP, Lorenzo V, Cristiana F, Fabrizio C, Annita T (2012) Plant beneficial microbes and their application in plant biotechnology. In: Agbo EC (ed) Innovations in biotechnology, Kindle edition. InTech, Rijeka, pp 57–72Google Scholar
  296. Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016CrossRefGoogle Scholar
  297. Sacherer P, Defago G, Hass D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHA0. FEMS Microbiol Lett 116(2):155–160CrossRefGoogle Scholar
  298. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016a) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic plains of India. Biocatal Agric Biotechnol 7:202–209CrossRefGoogle Scholar
  299. Saha M, Sarkar S, Sarkar B, Sharma B, Bhattacharjee S, Tribedi P (2016b) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999CrossRefGoogle Scholar
  300. Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of efficient native Azospirillum strains from rice fields for crop improvement. Protoplasma 1(4):943–953CrossRefGoogle Scholar
  301. Sakano K (2001) Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int Rev Cytol 206:1–44CrossRefGoogle Scholar
  302. Salazar-Cerezo S, Martinez-Montiel N, Cruz-Lopez MC, Martinez-Contreras RD (2018) Fungal diversity and community composition of culturable fungi in Stanhopea trigrina cast gibberellin producers. Front Microbiol 9:612CrossRefGoogle Scholar
  303. Saleem AR, Brunetti C, Khalid A, Della Rocca G, Raio A, Emiliani G et al (2018) Drought response of Mucuna pruriens (L.) DC inoculated with ACC deaminase and IAA producing rhizobacteria. PLoS ONE 13(2):e0191218CrossRefGoogle Scholar
  304. Sanchez L, Weidmann S, Arnould C, Bernard AR, Gianinazzi S, GianinazziPearson V (2005) Pseudomonas fluorescens and Glomus mosseae trigger DMI3- dependent activation of genes related to a signal transduction pathway in roots of Medicago truncatula. Plant Physiol 139:1065–1077CrossRefGoogle Scholar
  305. Sandhya V, Ali SKZ, Grover M, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by exopolysaccharides producing Pseudomonas putida strain P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  306. Sangeetha D (2012) Survival of plant growth promoting bacterial inoculants in different carrier materials. Int J Pharm Biol Arch 3(1):170–178Google Scholar
  307. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767CrossRefGoogle Scholar
  308. Santos A, Flores M (1995) Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett Appl Microbiol 20:349–352CrossRefGoogle Scholar
  309. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29CrossRefGoogle Scholar
  310. Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33CrossRefGoogle Scholar
  311. Sarwar A, Brader G, Corretto E, Aleti G, Abaidullah M, Sessitsch A, Hafeez FY (2018) Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS ONE 13(6):e0198107CrossRefGoogle Scholar
  312. Saxena AK, Yadav AN, Kaushik R, Tyagi SP, Shukla L (2015) Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In: International conference on “low temperature science and biotechnological advances, p 104Google Scholar
  313. Schalk IJ, Guillon L (2013) Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis. Environ Microbiol 15:1661–1673CrossRefGoogle Scholar
  314. Schofield D, Sharp N, Westwater C (2012) Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage 2:105–121CrossRefGoogle Scholar
  315. Schünemann R, Knaak N, Fiuza LM (2014) Mode of action and specificity of Bacillus thuringiensis toxins in the control of caterpillars and stink bugs in soybean culture. ISRN Microbiol, Article ID 135675, 12 pages. Scholar
  316. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515CrossRefGoogle Scholar
  317. Sebby K (2010) The green revolution of the 1960’s and its impact on small farmers in India. environmental studies undergraduate student theses, 10.
  318. Selbmann L, Stingele F, Petruccioli M (2003) Exopolysaccharide production by filamentous fungi: the example of Botryosphaeria rhodina. Antonie Van Leeuwenhoek 84:135–145CrossRefGoogle Scholar
  319. Sena HH, Sanches MA, Rocha DFS, Segundo WOPF, de Souza ES, de Souza JVB (2018) Production of biosurfactants by soil fungi isolated from the Amazon forest. Int J Microbiol, Article ID 5684261, 8 pagesGoogle Scholar
  320. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32CrossRefGoogle Scholar
  321. Setiawati TC, Mutmainnah L (2016) Solubilization of potassium containing mineral by microorganisms from sugarcane rhizosphere. Agric Agric Sci Procedia 9:108–117Google Scholar
  322. Shaikh SS, Saraf MS (2017) Optimization of growth conditions for zinc solubilizing plant growth associated bacteria and fungi. J Adv Res Biotechnol 2(1):1–9CrossRefGoogle Scholar
  323. Shand H (1989) Bacillus thuringiensis: industry frenzy and a host of issues. J Pestic Reform 9:18–21Google Scholar
  324. Shanware AS, Kalkar SA, Trivedi MM (2014) Potassium solubilisers: occurrence, mechanism and their role as competent biofertilisers. Int J Curr Microbiol App Sci 3(9):622–629Google Scholar
  325. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587CrossRefGoogle Scholar
  326. Shi SL, Wang DF, Yan Y, Zhang F, Wang H, Gu M et al (2013) Function of phosphate transporter OsPHT2;1 in improving phosphate utilization in rice. Chin J Rice Sci 27:457–465Google Scholar
  327. Shiva V (1993) The violence of the Green Revolution: third world agriculture, ecology and politics, 2nd edn. Zed Books, LondonGoogle Scholar
  328. Singh R, Arora NK (2016) Bacterial formulations and delivery systems against pests in sustainable agro-food production. Elsevier, Amsterdam, pp 1–11Google Scholar
  329. Singh AL, Singh PL (1989) Nitrogen fixation in Indian rice fields (Azolla and Blue-green Algae). Agro-Botanical Publishers, BikanerGoogle Scholar
  330. Singh S, Gupta G, Khare E, Behal KK, Arora N (2014) Effect of enrichment material on the shelf life and field efficiency of bioformulation of Rhizobium sp. and P-solubilizing Pseudomonas fluorescens. Sci Res Rep 4:44–50Google Scholar
  331. Singh Z, Kaur J, Kaur R, Hundal SS (2016) Toxic effects of organochlorine pesticides: a review. Am J Biosci 4:11–11CrossRefGoogle Scholar
  332. Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589CrossRefGoogle Scholar
  333. Sivasakthi S, Kanchana D, Usharani G, Saranraj P (2013) Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. Int J Microbiol Res 4(3):227–233Google Scholar
  334. Smith FL Jr (1997) Prometheus bound: cloning bears identical reactions. Regulation 20(2).
  335. Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  336. Smith SE, Read DJ (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Smith SE, Read D (eds) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York, pp 145–187CrossRefGoogle Scholar
  337. Smitha S, Bhat S (2013) Thermostable bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment. J Appl Microbiol 114:688–694CrossRefGoogle Scholar
  338. SOLAW (2011) The state of the world’s land and water resources for food and agriculture. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  339. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438CrossRefGoogle Scholar
  340. Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448CrossRefGoogle Scholar
  341. Sparks DL, Huang PM (1985) Physical chemistry of soil potassium. In: Munson RD (ed) Potassium in agriculture. ASA, CSSA and SSSA, Madison, pp 201–265Google Scholar
  342. Srinivasan R, Yandigeri MS, Kashyap S, Alagawadi AR (2012) Effect of salt on survival and P-solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19(4):427–434CrossRefGoogle Scholar
  343. Stamenković S, Beškoski V, Karabegović I, Lazić M, Nikolić N (2018) Microbial fertilizers: a comprehensive review of current findings and future perspectives. Span J Agric Res 16(1):e09R01CrossRefGoogle Scholar
  344. Steinwand B (2008) Personal communication. US Environmental Protection Agency, Biopesticide Ombudsman, Washington, DCGoogle Scholar
  345. Subramanian S, Smith DL (2015) Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front Plant Sci 6:909Google Scholar
  346. Sulieman S, Tran L-SP (2014) Symbiotic nitrogen fixation in legume nodules: metabolism and regulatory mechanisms. Int J Mol Sci 15(11):19389–19393CrossRefGoogle Scholar
  347. Sun W, Weingarten RA, Xu M, Southall N, Dai S, Shinn P, Zheng W (2016) Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerging Microbes Infect 5(11):e116Google Scholar
  348. Tajini F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163CrossRefGoogle Scholar
  349. Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttilä AM (2010) Root endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134CrossRefGoogle Scholar
  350. Terrazas RA, Giles C, Paterson E, Robertson-Albertyn A, Cesco S, Mimmo T et al (2016) Plant-microbiota interactions as a driver of the mineral turnover in the rhizosphere. Adv Appl Microbiol 95:1–67CrossRefGoogle Scholar
  351. Tewari S, Arora NK (2013) Transactions among microorganisms and plant in the composite rhizosphere habitat. In: Arora N (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 1–50Google Scholar
  352. Tewari S, Arora NK (2014a) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69(4):484–494CrossRefGoogle Scholar
  353. Tewari S, Arora NK (2014b) Ameliorating the growth of sunflower using stress-tolerant Pseudomonas aeruginosa PF23. Clim Change Environ Sustain 2(2):116–121CrossRefGoogle Scholar
  354. Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 1(3):99–108CrossRefGoogle Scholar
  355. Tewari S, Arora NK (2018) Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ Sust 1:49–59Google Scholar
  356. Thavasi R, Subramanyam Nambaru VRM, Jayalakshmi S, Balasubramanian T, Banat IM (2011) Biosurfactant production by Pseudomonas aeruginosa from renewable resources. Indian J Microbiol 51(1):30–36CrossRefGoogle Scholar
  357. Tian B, Yang J, Zhang KQ (2007) Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiol Ecol 61(2):197–213CrossRefGoogle Scholar
  358. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefGoogle Scholar
  359. Timms-Wilson TM, Bryant K, Bailey MJ (2001) Strain characterization and 16S-23S probe development for differentiating geographically dispersed isolates of the phytopathogen Ralstonia solanacearum. Environ Microbiol 3:785–797CrossRefGoogle Scholar
  360. Torbaghan ME, Lakzian A, Astaraei AR, Fotovat A, Besharati H (2017) Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. J Soil Sci Plant Nutr 17(4):1058–1073CrossRefGoogle Scholar
  361. Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787Google Scholar
  362. Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact on soil microbial communities: a review. Biomed Res 11:863240Google Scholar
  363. Tsavkelova EA, Cherdyntseva TA, Netrusov A (2005) Auxin production by bacteria associated with orchid roots. Mikrobiologiia 74:55–62Google Scholar
  364. Turner (2011) Global energy management and the art of human capital. Available:
  365. Turner JT, Lampell JS, Stearmen RS, Sundin GW, Gunyuzlu UP, Anderson JJ (1991) Stability of the d-endotoxin gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microbiol 57:3522–3528Google Scholar
  366. Upadhyay SK, Singh JS, Singh DP (2011) Exopolysaccharide plant growth promoting rhizobacteria under salinity condition. Pedosphere 21(2):214–222CrossRefGoogle Scholar
  367. Van Agtmaal M, Van Os G, Hol G, Hundscheid M, Runia W, Hordijk C et al (2015) Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogen-suppressing volatiles. Front Microbiol 6:701Google Scholar
  368. Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137CrossRefGoogle Scholar
  369. Vendan RT, Thangaraju M (2006) Development and standardization of liquid formulation for Azospirillum bioinoculant. Indian J Microbiol 46:379–387Google Scholar
  370. Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586CrossRefGoogle Scholar
  371. Vidaver AK, Tolin SA, Post AR (2013) The status, promise and potential perils of commercially available genetically modified microorganisms in agriculture and the environment. Papers Plant Pathol 260:95–102Google Scholar
  372. Viebahn M, Doornbos R, Wernars K, Van Loon LC, Smit E, Bakker P (2005) Ascomycete communities in the rhizosphere of field- grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r. Environ Microbiol l7:1775–1785CrossRefGoogle Scholar
  373. Vinale F, Sivasithamparam K, Ghisalberti LE, Marra R, Woo LS, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10CrossRefGoogle Scholar
  374. Viscardi S, Ventorino V, Duran P, Maggio A, de Pascale S, Mora ML, Pepe O (2016) Assessment of plant growth promoting activities and abiotic stress tolerance of Azotobacter chroococcum strains for a potential use in sustainable agriculture. J Soil Sci Plant Nutr 16(3):848–863Google Scholar
  375. Vorachek-Warren MK, Ramirez S, Cotter RJ, Raetz CR (2002) A triple mutant of Escherichia coli lacking secondary acyl chains on lipid. J Biol Chem 277:14194–14205CrossRefGoogle Scholar
  376. Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9:1–15CrossRefGoogle Scholar
  377. Wakatsuki T (1995) Metal oxidoreduction by microbial cells. J Ind Microbiol 14:169–177CrossRefGoogle Scholar
  378. Wang Y, Huang Y, Qiu Q, Xin G, Yang Z, Shi S (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS ONE 6(9):e24512CrossRefGoogle Scholar
  379. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796CrossRefGoogle Scholar
  380. Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X (2015) Antimicrobial peptides in 2014. Pharmaceuticals 8:123–150CrossRefGoogle Scholar
  381. Wang G, Li X, Wang Z (2016a) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(1):1087–1093CrossRefGoogle Scholar
  382. Wang L, Li W, Ma L, Chen J, Lu H, Jian T (2016b) Salt stress changes chemical composition in Limonium bicolor (Bag.) Kuntze, a medicinal halophytic plant. Ind Crop Prod 84:248–253CrossRefGoogle Scholar
  383. Wei CY, Lin L, Luo LJ, Xing YX, Hu CJ et al (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50(4):657–666CrossRefGoogle Scholar
  384. Whalon ME, Wingerd BA (2003) Bt: mode of action and use. Arch Insect Biochem Physiol 54:200–211CrossRefGoogle Scholar
  385. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511CrossRefGoogle Scholar
  386. White PJ, Broadley MR (2009) Biofortifi cation of crops with seven mineral elements often lacking in human diets— Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84CrossRefGoogle Scholar
  387. WHO (1999) Microbial pest control agent Bacillus thuringiensis. Report of UNEP/ILO/WHO (ECH, 217). WHO, Geneva.
  388. Winding A, Binnerup SJ, Pritchard H (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol Ecol 47:129–141CrossRefGoogle Scholar
  389. Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126CrossRefGoogle Scholar
  390. Wood SW, Cowie A (2004) A review of greenhouse gas emission factors for fertiliser production. IEA Bioenergy Task 38(1):1–20Google Scholar
  391. Wright SF, Anderson RL (2000) Aggregate stability and glomalin in alternative crop rotations for the central great plains. Biol Fertil Soils 31:249–253CrossRefGoogle Scholar
  392. Wu H, Sparks CA, Jones HD (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation. Mol Breed 18:195–208CrossRefGoogle Scholar
  393. Wu QS, Zou YN, Huang YM (2013) The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol 6:37–43CrossRefGoogle Scholar
  394. Xiang N, Lawrence KS, Kloepper JW, Donald PA, McInroy JA (2017) Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PLoS ONE 12(7):e0181201CrossRefGoogle Scholar
  395. Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921CrossRefGoogle Scholar
  396. Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, De Rycke R, Rakusová H et al (2014) Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343:1025–1028CrossRefGoogle Scholar
  397. Yang QQ, Zhang CQ, Chan MI et al (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67:4258–4296Google Scholar
  398. Yano-Melo AM, Saggin OJ, Maia LC (2003) Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress. Agric Ecosyst Environ 95:343–348CrossRefGoogle Scholar
  399. Yao Z, Peng Y, Chen X, Bi J, Li Y, Ye X et al (2015) Healthcare associated infections of methicillin-resistant Staphylococcus aureus: a case-control-control study. PLoS ONE 10:1–9Google Scholar
  400. Yaseen M, Ahmed W, Shahbaz M (2013) Role of foliar feeding of micronutrients in yield maximization of cotton in Punjab. Turkish J Agric For 37:420–426Google Scholar
  401. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34(7):955–963CrossRefGoogle Scholar
  402. Yu B, Lydiate DJ, Young LW, Schafer UA, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17(4):573–585CrossRefGoogle Scholar
  403. Yuan B, Shao M, de Gouw J, Parrish D, Lu SH, Wang M, Zeng LM, Zhang Q, Song Y, Zhang JB, Hu M (2012) Volatile organic compounds (VOCs) in urban air: how chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J Geophys Res 117:24302Google Scholar
  404. Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294CrossRefGoogle Scholar
  405. Zahn SH, Ward MH (1998) Pesticides and childhood cancer. Environ Health Perspect 106:893–908Google Scholar
  406. Zanden J (1991) The first green revolution: the growth of production and productivity in European agriculture 1870–1914. Econ Hist Rev 44(2):215–239CrossRefGoogle Scholar
  407. Zhang C, Kong F (2014) Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Appl Soil Ecol 82:18–25CrossRefGoogle Scholar
  408. Zhao K, Penttinen P, Zhang X, Ao X, Liu M, Yu X et al (2014) Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol Res 169:76–82CrossRefGoogle Scholar
  409. Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381–1390CrossRefGoogle Scholar
  410. Zhou B, Wang C, Zhao Q, Wang Y, Huo M, Wang J et al (2016) Prevalence and dissemination of antibiotic resistance genes and coselection of heavy metals in Chinese dairy farms. J Hazard Mater 320:10–17CrossRefGoogle Scholar
  411. Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from daqiao saltern on the coast of yellow sea of China. J Evid Based Complementary Altern Med, Article ID 615032, 6 pages. Scholar
  412. Zhu RF, Tang FL, Liu JL, Liu FQ, Deng XY, Chen JS (2016) Co-inoculation of arbuscular mycorrhizae and nitrogen fixing bacteria enhance alfalfa yield under saline conditions. Pak J Bot 48(2):763–769CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Naveen Kumar Arora
    • 1
  • Tahmish Fatima
    • 2
  • Isha Mishra
    • 2
  • Sushma Verma
    • 2
  1. 1.Department of Environmental Science, School of Environmental ScienceBabasaheb Bhimrao Ambedkar UniversityLucknowIndia
  2. 2.Department of Environmental Microbiology, School of Environmental ScienceBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations