Advertisement

Time-Domain Features of Energy Dissipation of Coal Rock at Failure

  • Dazhao Song
  • Xueqiu He
  • Enyuan Wang
  • Zhenlei Li
  • Jie Liu
Chapter

Abstract

Laboratory research on the energy conversion of small-scale loaded coal rocks removes the effects of geological occurrence environment and mining factors on them and greatly simplifies research elements and, only from their own properties, examines their development and change laws under artificial loading so as to provide the guide for future production on mining sites. Therefore, this chapter is based on the analysis of the relationship between EM energy and dissipated energy of coal rocks during their failure process, experimentally studies the relationship of the coal rocks subject to uniaxial compression loading, and further explores the time-domain characteristics of energy dissipation of this process, as well as the main influencing factors.

References

  1. 1.
    Абдуллабеков К Н. Electromagnetic Phenomena in the Earth’s Crust[M]. Beijing: Academic Books Press, 1990.Google Scholar
  2. 2.
    Воробъев АА, Самохвалов МАидр. Аномалъные иэ-менения интенсивности естественного импулъсного эле-ктромагнитного поля в раионе Ташкента перед эемлетрясе-нием[J]. Уэб. Геол.журн., 1976, 2: 9–11.Google Scholar
  3. 3.
    Chen Z Y, Du X Q, Tao R Q, etc. Electromagnetic Radiation and Earthquake[M]. Beijing: Seismological Press, 1998:1–10.Google Scholar
  4. 4.
    Science and Technology Monitoring Division of China Earthquake Administration. Pre-earthquake Electromagnetic Wave Observation and Experimental Research Collection[M]. Beijing: Seismological Press, 1989.Google Scholar
  5. 5.
    Mao T E. Research progress on electromagnetic wave observation before earthquake in China[J]. Pre-earthquake Electromagnetic Wave Observation and Experimental Research Collection, 1989: 1–4.Google Scholar
  6. 6.
    Peng J H, Hu J J, Chang Y W. Observation and mechanism of electromagnetic field abnormality before earthquake[J]. Pre-earthquake Electromagnetic Wave Observation and Experimental Research Collection,, 1989: 100–104.Google Scholar
  7. 7.
    Volarovich M H, Parkhomenko E. Piezoelectric effect of rock[J], АН СССР, 1955, 2: 215–222.Google Scholar
  8. 8.
    Nistan U. Electromagnetic emission accompanying fracture of quartz-bearing rocks[J]. Geophysics Research Letters,1977, 4: 333–336.CrossRefGoogle Scholar
  9. 9.
    Xu W M, Tong W S, Wu P Z. Experimental study of electromagnetic emission during rock fracture[J]. Chinese Journal of Geophysics, 1985, 28(2): 181–189.Google Scholar
  10. 10.
    V. I. Frid. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal of Applied Geophysics, 1978, 38(2): 97–104.CrossRefGoogle Scholar
  11. 11.
    Шевцов ГИ и Мигунов НИ и др Электризация по-левых штапов при дефрмации и разрушении[J]. ДАН СССР, 1975, 225(2): 313–315.Google Scholar
  12. 12.
    Li J Z, Cao M, Mao P S, etc. An experimental study on rock compressing and emission of electromagnetic waves before earthquake[J]. Journal of Beijing University of Technology, 1982, 8(4): 47–53.Google Scholar
  13. 13.
    Гохберг МБ, Гуфельд ИЛ и др. Электромагнитные эффекты прн разрушении земли коры[J]. Физика Земли.1985, 1: 71–87.Google Scholar
  14. 14.
    Ogawa T, Oike K. Electromagnetic radiation from rocks[J]. Journal of Geophysics Research, 1985, 90(D4): 6245~6249CrossRefGoogle Scholar
  15. 15.
    Brady B T, Rowell G A. Laboratory investigation of the electrodynamics of rock fracture[J]. Nature, 1986, 321, 488–492.CrossRefGoogle Scholar
  16. 16.
    Cress G O, Brady B T, Rowell G A. Sources of electromagnetic radiation from fracture of rock samples in the laboratory[J]. Geophysical Research Letters, 1987, 14(4): 331–334.CrossRefGoogle Scholar
  17. 17.
    Yamada I, Masuda K, Mizutani H. Electromagnetic and acoustic emission associated with rock fracture[J]. Physics of the Earth and Planetary Interiors, 1989, 57(1): 157–168.CrossRefGoogle Scholar
  18. 18.
    Qian S Q, Zhang Y Q, Cao H Q. Electromagnetic Radiation Accompanying Rock Rupture During Blasting of Granite Cave[M]. Chinese Journal of Geophysics, 1983, 26(S): 1–7.Google Scholar
  19. 19.
    Qian S Q, Zhang Y Q, Cao H X, etc. Electromagnetic radiation generated by the rock rupture during an underground explosion[J]. Earthquake Science, 1986, 8(3): 301–308.Google Scholar
  20. 20.
    Xu W M, Tong W S, Wang Z C. Luminescent phenomena of rock samples during their rupture process under uniaxial compression[J]. Earthquake, 1984(1): 8–10.Google Scholar
  21. 21.
    Sun Z J, Wang L H, Gao H. Electromagnetic emission and light radiation during fracture of rock samples[J]. Chinese Journal of Geophysics, 1986, 29(5): 491–495.Google Scholar
  22. 22.
    Guo Z Q, Zhou D Z, Shi X J, etc. The effects of light and acoustic emission during rock fracture[J]. Chinese Journal of Geophysics, 1988, 31(1): 37–41.Google Scholar
  23. 23.
    Guo Z Q, Zhou D Z, Shi X J, etc. Electron emission during rock fracture[J]. Chinese Journal of Geophysics, 1988, 31(5): 566–571.Google Scholar
  24. 24.
    Guo Z Q, Guo Z Q, Qian S Q, etc. Electron-acoustic effect in rock fracturing[J]. Chinese Journal of Geophysics, 1999, 42(1): 74–83.Google Scholar
  25. 25.
    Guo Z Q, You J H, Li G, etc. The model of compressed atoms and electron emission of rock fracture[J]. Chinese Journal of Geophysics, 1989, 32(2): 173–177.Google Scholar
  26. 26.
    Guo Z Q. Experimental Study on Electromagnetic Radiation in Rock Fracture[D]. Beijing: Chinese Academy of Sciences and Graduate School of China University of Mining and Technology, 1997.Google Scholar
  27. 27.
    Zhu Y Q, Luo X Q, Guo Z Q, etc. A study of mechanism on electromagnetic emission associated with rock fracture[J]. Chinese Journal of Geophysics, 1991, 34(5): 595–601.Google Scholar
  28. 28.
    Thiel D V. Electromagnetic emission (EME) from ice crack formation: Preliminary observations[J]. Cold Regions Science and Technology, 1992, 21(1): 49–60.CrossRefGoogle Scholar
  29. 29.
    O’Keefe S G, Thiel D V. Conductivity effects on electromagnetic emissions (EME) from ice fracture[J]. Journal of Electrostatics, 1996, 36(3): 225–234.CrossRefGoogle Scholar
  30. 30.
    Fujinawa Y, Kumagai T, Takahashi K. A study of anomalous underground electric field variations associated with a volcanic eruption[J]. Geophysical Research Letters, 1992, 19(1): 9–12.CrossRefGoogle Scholar
  31. 31.
    Yoshino T. Low-frequency seismogenic electromagnetic emissions as precursors to earthquakes and volcanic eruptions in Japan[J]. Journal of Scientific Exploration, 1991, 5: 121–144.Google Scholar
  32. 32.
    Johnston M J S. Review of electric and magnetic fields accompanying seismic and volcanic activity[J]. Surveys in Geophysics, 1997, 18(5): 441–476.CrossRefGoogle Scholar
  33. 33.
    Mueller R J, Johnston M J S. Review of magnetic field monitoring near active faults and volcanic calderas in California: 1974–1995[J]. Physics of the Earth and Planetary Interiors, 1998, 105(3): 131–144.CrossRefGoogle Scholar
  34. 34.
    Johnston M, Uyeda S, Park S. Electromagnetic methods for monitoring earthquakes and volcanic eruptions[J]. IUG99 Abstract, 1999: 19–30.Google Scholar
  35. 35.
    Н.Г.Хатиашвили. Electromagnetic effects in the formation of cracks in alkali-halogenated crystals and rocks[C]. Beijing: Seismological Press, 1989:149–158.Google Scholar
  36. 36.
    He X Q, Liu M J. Electromagnetic Dynamics of Gas-bearing Coal Rock[M]. Xuzhou: China University of Mining and Technology Press, 1995.Google Scholar
  37. 37.
    Wang E Y, He X Q, Dou L M, etc. Electromagnetic radiation characteristics of rocks during excavation in coal mine and their application[J]. Chinese Journal of Geophysics, 2005, 48(1): 216–221.CrossRefGoogle Scholar
  38. 38.
    Wang E Y, He X Q, Liu Z T, etc. Electromagnetic radiation detector of coal or rock dynamic disasters and its application[J]. Journal of China Coal Society. 2003, 28(4): 366–369.Google Scholar
  39. 39.
    Wang E Y, He X Q, Nie B S, Liu Z T. Principle of predicting coal and gas outburst using electromagnetic emission[J]. Journal of China University of Mining & Technology, 2000, 29(3): 225–229.Google Scholar
  40. 40.
    Wang E Y, He X Q. An experimental study of the electromagnetic emission during the deformation and fracture of coal or rock[J]. Chinese Journal of Geophysics, 2000, 43(1): 131–137.Google Scholar
  41. 41.
    Wang E Y, He X Q, Liu Z T, etc. Study on electromagnetic emission characteristics of loaded rock and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(10): 1473–1477.Google Scholar
  42. 42.
    Wang E Y, He X Q, Liu Z T, etc. Frequency spectrum characteristics of electromagnetic emission of loaded coal[J]. Journal of China University of Mining & Technology, 2003, 32(5): 487–490.Google Scholar
  43. 43.
    Wang E Y Jia H L, Li Z H, etc. Monitoring and forecasting roof stability of goaf by electromagnetic emission[J]. Journal of China Coal Society, 2006, 31(1): 16–19.Google Scholar
  44. 44.
    Wang E Y, He X Q, Liu Z T. R/S statistic rule of EMR during deformation and fracture of coal and rock[J]. Journal of China University of Mining & Technology, 1998, 27(4): 349–351.Google Scholar
  45. 45.
    Jin Y Y, Meng X G. Quantitative analysis of geological time series[J]. Beijing: China University of Geosciences Press, 1992: 120–140.Google Scholar
  46. 46.
    Li Z H, Wang E Y, He X Q, etc. Study of distribution of electromagnetic radiation of coal or rock before drivage face[J]. Journal of China University of Mining & Technology, 2007, 02: 142–147.Google Scholar
  47. 47.
    Wang J. Analysis of Nonlinear Characteristics of Electromagnetic Radiation Signals in Coal and Rock Dynamic Disasters[D]. Xuzhou: China University of Mining and Technology, 2006.Google Scholar
  48. 48.
    Lv J H, Lu J A. Chaotic Time Series Analysis and Its Application[M]. Wuhan: Wuhan University Press, 2000.Google Scholar
  49. 49.
    Zhu L R, Chen Y. Earthquake Fractal[M]. Beijing: Seismological Press, 2000.Google Scholar
  50. 50.
    Eftaxias K, Frangos P, Kapiris P, etc. Review and a model of pre-seismic electromagnetic emissions in terms of fractal electrodynamics[J]. Fractals, 2004, 12(02): 243–273.CrossRefGoogle Scholar
  51. 51.
    Hong S Z, Hong S M. A new method to determine scaling range of fractals self-similar ratio algorithm[J]. Exploration of Nature, 1993, 40(12): 53–56.Google Scholar
  52. 52.
    Wang Y B. Study on Nonlinear Characteristics and Outburst Prediction of Gas Emission in Coal Roadway Face[M]. Xuzhou: China University of Mining and Technology, 2004.Google Scholar
  53. 53.
    Zhang J Z. Fractal[M]. Beijing: Tsinghua University Press, 1995.Google Scholar
  54. 54.
    Mandelbrot B B. The Fractal Geometry of Nature[M]. Macmillan, 1983.Google Scholar
  55. 55.
    Feder J. Fractals[M]. New York: Plenum Press, 1988.CrossRefGoogle Scholar
  56. 56.
    Eftaxias K, Frangos P, Kapiris P, etc. Review and a model of pre-seismic electromagnetic emissions in terms of fractal electrodynamics[J]. Fractals, 2004, 12(02): 243–273.CrossRefGoogle Scholar
  57. 57.
    Wang Y, Zhu Y S, Thakor N V, etc. A short-time multifractal approach for arrhythmia detection based on fuzzy neural network[J]. Biomedical Engineering, IEEE Transactions on, 2001, 48(9): 989–995.CrossRefGoogle Scholar
  58. 58.
    Masugi M, Takuma T. Multi-fractal analysis of IP-network traffic for assessing time variations in scaling properties[J]. Physica D: Nonlinear Phenomena, 2007, 225(2): 119–126.CrossRefGoogle Scholar
  59. 59.
    Gang X, Xiaoniu Y, Huichang Z. The short-time multifractal formalism: definition and implement[C]//Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques. Springer Berlin Heidelberg, 2008: 541–548.Google Scholar
  60. 60.
    Gang X, Xiaoniu Y, Huichang Z. The short-time multifractal spectral analysis based on the singularity exponents[C]//Microwave and Millimeter Wave Technology, 2007. ICMMT’07. International Conference on. IEEE, 2007: 1–4.Google Scholar
  61. 61.
    Ling F H. Catastrophe Theory and Its Application[M]. Shanghai: Profile of Shanghai Jiao Tong University Press, 1987.Google Scholar
  62. 62.
    Yi C X. Nonlinear Science and Its Application in Geosciences[M]. Beijing: China Meteorological Press, 1995.Google Scholar
  63. 63.
    Wang L G, Song Y. Nonlinear Character and Forecasting of Water-inrush from Coal Floor[M]. Beijing: China Coal Industry Publishing House, 2001.Google Scholar
  64. 64.
    Tang C A. Mutation During Rock Rupture[M]. Beijing: China Coal Industry Publishing House, 1993.Google Scholar
  65. 65.
    Pan Y S, Zhang M T, Li G Z. The study of chamber rockburst by the cusp model of catastrophe theory[J]. Applied Mathematics and Mechanics, 1994, 15(10): 893–900.Google Scholar
  66. 66.
    Pan Y S, Wang L G, Zhang M T, etc. The theoretical and testing study of fault rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(6): 642–649.Google Scholar
  67. 67.
    Xu Z H, Xu X H, Tang C A. Theoretical analysis of cusp catastrophe in coal pillar rock burst under hard roof[J]. Journal of China Coal Society, 1995, 20(5): 485–491.Google Scholar
  68. 68.
    Xu Z H, Xu X H, Chen Z H. Cusp catastrophe and time effection of rock burst on an isolated coal pillar[J]. West-china Exploration Engineering, 1996, 8(4): 1–5.Google Scholar
  69. 69.
    Xu Z H, Xu X H. Cusp catastrophe of occurrence conditions and hysteresis of rockbursts in pillar workings[J]. Transactions of Nonferrous Metals Society of China, 1997, 7(2): 17–23.Google Scholar
  70. 70.
    Fen H L, Xu X H, Tang C A. Research on theory of catastrophe of rock burst in underground chamber[J]. Journal of China Coal Society, 1995, 20(1): 29–33.Google Scholar
  71. 71.
    Qin S Q, He H F. Catastrophe theoretical analysis of the instability of narrow coal pillars[J]. Hydrogeology & Engineering Geology, 1995, (5): 17–20.Google Scholar
  72. 72.
    Wang K, Yu Q X. Study on catastrophe theory of the starting process of coal and gas outburst[J]. China Safety Science Journal, 1998, 8(6): 10–15.Google Scholar
  73. 73.
    Xiao F K, Dong J J, Zhou L G. Catastrophe analysis of coal and gas outburst[J]. Journal of Heilongjiang Institute of Science and Technology, 2002, 12(2): 11–13.Google Scholar
  74. 74.
    Dan X Y, Xu D Q, Zhang Y B. Prediction of the possibility of rockburst occurrence in roadway by using catastrophe theory[J]. Mine Surveying, 2000, 4: 36–37.Google Scholar
  75. 75.
    Cheng X J, Cai M F, Li C H. A grey catastrophe model and its application in acoustic emission monitoring[J]. China Mining Magazine, 1997, 6(2): 37–39.Google Scholar
  76. 76.
    Fu H L, Sang Y F. Application of acoustic emission technology to predict roof caving[J]. Journal of Rock Mechanics and Engineering, 1996, 15(2): 109–114.Google Scholar
  77. 77.
    Ji H G, Jia L H, Li Z D. Grey cusp catastrophe model of AE parameters and its application in fracture analysis of concrete material[J]. Acta Acustica, 1996, 21(6): 935–940.Google Scholar
  78. 78.
    Wei J P. Study on Forecasting Mechanism and Its Applications of Electromagnetic Emission for Mine Coal or Rock Dynamic Disaster[D]. Xuzhou: China University of Mining and technology, 2004.Google Scholar
  79. 79.
    Deng J L. Grey System Theory Tutorial[M]. Wuhan: Huazhong University of Science and Technology Press, 1991.Google Scholar
  80. 80.
    Wang E Y, He X Q, Li Z H, etc. Coal and Rock Electromagnetic Radiation Technology and Its Application[M]. Beijing: Science Press, 2009.Google Scholar
  81. 81.
    He X Q, Liu M J. Electromagnetic Dynamics of Gas-bearing Coal Rock[M]. Xuzhou: China University of Mining and Technology Press, 1995.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Dazhao Song
    • 1
  • Xueqiu He
    • 1
  • Enyuan Wang
    • 2
  • Zhenlei Li
    • 1
  • Jie Liu
    • 3
  1. 1.School of Civil and Resources EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Safety EngineeringChina University of Mining and TechnologyXuzhouChina
  3. 3.Department of Safety EngineeringQingdao University of TechnologyQingdaoChina

Personalised recommendations