Advertisement

Conclusions and Perspectives on New Opportunities of Nanostrucutres and Nanomaterials in Batteries

  • Ya You
  • Yu-Guo GuoEmail author
Chapter

Abstract

Nanostructured materials and nanotechnologies show great potential in improving the electrochemical performance of rechargeable batteries to meet the commercial requirements in terms of energy, power, service life, cost, and safety. In this section, we summarize the advantages and challenges of some emerging advanced rechargeable batteries, discuss where the battery technology is heading both in short-term and long-term, and give perspectives on the opportunities of nanostructures and nanomaterials in these technologies and how they can benefit electrochemical energy storage systems.

Abbreviation

EES

Electrochemical energy storage

LIB

Li-ion battery

EV

Electric vehicle

NCA

LiNi0.8Co0.15Al0.05O2

SEI

Solid electrolyte interface

TM

Transition metal

CVD

Chemical vapor deposition

ALD

Atomic layer deposition

TEM

Transmission electron microscopy

SEM

Scanning electron microscopy

AFM

Atomic force microscopy

XPS

X-ray photoelectron spectroscopy

SSE

Solid-state electrolyte

ORR

Oxygen reduction reaction

OER

Oxygen evolution reaction

References

  1. 1.
    Dunn, B., Kamath, H., & Tarascon, J.-M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334, 928–935.CrossRefGoogle Scholar
  2. 2.
    Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451, 652–657.CrossRefGoogle Scholar
  3. 3.
    Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367.CrossRefGoogle Scholar
  4. 4.
    Choi, J. W., & Aurbach, D. (2016). Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials, 1, 16013.CrossRefGoogle Scholar
  5. 5.
    Manthiram, A. (2017). An outlook on lithium ion battery technology. ACS Central Science, 3, 1063–1069.CrossRefGoogle Scholar
  6. 6.
    Myung, S.-T., Maglia, F., Park, K.-J., et al. (2017). Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Letters, 2, 196–223.CrossRefGoogle Scholar
  7. 7.
    Nitta, N., Wu, F., Lee, J. T., et al. (2015). Li-ion battery materials: Present and future. Materials Today, 18, 252–264.CrossRefGoogle Scholar
  8. 8.
    Whittingham, M.-S. (1976). Electrical energy storage and intercalation chemistry. Science, 192, 1126–1127.CrossRefGoogle Scholar
  9. 9.
    Lu, J., Chen, Z., Ma, Z., et al. (2016). The role of nanotechnology in the development of battery materials for electric vehicles. Nature Nanotechnology, 11, 1031–1038.CrossRefGoogle Scholar
  10. 10.
    Zhu, C., Usiskin, R. E., Yu, Y., et al. (2017). The nanoscale circuitry of battery electrodes. Science 358, eaao2808.CrossRefGoogle Scholar
  11. 11.
    Xin, S., Chang, Z., Zhang, X., et al. (2017). Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 4, 54–70.Google Scholar
  12. 12.
    Placke, T., Kloepsch, R., Dühnen, S., et al. (2017). Lithium ion, lithium metal, and alternative rechargeable battery technologies: The odyssey for high energy density. Journal of Solid State Electrochemistry, 21, 1939–1964.CrossRefGoogle Scholar
  13. 13.
    Wood, D. L., Li, J., & Daniel, C. (2015). Prospects for reducing the processing cost of lithium ion batteries. Journal of Power Sources, 275, 234–242.CrossRefGoogle Scholar
  14. 14.
    Nykvist, B., & Nilsson, M. (2015). Rapidly falling costs of battery packs for electric vehicles. Nature Climate Change, 5, 329–332.CrossRefGoogle Scholar
  15. 15.
    Liu, W., Oh, P., Liu, X., et al. (2015). Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angewandte Chemie International Edition, 54, 4440–4457.CrossRefGoogle Scholar
  16. 16.
