Advertisement

Energy Efficiency of Cellular Networks

  • Xiaohu Ge
  • Wuxiong Zhang
Chapter

Abstract

Ultra-dense deployment of small cell base stations (BSs), relay nodes, and distributed antennas is considered as a de facto solution for realizing the significant performance improvements needed to accommodate the overwhelming future mobile traffic demand (Ge et al. in IEEE Wirel Commun 23(1):72–79 (2016), [1]). Traditional network expansion techniques like cell splitting are often utilized by telecom operators to achieve the expected throughput, which is less efficient and proven not to keep up with the pace of traffic proliferation in the near future. Heterogeneous networks (HetNets) then become a promising and attractive network architecture to alleviate the problem. “HetNets” is a broad term that refers to the coexistence of different networks (e.g., traditional macrocells and small cell networks like femtocells and picocells), each of them constituting a network tier.

References

  1. 1.
    Ge, X., S. Tu, G. Mao, C.X. Wang, and T. Han. 2016. 5G ultra-dense cellular networks. IEEE Wireless Communications 23 (1): 72–79.CrossRefGoogle Scholar
  2. 2.
    Lopez-Perez, D., M. Ding, H. Claussen, and A.H. Jafari. 2015. Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys Tutorials 17 (4): 2078–2101.CrossRefGoogle Scholar
  3. 3.
    Andrews, J.G., F. Baccelli, and R.K. Ganti. 2011. A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications 59 (11): 3122–3134.CrossRefGoogle Scholar
  4. 4.
    Liu, D., L. Wang, Y. Chen, M. Elkashlan, K.K. Wong, R. Schober, and L. Hanzo. 2016. User association in 5G networks: A survey and an outlook. IEEE Communications Surveys & Tutorials 18 (2): 1018–1044.CrossRefGoogle Scholar
  5. 5.
    Bethanabhotla, D., O.Y. Bursalioglu, H.C. Papadopoulos, and G. Caire. 2016. Optimal user-cell association for massive MIMO wireless networks. IEEE Transactions on Wireless Communications 15 (3): 1835–1850.CrossRefGoogle Scholar
  6. 6.
    Wang, N., E. Hossain, and V.K. Bhargava. 2016. Joint downlink cell association and bandwidth allocation for wireless backhauling in two-tier HetNets with large-scale antenna arrays. IEEE Transactions on Wireless Communications 15 (5): 3251–3268.CrossRefGoogle Scholar
  7. 7.
    Yang, C., Y. Yao, Z. Chen, and B. Xia. 2016. Analysis on cache-enabled wireless heterogeneous networks. IEEE Transactions on Wireless Communications 15 (1): 131–145.CrossRefGoogle Scholar
  8. 8.
    Wang, H.M., T.X. Zheng, J. Yuan, D. Towsley, and M.H. Lee. 2016. Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications 64 (3): 1204–1219.CrossRefGoogle Scholar
  9. 9.
    Humar, I., X. Ge, L. Xiang, M. Jo, M. Chen, and J. Zhang. 2011. Rethinking energy efficiency models of cellular networks with embodied energy. IEEE Network 25 (2): 40–49.CrossRefGoogle Scholar
  10. 10.
    Shojaeifard, A., K.K. Wong, K. Hamdi, E. Alsusa, D.K.C. So, and J. Tang. 2016. Stochastic geometric analysis of energy-efficient dense cellular networks. IEEE Access 5: 455–469.CrossRefGoogle Scholar
  11. 11.
    Niu, Y., C. Gao, Y. Li, L. Su, D. Jin, Y. Zhu, and D.O. Wu. 2017. Energy-efficient scheduling for mmWave backhauling of small cells in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology 66 (3): 2674–2687.CrossRefGoogle Scholar
  12. 12.
    Shahid, A., K.S. Kim, E.D. Poorter, and I. Moerman. 2017. Self-organized energy-efficient cross-layer optimization for device to device communication in heterogeneous cellular networks. IEEE Access 5: 1117–1128.CrossRefGoogle Scholar
  13. 13.
    Wu, J., B. Cheng, M. Wang, and J. Chen. 2017. Energy-efficient bandwidth aggregation for delay-constrained video over heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications 35 (1): 30–49.Google Scholar
  14. 14.
    Yang, K., S. Martin, D. Quadri, J. Wu, and G. Feng. 2017. Energy-efficient downlink resource allocation in heterogeneous OFDMA networks. IEEE Transactions on Vehicular Technology 66 (6): 5086–5098.CrossRefGoogle Scholar
  15. 15.
    Zhang, K., Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan, S. Maharjan, and Y. Zhang. 2016. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks. IEEE Access 4: 5896–5907.CrossRefGoogle Scholar
  16. 16.
    Ding, M., P. Wang, D. Lopez-Perez, G. Mao, and Z. Lin. 2016. Performance impact of LoS and NLoS transmissions in dense cellular networks. IEEE Transactions on Wireless Communications 15 (3): 2365–2380.CrossRefGoogle Scholar
  17. 17.
    Renzo, M.D. 2015. Stochastic geometry modeling and analysis of multitier millimeter wave cellular networks. IEEE Transactions on Wireless Communications 14 (9): 5038–5057.CrossRefGoogle Scholar
  18. 18.
    Singh, S., M.N. Kulkarni, A. Ghosh, and J.G. Andrews. 2015. Tractable model for rate in self-backhauled millimeter wave cellular networks. IEEE Journal on Selected Areas in Communications 33 (10): 2196–2211.CrossRefGoogle Scholar
  19. 19.
    Bai, T., and R.W. Heath. 2015. Coverage and rate analysis for millimeter-wave cellular networks. IEEE Transactions on Wireless Communications 14 (2): 1100–1114.CrossRefGoogle Scholar
  20. 20.
    Haenggi, M. 2012. Stochastic geometry for wireless networks. Cambridge University Press.Google Scholar
  21. 21.
    Blaunstein, N., and M. Levin. 1998. Parametric model of UHF/L-wave propagation in city with randomly distributed buildings. In Proceedings of IEEE Antennas and Propagation Society International Symposium, vol. 3, 1684–1687.Google Scholar
  22. 22.
    Bai, T., R. Vaze, and R.W. Heath. 2014. Analysis of blockage effects on urban cellular networks. IEEE Transactions on Wireless Communications 13 (9): 5070–5083.CrossRefGoogle Scholar
  23. 23.
    Liu, J., M. Sheng, L. Liu, and J. Li. 2017. Effect of densification on cellular network performance with bounded path loss model. IEEE Communications Letters 21 (2): 346–349.CrossRefGoogle Scholar
  24. 24.
    AlAmmouri, A., J.G. Andrews, and F. Baccelli. 2017. SINR and throughput of dense cellular networks with stretched exponential path loss. Available at: https://arxiv.org/abs/1703.08246.
  25. 25.
    Ding, M., D. Lopez-Perez, G. Mao, and Z. Lin. 2017. Performance impact of idle mode capability on dense small cell networks. Available at: https://arxiv.org/abs/1609.07710v4.
  26. 26.
    Yang, B., G. Mao, X. Ge, and T. Han. 2015. A new cell association scheme in heterogeneous networks. In Proceedings of IEEE ICC 2015, June 2015, 5627–5632.Google Scholar
  27. 27.
    Chiu, S.N., D. Stoyan, W.S. Kendall, and J. Mecke. 2013. Stochastic geometry and its applications. Wiley.Google Scholar
  28. 28.
    Wei, B., and L. Ben. 2014. Structured spectrum allocation and user association in heterogeneous cellular networks. In Proceedings of IEEE INFOCOM 2014, 1069–1077.Google Scholar
  29. 29.
    Peng, J., P. Hong, and K. Xue. 2015. Energy-aware cellular deployment strategy under coverage performance constraints. IEEE Transactions on Wireless Communications 14 (1): 69–80.CrossRefGoogle Scholar
  30. 30.
    ElSawy, H., A. Sultan-Salem, M.S. Alouini, and M.Z. Win. 2017. Modeling and analysis of cellular networks using stochastic geometry: A tutorial. IEEE Communications Surveys & Tutorials 19 (1): 167–203.CrossRefGoogle Scholar
  31. 31.
    Yang, B., G. Mao, M. Ding, X. Ge, and X. Tao. 2018. Dense small cell networks: From noise-limited to dense interference-limited. IEEE Transactions on Vehicular Technology 67 (5): 4262–4277.CrossRefGoogle Scholar
  32. 32.
    Ge, X., B. Yang, J. Ye, G. Mao, C.X. Wang, and T. Han. 2015. Spatial spectrum and energy efficiency of random cellular networks. IEEE Transactions on Communications 63 (3): 1019–1030.CrossRefGoogle Scholar
  33. 33.
    Cao, D., S. Zhou, and Z. Niu. 2013. Optimal combination of base station densities for energy-efficient two-tier heterogeneous cellular networks. IEEE Transactions on Wireless Communications 12 (9): 4350–4362.CrossRefGoogle Scholar
  34. 34.
    Ge, X., B. Yang, J. Ye, G. Mao, and Q. Li. 2014. Performance analysis of Poisson-Voronoi tessellated random cellular networks using markov chains. In Proceedings of IEEE Globecom 2014, 4635–4640.Google Scholar
  35. 35.
    Brent, R.P. 1973. Algorithms for minimization without derivatives. Englewood Cliffs, NJ, USA: Prentice-Hall.zbMATHGoogle Scholar
  36. 36.
    Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. 2007. Numerical recipes: The art of scientific computing, 3rd ed. Cambridge, U.K.: Cambridge University Press.zbMATHGoogle Scholar
  37. 37.
    GPP. 2012. Tr 36.828 (v11.0.0): Further enhancements to LTE time division duplex (TDD) for downlink-uplink (DL-UL) interference management and traffic adaptation.Google Scholar
  38. 38.
    Yang, B., G. Mao, X. Ge, H.H. Chen, T. Han, and X. Zhang. 2016. Coverage analysis of heterogeneous cellular networks in urban areas. In Proceedings of IEEE ICC, May 2016, 1–6.Google Scholar
  39. 39.
    Ge, X., L. Pan, Q. Li, G. Mao, and S. Tu. 2017. Multipath cooperative communications networks for augmented and virtual reality transmission. IEEE Transactions on Multimedia 19 (10): 2345–2358.CrossRefGoogle Scholar
  40. 40.
    Ge, X., J. Ye, Y. Yang, and Q. Li. 2016. User mobility evaluation for 5G small cell networks based on individual mobility model. IEEE Journal on Selected Areas in Communications 34 (3): 528–541.CrossRefGoogle Scholar
  41. 41.
    Ge, X., J. Martínez-Bauset, V. Casares-Giner, B. Yang, J. Ye, and M. Chen. 2013. Modelling and performance analysis of different access schemes in two-tier wireless networks. In Proceedings of IEEE Globecom 2013, 4402–4407.Google Scholar
  42. 42.
    Dhillon, H.S., R.K. Ganti, F. Baccelli, and J.G. Andrews. 2012. Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 30 (3): 550–560.CrossRefGoogle Scholar
  43. 43.
    Hasan, Z., H. Boostanimehr, and V.K. Bhargava. 2011. Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials 13 (4): 524–540.CrossRefGoogle Scholar
  44. 44.
    Fehske, A., G. Fettweis, J. Malmodin, and G. Biczok. 2011. The global footprint of mobile communications: The ecological and economic perspective. IEEE Communications Magazine 49 (8): 55–62.CrossRefGoogle Scholar
  45. 45.
    Ge, X., X. Huang, Y. Wang, M. Chen, Q. Li, T. Han, and C.-X. Wang. 2014. Energy efficiency optimization for MIMO-OFDM mobile multimedia communication systems with QoS constraints. IEEE Transactions on Vehicular Technology 63 (5): 2127–2138.CrossRefGoogle Scholar
  46. 46.
    Ku, I., C.-X. Wang, and J.S. Thompson. 2013. Spectral-energy efficiency tradeoff in relay-aided cellular networks. IEEE Transactions on Wireless Communications 12 (10): 4970–4982.CrossRefGoogle Scholar
  47. 47.
    Hong, X., Y. Jie, C.-X. Wang, J. Shi, and X. Ge. 2013. Energy-spectral efficiency trade-off in virtual MIMO cellular systems. IEEE Journal on Selected Areas in Communications 31 (10): 2128–2140.CrossRefGoogle Scholar
  48. 48.
    Gilbert, E.N. 1960. Capacity of a burst-noise channel. Bell System Technical Journal 39 (9): 1253–1265.MathSciNetCrossRefGoogle Scholar
  49. 49.
    Elliott, E.O. 1963. Estimates of error rates for codes on burst-noise channels. Bell System Technical Journal 42 (9): 1977–1997.CrossRefGoogle Scholar
  50. 50.
    Jayaparvathy, R., S. Anand, and S. Srikanth. 2005. Performance analysis of dynamic packet assignment in cellular systems with OFDMA. IEEE Proceedings 152 (1): 45–52.CrossRefGoogle Scholar
  51. 51.
    Anand, S., A. Sridharan, and K.N. Sivarajan. 2003. Performance analysis of channelized cellular systems with dynamic channel allocation. IEEE Transactions on Vehicular Technology 52 (4): 847–859.CrossRefGoogle Scholar
  52. 52.
    Sadeghi, P., R.A. Kennedy, P.B. Rapajic, and R. Shams. 2008. Finite state Markov modeling of fading channels—A survey of principle sand applications. IEEE Signal Processing Magazine 25 (5): 57–80.CrossRefGoogle Scholar
  53. 53.
    Park, J.M., and G.U. Hwang. 2009. Mathematical modeling of Rayleigh fading channels based on finite state Markov chains. IEEE Communications Letters 13 (10): 764–766.CrossRefGoogle Scholar
  54. 54.
    Bhattacharya, S., B.R. Qazi, and J.M.H. Elmirghani. 2010. A 3-D Markov chain model for a multi-dimensional indoor environment. In Proceedings of IEEE GLOBECOM 2010.Google Scholar
  55. 55.
    Ozmen, M., and M.C. Gursoy. 2014. Energy efficiency of fixed-rate transmissions with Markov arrivals under queueing constraints. IEEE Communications Letters 18 (4): 608–611.CrossRefGoogle Scholar
  56. 56.
    Ge, X.H., T. Han, Y. Zhang, G.Q. Mao, C.-X. Wang, J. Zhang, B. Yang, and S. Pan. 2014. Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology 63 (3): 1306–1319.CrossRefGoogle Scholar
  57. 57.
    Lee, W.C.Y. 1986. Elements of cellular mobile radio systems. IEEE Transactions on Vehicular Technology 35 (2): 48–56.CrossRefGoogle Scholar
  58. 58.
    Baccelli, F., M. Klein, M. Lebourges, and S. Zuyev. 1997. Stochastic geometry and architecture of communication networks. Telecommunication Systems.Google Scholar
  59. 59.
    Guo, A., and M. Haenggi. 2013. Spatial stochastic models and metrics for the structure of base stations in cellular networks. IEEE Transactions on Wireless Communications 12 (11): 5800–5812.CrossRefGoogle Scholar
  60. 60.
    Win, M., P. Pinto, and L. Shepp. 2009. A mathematical theory of network interference and its applications. Proceedings of the IEEE 97 (2): 205–230.CrossRefGoogle Scholar
  61. 61.
    Mukherjee, S. 2012. Distribution of downlink SINR in heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 30 (3): 575–585.CrossRefGoogle Scholar
  62. 62.
    Jing, T., X. Chen, Y. Huo, and X. Cheng. 2012. Achievable transmission capacity of cognitive mesh networks with different media access control. In Proceedings of IEEE INFOCOM, 1764–1772.Google Scholar
  63. 63.
    Soh, Y., T. Quek, M. Kountouris, and H. Shin. 2013. Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications 31 (5): 840–850.CrossRefGoogle Scholar
  64. 64.
    Deng, N., S.H. Zhang, W.Y. Zhou, and J.K. Zhu. 2012. A stochastic geometry approach to energy efficiency in relay-assisted cellular networks. In Proceedings of IEEE GLOBECOM 2012.Google Scholar
  65. 65.
    Rappaport, T.S. 1996. Wireless communications: Principles and practice. Englewood Cliffs, NJ: Prentice-Hall.zbMATHGoogle Scholar
  66. 66.
    Qualcomm. 2010. LTE Advance: Heterogeneous networks. White Section.Google Scholar
  67. 67.
    Novlan, T.D., R.K. Ganti, A. Ghosh, and J.G. Andrews. 2011. Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications 10 (12): 4294–4305.CrossRefGoogle Scholar
  68. 68.
    Dhillon, H.S., R.K. Ganti, F. Baccelli, and J.G. Andrews. 2011. Coverage and ergodic rate in K-tier downlink heterogeneous cellular networks. In Proceedings of 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, Sept 2011.Google Scholar
  69. 69.
    Ali, T., and M. Saquib. 2011. Performance evaluation of WLAN/cellular media access for mobile voice users under random mobility models. IEEE Transactions on Wireless Communications 10 (10): 3241–3255.CrossRefGoogle Scholar
  70. 70.
    Jo, H.S., Y.J. Sang, P. Xia, and J.G. Andrews. 2012. Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications 11 (10): 3484–3495.CrossRefGoogle Scholar
  71. 71.
    de Lima, C.H.M., M. Bennis, and M. Latva-Aho. 2013. Statistical analysis of self-organizing networks with biased cell association and interference avoidance. IEEE Transactions on Vehicular Technology 62 (5): 1950–1961.CrossRefGoogle Scholar
  72. 72.
    Fooladivanda, D., and C. Rosenberg. 2013. Joint resource allocation and user association for heterogeneous wireless cellular networks. IEEE Transactions on Wireless Communications 12 (1): 248–257.CrossRefGoogle Scholar
  73. 73.
    Singh, S., H.S. Dhillon, and J.G. Andrews. 2013. Offloading in heterogeneous networks: Modeling, analysis, and design insights. IEEE Transactions on Wireless Communications 12 (5): 2484–2497.CrossRefGoogle Scholar
  74. 74.
    Xiang, L., X.H. Ge, C.-X. Wang, F.Y. Li, and F. Reichert. 2013. Energye ffciency evaluation of cellular networks based on spatial distributions of traffic load and power consumption. IEEE Transactions on Wireless Communications 12 (3): 961–973.CrossRefGoogle Scholar
  75. 75.
    Stoyan, D., W.S. Kendall, and J. Mecke. 1996. Stochastic geometry and its applications, 2nd ed. Wiley.Google Scholar
  76. 76.
    Kelly, F.P. 1979. Reversibility and stochastic network. Wiley.Google Scholar
  77. 77.
    Sousa, E.S., and J.A. Silvester. 1990. Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE Journal on Selected Areas in Communications 8 (5): 762–771.CrossRefGoogle Scholar
  78. 78.
    Jeffrey, A., and D. Zwillinger. 2007. Table of integrals, series, and products, 7th ed. New York: Academic.Google Scholar
  79. 79.
    Zhang, X., W. Cheng, and H. Zhang. 2015. Full-duplex transmission in PHY and MAC layers for 5G mobile wireless networks. IEEE Wireless Communications 22 (5): 112–121.CrossRefGoogle Scholar
  80. 80.
    Richter, F., A.J. Fehske, and G.P. Fettweis. 2009. Energy efficiency aspects of base station deployment strategies for cellular networks. In Proceedings of IEEE VTC 2009-Fall.Google Scholar
  81. 81.
    Thompson, J., X. Ge, H.-C. Wu, et al. 2014. 5G wireless communication systems: Prospects and challenges. IEEE Communications Magazine 52 (2): 122–130.CrossRefGoogle Scholar
  82. 82.
    Zhang, Z., Z. Ma, M. Xiao, et al. 2016. Two-timeslot two-way full-duplex relaying for 5G wireless communication networks. IEEE Transactions on Wireless Communications 64 (7): 2873–2887.CrossRefGoogle Scholar
  83. 83.
    Li, Q., S. Feng, X. Ge, et al. 2017. On the performance of full-duplex multi-relay channels with DF relays. IEEE Transactions on Vehicular Technology 66 (10): 9550–9554.CrossRefGoogle Scholar
  84. 84.
    Yadav, A., O.A. Dobre, and N. Ansari. 2017. Energy and traffic aware full-duplex communications for 5G Systems. IEEE Access 5: 11278–11290.CrossRefGoogle Scholar
  85. 85.
    Ozel, O., K. Tutuncuoglu, J. Yang, et al. 2011. Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Commun. 29 (8): 1732–1743.CrossRefGoogle Scholar
  86. 86.
    Cheng, W., X. Zhang, and H. Zhang. 2016. Statistical-QoS driven energy-efficiency optimization over green 5G mobile wireless networks. IEEE Journal on Selected Areas in Communications 34 (12): 3092–3107.Google Scholar
  87. 87.
    Duarte, M., C. Dick, and A. Sabharwal. 2012. Experiment-driven characterization of full-duplex wireless systems. IEEE Transactions on Wireless Communications 11 (12): 4296–4307.CrossRefGoogle Scholar
  88. 88.
    Huang, Y., S. Ma, and Y. Wang. 2015. Uplink achievable rate of full-duplex multi-cell massive MIMO systems. In 2015 IEEE International Conference on Communication Workshop (ICCW), London, 1131–1136.Google Scholar
  89. 89.
    Zhang, Z., K. Long, A.V. Vasilakos, et al. 2016. Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE 104 (7): 1369–1409.CrossRefGoogle Scholar
  90. 90.
    Zhang, Z., X. Chai, K. Long, et al. 2015. Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine 53 (5): 128–137.CrossRefGoogle Scholar
  91. 91.
    Sim, M.S., M. Chung, D. Kim, et al. 2017. Nonlinear self-interference cancellation for full-duplex radios: From link-level and system-level performance perspectives. IEEE Communications Magazine 55 (9): 158–167.CrossRefGoogle Scholar
  92. 92.
    Liu, Y., P. Roblin, X. Quan, et al. 2017. A full-duplex transceiver with two-stage analog cancellations for multipath self-interference. IEEE Transactions on Microwave Theory and Techniques 65 (12): 5263–5273.CrossRefGoogle Scholar
  93. 93.
    Li, Y., P. Fan, A. Leukhin, et al. 2017. On the spectral and energy efficiency of full-duplex small-cell wireless systems with massive MIMO. IEEE Transactions on Vehicular Technology 66 (3): 2339–2353.CrossRefGoogle Scholar
  94. 94.
    Nguyen, V.D., T.Q. Duong, H.D. Tuan, et al. 2017. Spectral and energy efficiencies in full-duplex wireless information and power transfer. IEEE Transactions on Communications 65 (5): 2220–2233.CrossRefGoogle Scholar
  95. 95.
    Wen, D., G. Yu, R. Li, et al. 2017. Results on energy- and spectral-efficiency tradeoff in cellular networks with full-duplex enabled base stations. IEEE Transactions on Wireless Communications 16 (3): 1494–1507.CrossRefGoogle Scholar
  96. 96.
    Mao, Y., Y. Luo, J. Zhang, et al. 2015. Energy harvesting small cell networks: Feasibility, deployment, and operation. IEEE Communications Magazine 53 (6): 94–101.CrossRefGoogle Scholar
  97. 97.
    Thuc, T.K., E. Hossain, and H. Tabassum. 2015. Downlink power control in two-tier cellular networks with energy-harvesting small cells as stochastic games. IEEE Transactions on Communications 63 (12): 5267–5282.CrossRefGoogle Scholar
  98. 98.
    Maghsudi, S., and E. Hossain. 2017. Distributed user association in energy harvesting small cell networks: A probabilistic bandit model. IEEE Transactions on Wireless Communications 16 (3): 1549–1563.CrossRefGoogle Scholar
  99. 99.
    Reyhanian, N., B. Maham, V. Shah-Mansouri, et al. 2017. Game-theoretic approaches for energy cooperation in energy harvesting small cell networks. IEEE Transactions on Vehicular Technology 66 (8): 7178–7194.CrossRefGoogle Scholar
  100. 100.
    Chen, L., F.R. Yu, H. Ji, et al. 2016. Green full-duplex self-backhaul and energy harvesting small cell networks with massive MIMO. IEEE Journal on Selected Areas in Communications 34 (12): 3709–3724.CrossRefGoogle Scholar
  101. 101.
    Yu, P.S., J. Lee, T.Q.S. Quek, et al. 2016. Traffic offloading in heterogeneous networks with energy harvesting personal cells-network throughput and energy efficiency. IEEE Transactions on Wireless Communication 15 (2): 1146–1161.CrossRefGoogle Scholar
  102. 102.
    Ge, X., S. Tu, T. Han, et al. 2015. Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models. IET Networks 4 (2): 158–167.CrossRefGoogle Scholar
  103. 103.
    Pitaval, R.A., O. Tirkkonen, R. Wichman, et al. 2015. Full-duplex self-backhauling for small-cell 5G networks. IEEE Wireless Communications 22 (5): 83–89.CrossRefGoogle Scholar
  104. 104.
    Zhang, H., Y. Dong, J. Cheng, et al. 2016. Fronthauling for 5G LTE-U ultra-dense cloud small cell networks. IEEE Wireless Communications 23 (6): 48–53.CrossRefGoogle Scholar
  105. 105.
    Lin, Y.D., H.T. Chien, H.W. Chang, et al. 2017. Transparent RAN sharing of 5G small cells and macrocells. IEEE Wireless Communications 24 (6): 104–111.CrossRefGoogle Scholar
  106. 106.
    Lasry, J.M., and P.-L. Lions. 2007. Mean field games. Japanese Journal of Mathematics 2: 229–260.MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Huang, M., P.E. Caines, and R.P. Malhame. 2007. Large-population cost-coupled LQG problems with nonuniform agents: Individual mass behavior and decentralized ε-Nash equilibria. IEEE Transactions on Automatic Control 52 (9): 1560–1570.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Huang, M., R.P. Malhame, and P.E. Caines. 2006. Large population stochastic dynamic games: Closed-loop Mckean-Vlasov systems and the Nash certainty equivalence principle. Communications in Information & Systems 6: 221–252.MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Tembine, H., R. Tempone, and P. Vilanova. 2012. Mean field games for cognitive radio networks. In Proceedings of American Control Conference, 6388–6393.Google Scholar
  110. 110.
    Meriaux, F., V. Varma, and S. Lasaulce. 2012. Mean field energy games in wireless networks. In Proceedings of 46th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 671–675.Google Scholar
  111. 111.
    Meriaux, F., and S. Lasaulce. 2011. Mean-field games and green power control. In Proceedings of 5th International Conference on Network Games, Control and Optimization (NetGCooP), 1–5.Google Scholar
  112. 112.
    Samarakoon, S., M. Bennis, W. Saad, et al. 2016. Ultra dense small cell networks: Turning density into energy efficiency. IEEE Journal on Selected Areas in Communication 34 (5): 1267–1280.CrossRefGoogle Scholar
  113. 113.
    Yang, C., J. Li, P. Semasinghe, et al. 2017. Distributed interference and energy-aware power control for ultra-dense D2D networks: A mean field game. IEEE Transactions on Wireless Communications 16 (2): 1205–1217.CrossRefGoogle Scholar
  114. 114.
    Zhong, Y., T.Q.S. Quek, and X. Ge. 2017. Heterogeneous cellular networks with spatio-temporal traffic: Delay analysis and scheduling. IEEE Journal on Selected Areas in Communications 35 (9): 1373–1386.CrossRefGoogle Scholar
  115. 115.
    Zhong, Y., M. Haenggi, F.C. Zheng, et al. 2017. Toward a tractable delay analysis in ultra-dense networks. IEEE Communication Magazine 55 (12): 103–109.CrossRefGoogle Scholar
  116. 116.
    Basar, T., G.J. Olsder, G. Clsder, et al. 1995. Dynamic noncooperative game theory, vol. 200. Philadelphia, PA, USA: SIAM.Google Scholar
  117. 117.
    Bellman, R. 1956. Dynamic programming and lagrange multipliers. Proceedings of the National Academy of Sciences 42 (10): 767.MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Han, Z. 2012. Game theory in wireless and communication networks: Theory, models, and applications. UK: Cambridge University Press.zbMATHGoogle Scholar
  119. 119.
    Soner, H. 1997. Controlled Markov processes, viscosity solutions and applications to mathematical finance. In Viscosity solutions and application, vol. 1660, 134–185. Lecture Notes in Mathematics.Google Scholar
  120. 120.
    Evans, L.C. 1998. Partial differential equations. American Mathematical Society.Google Scholar
  121. 121.
    Semasingh, P., and E. Hossain. 2016. Downlink power control in self-organizing dense small cells underlaying macrocells: A mean field game. IEEE Transactions on Mobile Computing 15 (2): 350–363.CrossRefGoogle Scholar
  122. 122.
    Haenggi, M., J.G. Andrews, F. Baccelli, et al. 2009. Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications 27 (7): 1029–1046.CrossRefGoogle Scholar
  123. 123.
    Al-Zahrani, A.Y., F.R. Yu, and M. Huang. 2013. A mean-field game approach for distributed interference and resource management in heterogeneous cellular networks. In 2013 IEEE Global Communication Conference (GLOBECOM), Atlanta, GA, 4964–4969.Google Scholar
  124. 124.
    Gueant, O., J.M. Lasry, P.-L. Lions. 2011. Mean field games and applications. In Paris-Princeton Lectures on Mathematical Finance, 205–266. New York, NY, USA: Springer.CrossRefGoogle Scholar
  125. 125.
    Schulte, J.M. 2010. Adjoint methods for Hamilton-Jacobi-Bellman equations. Diploma Thesis, University of Munster, Germany.Google Scholar
  126. 126.
    Ahmed, R. 2004. Numerical schemes applied to the burgers and Buckley-Leverett equations. Ph.D. dissertation, Department of Mathematics, University of Reading, England.Google Scholar

Copyright information

© Publishing House of Electronics Industry, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Xiaohu Ge
    • 1
  • Wuxiong Zhang
    • 2
  1. 1.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina
  2. 2.Shanghai Research Center for Wireless CommunicationsShanghaiChina

Personalised recommendations