    Manthiram, A., Knight, J. C., Myung, S.-T., et al. (2016). Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Advanced Energy Materials, 6, 1501010.CrossRefGoogle Scholar
  17. 17.
    Li, W., Song, B., & Manthiram, A. (2017). High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews, 46, 3006–3059.CrossRefGoogle Scholar
  18. 18.
    Sun, Y.-K., Myung, S.-T., Park, B.-C., et al. (2009). High-energy cathode material for long-life and safe lithium batteries. Nature Materials, 8, 320–324.CrossRefGoogle Scholar
  19. 19.
    Grenier, A., Liu, H., Wiaderek, K. M., et al. (2017). Reaction heterogeneity in LiNi0.8Co0.15Al0.05O2 induced by surface layer. Chemistry of Materials, 29, 7345–7352.CrossRefGoogle Scholar
  20. 20.
    Ryu, H.-H., Park, K.-J., Yoon, C. S., et al. (2018). Capacity fading of Ni-rich Li[NixCoyMn1−x−y]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chemistry of Materials, 30, 1155–1163.CrossRefGoogle Scholar
  21. 21.
    Zheng, J., Kan, W. H., & Manthiram, A. (2015). Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8–xCo0.1Mn0.1+xO2 (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. ACS Applied Materials & Interfaces, 7, 6926–6934.CrossRefGoogle Scholar
  22. 22.
    Yoon, C. S., Jun, D.-W., Myung, S.-T., et al. (2017). Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Letters, 2, 1150–1155.CrossRefGoogle Scholar
  23. 23.
    Jo, C.-H., Cho, D.-H., Noh, H.-J., et al. (2015). An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Research, 8, 1464–1479.CrossRefGoogle Scholar
  24. 24.
    Li, L., Xu, M., Yao, Q., et al. (2016). Alleviating surface degradation of nickel-rich layered oxide cathode material by encapsulating with nanoscale Li-ions/electrons superionic conductors hybrid membrane for advanced Li-ion batteries. ACS Applied Materials & Interfaces, 8, 30879–30889.CrossRefGoogle Scholar
  25. 25.
    Cho, Y., Oh, P., & Cho, J. (2013). A new type of protective surface layer for high-capacity Ni-based cathode materials: Nanoscaled surface pillaring layer. Nano Letters, 13, 1145–1152.CrossRefGoogle Scholar
  26. 26.
    Kim, U.-H., Myung, S.-T., Yoon, C. S., et al. (2017). Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries. ACS Energy Letters, 2, 1848–1854.CrossRefGoogle Scholar
  27. 27.
    Conry, T. E., Mehta, A., Cabana, J., et al. (2012). Structural underpinnings of the enhanced cycling stability upon Al-substitution in LiNi0.45Mn0.45Co0.1–yAlyO2 positive electrode materials for Li-ion batteries. Chemistry of Materials, 24, 3307–3317.CrossRefGoogle Scholar
  28. 28.
    Cho, D.-H., Jo, C.-H., Cho, W., et al. (2014). Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2. Journal of the Electrochemical Society, 161, A920–A926.CrossRefGoogle Scholar
  29. 29.
    Eom, J., Kim, M. G., & Cho, J. (2008). Storage characteristics of LiNi0.8Co0.1+xMn0.1−xO2 (x = 0, 0.03, and 0.06) cathode materials for lithium batteries. Journal of the Electrochemical Society, 155, A239–A245.CrossRefGoogle Scholar
  30. 30.
    Liu, H., Yang, Y., & Zhang, J. (2007). Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. Journal of Power Sources, 173, 556–561.CrossRefGoogle Scholar
  31. 31.
    You, Y., Celio, H., Li, J., et al. (2018). Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries. Angewandte Chemie International Edition, 57, 6480–6485.CrossRefGoogle Scholar
  32. 32.
    An, S. J., Li, J., Daniel, C., et al. (2016). The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 105, 52–76.CrossRefGoogle Scholar
  33. 33.
    Son, I. H., Park, J. H., Kwon, S., et al. (2015). Self-terminated artificial SEI layer for nickel-rich layered cathode material via mixed gas chemical vapor deposition. Chemistry of Materials, 27, 7370–7379.CrossRefGoogle Scholar
  34. 34.
    Li, W., Dolocan, A., Oh, P., et al. (2017). Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Nature Communications, 8, 14589.CrossRefGoogle Scholar
  35. 35.
    Franco Gonzalez, A., Yang, N.-H., & Liu, R.-S. (2017). Silicon anode design for lithium-ion batteries: Progress and perspectives. The Journal of Physical Chemistry C, 121, 27775–27787.CrossRefGoogle Scholar
  36. 36.
    Jin, Y., Zhu, B., Lu, Z., et al. (2017). Challenges and recent progress in the development of Si anodes for lithium-ion battery. Advanced Energy Materials, 7, 1700715.CrossRefGoogle Scholar
  37. 37.
    Feng, K., Li, M., Liu, W., et al. (2018). Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications. Small (Weinheim an der Bergstrasse, Germany), 14, 1702737.CrossRefGoogle Scholar
  38. 38.
    Wu, H., Chan, G., Choi, J. W., et al. (2012). Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 7, 310–315.CrossRefGoogle Scholar
  39. 39.
    Teki, R., Datta, M. K., Krishnan, R., et al. (2009). Nanostructured silicon anodes for lithium ion rechargeable batteries. Small (Weinheim an der Bergstrasse, Germany), 5, 2236–2242.CrossRefGoogle Scholar
  40. 40.
    Ji, L., Lin, Z., Alcoutlabi, M., et al. (2011). Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science, 4, 2682–2699.CrossRefGoogle Scholar
  41. 41.
    Wu, H., Yu, G., Pan, L., et al. (2013). Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 4, 1943.CrossRefGoogle Scholar
  42. 42.
    Zhang, Y.-C., You, Y., Xin, S., et al. (2016). Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 25, 120–127.CrossRefGoogle Scholar
  43. 43.
    Casimir, A., Zhang, H., Ogoke, O., et al. (2016). Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy, 27, 359–376.CrossRefGoogle Scholar
  44. 44.
    Wu, H., & Cui, Y. (2012). Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 7, 414–429.CrossRefGoogle Scholar
  45. 45.
    Ng, S.-H., Wang, J., Wexler, D., et al. (2006). Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angewandte Chemie International Edition, 45, 6896–6899.CrossRefGoogle Scholar
  46. 46.
    Mokkelbost, T., Fossdal, A., Dahl, Ø., et al. (2011). Preparation of silicon nanostructures for lithium ion battery anodes. ECS Transactions, 35, 149–158.CrossRefGoogle Scholar
  47. 47.
    Wang, C.-M., Li, X., Wang, Z., et al. (2012). In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Letters, 12, 1624–1632.CrossRefGoogle Scholar
  48. 48.
    Fang, S., Tong, Z., Nie, P., et al. (2017). Raspberry-like nanostructured silicon composite anode for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 9, 18766–18773.CrossRefGoogle Scholar
  49. 49.
    Szczech, J. R., & Jin, S. (2011). Nanostructured silicon for high capacity lithium battery anodes. Energy & Environmental Science, 4, 56–72.CrossRefGoogle Scholar
  50. 50.
    Lin, D., Liu, Y., & Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12, 194–206.CrossRefGoogle Scholar
  51. 51.
    Manthiram, A., Yu, X., & Wang, S. (2017). Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2, 16103.CrossRefGoogle Scholar
  52. 52.
    Kerman, K., Luntz, A., Viswanathan, V., et al. (2017). Review—Practical challenges hindering the development of solid state Li ion batteries. Journal of the Electrochemical Society, 164, A1731–A1744.CrossRefGoogle Scholar
  53. 53.
    Jafta, C. J., Ozoemena, K. I., Mathe, M. K., et al. (2012). Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochimica Acta, 85, 411–422.CrossRefGoogle Scholar
  54. 54.
    Li, H., Wang, Z., Chen, L., et al. (2009). Research on advanced materials for Li-ion batteries. Advanced Materials, 21, 4593–4607.CrossRefGoogle Scholar
  55. 55.
    Jarvis, K. A., Deng, Z., Allard, L. F., et al. (2011). Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chemistry of Materials, 23, 3614–3621.CrossRefGoogle Scholar
  56. 56.
    He, X., Wang, J., Kloepsch, R., et al. (2014). Enhanced electrochemical performance in lithium ion batteries of a hollow spherical lithium-rich cathode material synthesized by a molten salt method. Nano Research, 7, 110–118.CrossRefGoogle Scholar
  57. 57.
    Chen, L., Su, Y., Chen, S., et al. (2014). Hierarchical Li1.2Ni0.2Mn0.6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries. Advanced Materials, 26, 6756–6760.CrossRefGoogle Scholar
  58. 58.
    Tikekar, M. D., Choudhury, S., Tu, Z., et al. (2016). Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nature Energy, 1, 16114.CrossRefGoogle Scholar
  59. 59.
    Suo, L., Borodin, O., Gao, T., et al. (2015). “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 350, 938–943.CrossRefGoogle Scholar
  60. 60.
    Zhamu, A., Chen, G., Liu, C., et al. (2012). Reviving rechargeable lithium metal batteries: Enabling next-generation high-energy and high-power cells. Energy & Environmental Science, 5, 5701–5707.CrossRefGoogle Scholar
  61. 61.
    Lin, D., Liu, Y., Liang, Z., et al. (2016). Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology, 11, 626–632.CrossRefGoogle Scholar
  62. 62.
    Sun, Y., Liu, N., & Cui, Y. (2016). Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy, 1, 16071.CrossRefGoogle Scholar
  63. 63.
    Mukherjee, R., Thomas, A. V., Datta, D., et al. (2014). Defect-induced plating of lithium metal within porous graphene networks. Nature Communications, 5, 3710.CrossRefGoogle Scholar
  64. 64.
    Kazyak, E., Wood, K. N., & Dasgupta, N. P. (2015). Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments. Chemistry of Materials, 27, 6457–6462.CrossRefGoogle Scholar
  65. 65.
    Liu, W., Lin, D., Pei, A., et al. (2016). Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. Journal of the American Chemical Society, 138, 15443–15450.CrossRefGoogle Scholar
  66. 66.
    Yan, K., Lu, Z., Lee, H.-W., et al. (2016). Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 1, 16010.CrossRefGoogle Scholar
  67. 67.
    Andersson, A. M., Abraham, D. P., Haasch, R., et al. (2002). Surface characterization of electrodes from high power lithium-ion batteries. Journal of the Electrochemical Society, 149, A1358–A1369.CrossRefGoogle Scholar
  68. 68.
    Huang, B., Xu, B., Li, Y., et al. (2016). Li-ion conduction and stability of perovskite Li3/8Sr7/16Hf1/4Ta3/4O3. ACS Applied Materials & Interfaces, 8, 14552–14557.CrossRefGoogle Scholar
  69. 69.
    Lu, Y., Li, L., Zhang, Q., et al. (2018). Electrolyte and interface engineering for solid-state sodium batteries. Joule, 2, 1747–1770.CrossRefGoogle Scholar
  70. 70.
    Li, Y., Zhou, W., Chen, X., et al. (2016). Mastering the interface for advanced all-solid-state lithium rechargeable batteries. Proceedings of the National Academy of Sciences of the United States of America, 113, 13313–13317.CrossRefGoogle Scholar
  71. 71.
    Xin, S., You, Y., Wang, S., et al. (2017). Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects. ACS Energy Letters, 2, 1385–1394.CrossRefGoogle Scholar
  72. 72.
    Truong, L., & Thangadurai, V. (2012). First total H+/Li+ ion exchange in garnet-type Li5La3Nb2O12 using organic acids and studies on the effect of Li stuffing. Inorganic Chemistry, 51, 1222–1224.CrossRefGoogle Scholar
  73. 73.
    Zheng, F., Kotobuki, M., Song, S., et al. (2018). Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 389, 198–213.CrossRefGoogle Scholar
  74. 74.
    Zhang, X., Xie, J., Shi, F., et al. (2018). Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Letters, 18, 3829–3838.CrossRefGoogle Scholar
  75. 75.
    Chinnam, P. R., & Wunder, S. L. (2017). Engineered interfaces in hybrid ceramic-polymer electrolytes for use in all-solid-state Li batteries. ACS Energy Letters, 2, 134–138.CrossRefGoogle Scholar
  76. 76.
    Zekoll, S., Marriner-Edwards, C., Hekselman, A. K. O., et al. (2018). Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy & Environmental Science, 11, 185–201.CrossRefGoogle Scholar
  77. 77.
    Zheng, J., Tang, M., & Hu, Y.-Y. (2016). Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angewandte Chemie International Edition, 55, 1–6.CrossRefGoogle Scholar
  78. 78.
    Zhou, W., Wang, S., Li, Y., et al. (2016). Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte. Journal of the American Chemical Society, 138, 9385–9388.CrossRefGoogle Scholar
  79. 79.
    Liu, K., Liu, Y., Lin, D., et al. (2018). Materials for lithium-ion battery safety. Science Advances 4, eaas9820.CrossRefGoogle Scholar
  80. 80.
    Wang, P.-F., You, Y., Yin, Y.-X., et al. (2018). Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance. Advanced Energy Materials, 8, 1701912.CrossRefGoogle Scholar
  81. 81.
    Deng, J., Luo, W.-B., Lu, X., et al. (2018). High energy density sodium-ion battery with industrially feasible and air-stable O3-type layered oxide cathode. Advanced Energy Materials, 8, 1701610.CrossRefGoogle Scholar
  82. 82.
    You, Y., & Manthiram, A. (2018). Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Advanced Energy Materials, 8, 1701785.CrossRefGoogle Scholar
  83. 83.
    Kubota, K., & Komaba, S. (2015). Review—Practical issues and future perspective for Na-ion batteries. Journal of the Electrochemical Society, 162, A2538–A2550.CrossRefGoogle Scholar
  84. 84.
    Mortemard de Boisse, B., Cheng, J. H., Carlier, D., et al. (2015). O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: Structural evolutions and redox mechanisms upon Na+ (de)intercalation. Journal of Materials Chemistry A, 3, 10976–10989.CrossRefGoogle Scholar
  85. 85.
    You, Y., Wu, X.-L., Yin, Y.-X., et al. (2013). A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. Journal of Materials Chemistry A, 1, 14061–14065.CrossRefGoogle Scholar
  86. 86.
    Wang, P.-F., You, Y., Yin, Y.-X., et al. (2016). Suppressing the P2–O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angewandte Chemie International Edition, 55, 7445–7449.CrossRefGoogle Scholar
  87. 87.
    You, Y., Kim, S. O., & Manthiram, A. (2017). A honeycomb-layered oxide cathode for sodium-ion batteries with suppressed P3–O1 phase transition. Advanced Energy Materials, 7, 1601698.CrossRefGoogle Scholar
  88. 88.
    You, Y., Xin, S., Asl, H. Y., et al. (2018). Insights into the improved high-voltage performance of Li-incorporated layered oxide cathodes for sodium-ion batteries. Chem, 4, 2124–2139.CrossRefGoogle Scholar
  89. 89.
    Komaba, S., Ishikawa, T., Yabuuchi, N., et al. (2011). Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Applied Materials & Interfaces, 3, 4165–4168.CrossRefGoogle Scholar
  90. 90.
    Yao, H.-R., Wang, P.-F., Gong, Y., et al. (2017). Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. Journal of the American Chemical Society, 139, 8440–8443.CrossRefGoogle Scholar
  91. 91.
    Bayley, P. M., Trease, N. M., & Grey, C. P. (2016). Insights into electrochemical sodium metal deposition as probed with in situ 23Na NMR. Journal of the American Chemical Society, 138, 1955–1961.CrossRefGoogle Scholar
  92. 92.
    Liu, J., Kopold, P., Wu, C., et al. (2015). Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy & Environmental Science, 8, 3531–3538.CrossRefGoogle Scholar
  93. 93.
    Song, J., Yu, Z., Gordin, M. L., et al. (2015). Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano, 9, 11933–11941.CrossRefGoogle Scholar
  94. 94.
    Zhu, C., Mu, X., van Aken, P. A., et al. (2014). Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angewandte Chemie International Edition, 53, 2152–2156.CrossRefGoogle Scholar
  95. 95.
    Hu, Z., Wang, L., Zhang, K., et al. (2014). MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angewandte Chemie International Edition, 53, 12794–12798.CrossRefGoogle Scholar
  96. 96.
    Yu, S.-H., Feng, X., Zhang, N., et al. (2018). Understanding conversion-type electrodes for lithium rechargeable batteries. Accounts of Chemical Research, 51, 273–281.CrossRefGoogle Scholar
  97. 97.
    Song, J., Yu, Z., Gordin, M. L., et al. (2016). Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Letters, 16, 864–870.CrossRefGoogle Scholar
  98. 98.
    Wang, H., Yang, Y., Liang, Y., et al. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Letters, 11, 2644–2647.CrossRefGoogle Scholar
  99. 99.
    Xin, S., You, Y., Li, H.-Q., et al. (2016). Graphene sandwiched by sulfur-confined mesoporous carbon nanosheets: A kinetically stable cathode for Li–S batteries. ACS Applied Materials & Interfaces, 8, 33704–33711.CrossRefGoogle Scholar
  100. 100.
    Wei Seh, Z., Li, W., Cha, J. J., et al. (2013). Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 4, 1331.CrossRefGoogle Scholar
  101. 101.
    Xu, D.-W., Xin, S., You, Y., et al. (2016). Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li–S battery. ChemNanoMat, 2, 712–718.CrossRefGoogle Scholar
  102. 102.
    You, Y., Zeng, W., Yin, Y.-X., et al. (2015). Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. Journal of Materials Chemistry A, 3, 4799–4802.CrossRefGoogle Scholar
  103. 103.
    Xue, W., Miao, L., Qie, L., et al. (2017). Gravimetric and volumetric energy densities of lithium-sulfur batteries. Current Opinion in Electrochemistry, 6, 92–99.CrossRefGoogle Scholar
  104. 104.
    Xin, S., Yu, L., You, Y., et al. (2016). The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon. Nano Letters, 16, 4560–4568.CrossRefGoogle Scholar
  105. 105.
    Wang, Z., You, Y., Yuan, J., et al. (2016). Nickel-doped La0.8Sr0.2Mn1–xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Applied Materials & Interfaces, 8, 6520–6528.CrossRefGoogle Scholar
  106. 106.
    Liu, T., Leskes, M., Yu, W., et al. (2015). Cycling Li-O2 batteries via LiOH formation and decomposition. Science, 350, 530–533.CrossRefGoogle Scholar
  107. 107.
    Lim, H., Yilmaz, E., & Byon, H. R. (2012). Real-time XRD studies of Li–O2 electrochemical reaction in nonaqueous lithium-oxygen battery. The Journal of Physical Chemistry Letters, 3, 3210–3215.CrossRefGoogle Scholar
  108. 108.
    Chang, Z.-W., Xu, J.-J., Liu, Q.-C., et al. (2015). Recent progress on stability enhancement for cathode in rechargeable non-aqueous lithium-oxygen battery. Advanced Energy Materials, 5, 1500633.CrossRefGoogle Scholar
  109. 109.
    Xu, Y.-F., Chen, Y., Xu, G.-L., et al. (2016). RuO2 nanoparticles supported on MnO2 nanorods as high efficient bifunctional electrocatalyst of lithium-oxygen battery. Nano Energy, 28, 63–70.CrossRefGoogle Scholar
  110. 110.
    Lee, J.-S., Tai Kim, S., Cao, R., et al. (2011). Metal-air batteries with high energy density: Li–air versus Zn–air. Advanced Energy Materials, 1, 34–50.CrossRefGoogle Scholar
  111. 111.
    Cheng, F., & Chen, J. (2012). Metal–air batteries: From oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 41, 2172–2192.CrossRefGoogle Scholar
  112. 112.
    Dhavale, V. M., & Kurungot, S. (2015). Cu–Pt nanocage with 3-D electrocatalytic surface as an efficient oxygen reduction electrocatalyst for a primary Zn–air battery. ACS Catalysis, 5, 1445–1452.CrossRefGoogle Scholar
  113. 113.
    Shinde, S. S., Lee, C.-H., Sami, A., et al. (2017). Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano, 11, 347–357.CrossRefGoogle Scholar
  114. 114.
    Müller, S., Holzer, F., & Haas, O. (1998). Optimized zinc electrode for the rechargeable zinc–air battery. Journal of Applied Electrochemistry, 28, 895–898.CrossRefGoogle Scholar
  115. 115.
    Shan, T.-T., Xin, S., You, Y., et al. (2016). Combining nitrogen-doped graphene sheets and MoS2: A unique film–foam–film structure for enhanced lithium storage. Angewandte Chemie International Edition, 55, 12783–12788.CrossRefGoogle Scholar
  116. 116.
    Zhang, W.-M., Wu, X.-L., Hu, J.-S., et al. (2008). Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Advanced Functional Materials, 18, 3941–3946.CrossRefGoogle Scholar
  117. 117.
    Poizot, P., Laruelle, S., Grugeon, S., et al. (2000). Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407, 496–499.CrossRefGoogle Scholar
  118. 118.
    Li, C., Chen, K., Zhou, X., et al. (2018). Electrochemically driven conversion reaction in fluoride electrodes for energy storage devices. npj Computational Materials, 4, 22.Google Scholar
  119. 119.
    Wang, K., Luo, S., Wu, Y., et al. (2013). Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Advanced Functional Materials, 23, 846–853.CrossRefGoogle Scholar
  120. 120.
    Li, X., Yang, J., Hu, Y., et al. (2012). Novel approach toward a binder-free and current collector-free anode configuration: Highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage. Journal of Materials Chemistry, 22, 18847–18853.CrossRefGoogle Scholar
  121. 121.
    Rana, K., Singh, J., Lee, J.-T., et al. (2014). Highly conductive freestanding graphene films as anode current collectors for flexible lithium-ion batteries. ACS Applied Materials & Interfaces, 6, 11158–11166.CrossRefGoogle Scholar
  122. 122.
    Nara, H., Yokoshima, T., Mikuriya, H., et al. (2017). The potential for the creation of a high areal capacity lithium-sulfur battery using a metal foam current collector. Journal of the Electrochemical Society, 164, A5026–A5030.CrossRefGoogle Scholar
  123. 123.
    Kühnel, R.-S., Lübke, M., Winter, M., et al. (2012). Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. Journal of Power Sources, 214, 178–184.CrossRefGoogle Scholar
  124. 124.
    Mun, J., Yim, T., Choi, C. Y., et al. (2010). Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochemical and Solid-State Letters, 13, A109–A111.CrossRefGoogle Scholar
  125. 125.
    Miao, Y.-E., Zhu, G.-N., Hou, H., et al. (2013). Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. Journal of Power Sources, 226, 82–86.CrossRefGoogle Scholar
  126. 126.
    Ryou, M.-H., Lee, Y. M., Park, J.-K., et al. (2011). Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Advanced Materials, 23, 3066–3070.CrossRefGoogle Scholar
  127. 127.
    Jung, Y. S., Cavanagh, A. S., Gedvilas, L., et al. (2012). Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Advanced Energy Materials, 2, 1022–1027.CrossRefGoogle Scholar
  128. 128.
    Zhai, Y., Xiao, K., Yu, J., et al. (2015). Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries. Electrochimica Acta, 154, 219–226.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Texas at AustinAustinUSA
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations