Advertisement

Nanostructures and Nanomaterials for Sodium Batteries

  • Peng-Fei Wang
  • Yu-Bin Niu
  • Yu-Guo GuoEmail author
Chapter

Abstract

As a kind of post-Li-ion batteries (LIBs), the advantage of “high-quality and low-cost” reflected by Na-ion batteries (NIBs) in large-scale energy storage has attracted more and more attention and recognition. However, larger ionic radius and slower kinetic behavior of Na make it impossible to compete with more mature LIBs in terms of energy density and power density. As far as the electrode materials themselves are concerned, there is still a great potential to be tapped. For this reason, the nanoscale structural design also plays an important role in improving the overall performance of NIBs. In this chapter, we systematically summarize and discuss the research progress of nanostructured strategies for cathode and anode materials of NIBs, and prospect for their future development as well as highlight the impact of nanostructure on the electrochemical performance of the batteries.

Abbreviation

ABF

Annular bright field

AAO

Anodic aluminum oxide

ALD

Atomic layer deposition

CNT

Carbon nanotubes

CVD

Chemical vapor deposition

CTAB

Cetyltrimethyl ammonium bromide

ESD

Electrostatic spray deposition

G

Graphene

HRTEM

High-resolution transmission electron microscope

HAADF

High-angle annular dark field

LIBs

Li-ion batteries

MWCNTsTs

Multi-walled carbon nanotubes

MLD

Molecular layer deposition

SBA-13

Mesoporous silicon

NIBs

Na-ion batteries

DMF

N,N-dimethylformamide

NMP

N-methyl-2-pyrrolidone

CMK-3

Ordered mesoporous carbon

1D

One-dimensional

PVP

Polyvinyl pyrrolidone

PEO

Polyethylene oxide

PAN

Polyacrylonitrile

PVA

Polyvinyl alcohol

PVdF

Polyvinylidene fluoride

PVD

Physical vapor deposition

P123

Polyethylene oxide-polypropylene oxide-polyethylene oxide

rGO

Reduced graphene oxide

3D

Three-dimensional

TM

Transition metal

TEM

Transmission electron microscope

SHE

Standard hydrogen electrode

SEM

Scanning electron microscope

SAED

Selected area electron diffraction

STEM

Scanning transmission electron microscopy

SDS

Sodium dodecyl sulfate

SWCNTs

Single walled carbon nanotubes

XPS

X-ray photoelectron spectroscopy

0D

Zero-dimensional

References

  1. 1.
    Yabuuchi, N., Kubota, K., Dahbi, M., et al. (2014). Research development on sodium-ion batteries. Chemical Reviews, 114(23), 11636–11682.CrossRefGoogle Scholar
  2. 2.
    Hwang, J.-Y., Myung, S.-T., & Sun, Y.-K. (2017). Sodium-ion batteries: Present and future. Chemical Society Reviews, 46(12), 3529–3614.CrossRefGoogle Scholar
  3. 3.
    Whittingham, M. S. (1978). Chemistry of intercalation compounds: Metal guests in chalcogenide hosts. Progress in Solid State Chemistry, 12(1), 41–99.CrossRefGoogle Scholar
  4. 4.
    Newman, G. H., & Klemann, L. P. (1980). Ambient temperature cycling of an Na-TiS2 Cell. Journal of the Electrochemical Society, 127(10), 2097–2099.CrossRefGoogle Scholar
  5. 5.
    Takeda, Y., Nakahara, K., Nishijima, M., et al. (1994). Sodium deintercalation from sodium iron oxide. Materials Research Bulletin, 29(6), 659–666.CrossRefGoogle Scholar
  6. 6.
    Delmas, C., Fouassier, C., & Hagenmuller, P. (1980). Structural classification and properties of the layered oxides. Physica B+C, 99, 81–85.Google Scholar
  7. 7.
    Wang, P.-F., You, Y., Yin, Y.-X., et al. (2018). Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance. Advanced Energy Materials, 8(8), 1701912.CrossRefGoogle Scholar
  8. 8.
    Jiang, Y., Zhou, X., Li, D., et al. (2018). Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Advanced Energy Materials, 8(6), 1800068.CrossRefGoogle Scholar
  9. 9.
    Chen, S., Wu, C., Shen, L., et al. (2017). Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Advanced Materials, 29(48), 1700431.CrossRefGoogle Scholar
  10. 10.
    Xu, Y., Wei, Q., Xu, C., et al. (2016). Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Advanced Energy Materials, 6(14), 1600389.CrossRefGoogle Scholar
  11. 11.
    Jian, Z., Han, W., Lu, X., et al. (2013). Superior electrochemical performance and storage mechanism of Na3V2(PO4)3cathode for room-temperature sodium-ion batteries. Advanced Energy Materials, 3(2), 156–160.CrossRefGoogle Scholar
  12. 12.
    Wei, T., Yang, G., & Wang, C. (2017). Bottom-up assembly of strongly-coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and -stable Na-ion storage. Nano Energy, 39, 363–370.CrossRefGoogle Scholar
  13. 13.
    Ren, W., Zheng, Z., Xu, C., et al. (2016). Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy, 25, 145–153.CrossRefGoogle Scholar
  14. 14.
    Guo, D., Qin, J., Yin, Z., et al. (2018). Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy, 45, 136–147.CrossRefGoogle Scholar
  15. 15.
    Wang, X., Niu, C., Meng, J., et al. (2015). Novel K3V2(PO4)3/C bundled nanowires as superior sodium-ion battery electrode with ultrahigh cycling stability. Advanced Energy Materials, 5(17), 1500716.CrossRefGoogle Scholar
  16. 16.
    Zhai, Y., Dou, Y., Zhao, D., et al. (2011). Carbon materials for chemical capacitive energy storage. Advanced Materials, 23(42), 4828–4850.CrossRefGoogle Scholar
  17. 17.
    Li, S., Dong, Y., Xu, L., et al. (2014). Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Advanced Materials, 26(21), 3545–3553.CrossRefGoogle Scholar
  18. 18.
    Zhu, C., Song, K., van Aken, P. A., et al. (2014). Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: An ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Letters, 14(4), 2175–2180.CrossRefGoogle Scholar
  19. 19.
    Fang, Y., Xiao, L., Ai, X., et al. (2015). Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Advanced Materials, 27(39), 5895–5900.CrossRefGoogle Scholar
  20. 20.
    Raccichini, R., Varzi, A., Passerini, S., et al. (2015). The role of graphene for electrochemical energy storage. Nature Materials, 14(3), 271–279.CrossRefGoogle Scholar
  21. 21.
    Duan, W., Zhu, Z., Li, H., et al. (2014). Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries. Journal of Materials Chemistry A, 2(23), 8668–8675.CrossRefGoogle Scholar
  22. 22.
    Chen, M., Kou, K., Tu, M., et al. (2015). Fabrication of multi-walled carbon nanotubes modified Na3V2(PO4)3/C and its application to high-rate lithium-ion batteries cathode. Solid State Ionics, 274, 24–28.CrossRefGoogle Scholar
  23. 23.
    Lin, D., Liu, Y., & Cui, Y. (2017). Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology, 12, 194.CrossRefGoogle Scholar
  24. 24.
    Xin, S., Chang, Z., Zhang, X., et al. (2017). Progress of rechargeable lithium metal batteries based on conversion reactions. National Science Review, 4(1), 54–70.Google Scholar
  25. 25.
    Manthiram, A., Yu, X., & Wang, S. (2017). Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2, 16103.CrossRefGoogle Scholar
  26. 26.
    Kerman, K., Luntz, A., Viswanathan, V., et al. (2017). Review-practical challenges hindering the development of solid state Li ion batteries. Journal of the Electrochemical Society, 164(7), A1731–A1744.CrossRefGoogle Scholar
  27. 27.
    Rui, X., Sun, W., Wu, C., et al. (2015). An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network. Advanced Materials, 27(42), 6670–6676.CrossRefGoogle Scholar
  28. 28.
    Fang, J., Wang, S., Li, Z., et al. (2016). Porous Na3V2(PO4)3@C nanoparticles enwrapped in three-dimensional graphene for high performance sodium-ion batteries. Journal of Materials Chemistry A, 4(4), 1180–1185.CrossRefGoogle Scholar
  29. 29.
    Ji, X., Lee, K. T., & Nazar, L. F. (2009). A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Materials, 8(6), 500–506.CrossRefGoogle Scholar
  30. 30.
    Schuster, J., He, G., Mandlmeier, B., et al. (2012). Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angewandte Chemie International Edition, 51(15), 3591–3595.CrossRefGoogle Scholar
  31. 31.
    Jiang, Y., Yang, Z., Li, W., et al. (2015). Nanoconfined carbon-coated Na3V2(PO4)3 particles in mesoporous carbon enabling ultralong cycle life for sodium-ion batteries. Advanced Energy Materials, 5(10), 1402104.CrossRefGoogle Scholar
  32. 32.
    Zhu, C., Kopold, P., van Aken, P. A., et al. (2016). High power-high energy sodium battery based on threefold interpenetrating network. Advanced Materials, 28(12), 2409–2416.CrossRefGoogle Scholar
  33. 33.
    Shen, W., Wang, C., Xu, Q., et al. (2015). Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials. Advanced Energy Materials, 5(1), 1400982.CrossRefGoogle Scholar
  34. 34.
    Xu, J., Lee, D. H., Clément, R. J., et al. (2014). Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–yz]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries. Chemistry of Materials, 26(2), 1260–1269.CrossRefGoogle Scholar
  35. 35.
    Clément, R. J., Xu, J., Middlemiss, D. S., et al. (2017). Direct evidence for high Na+ mobility and high voltage structural processes in P2-Na x[LiyNizMn1−yz]O2 (x, y, z ≤ 1) cathodes from solid-state NMR and DFT calculations. Journal of Materials Chemistry A, 5(8), 4129–4143.CrossRefGoogle Scholar
  36. 36.
    Zheng, S., Zhong, G., McDonald, M. J., et al. (2016). Exploring the working mechanism of Li+ in O3-type NaLi0.1Ni0.35Mn0.55O2 cathode materials for rechargeable Na-ion batteries. Journal of Materials Chemistry A, 4(23), 9054–9062.Google Scholar
  37. 37.
    Oh, S.-M., Myung, S.-T., Hwang, J.-Y., et al. (2014). High capacity O3-type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 cathode for sodium ion batteries. Chemistry of Materials, 26(21): 6165–6171.Google Scholar
  38. 38.
    You, Y., Xin, S., Asl, H. Y., et al. (2018). Insights into the improved high-voltage performance of Li-incorporated layered oxide cathodes for sodium-ion batteries. Chem, 4(9), 2124–2139.CrossRefGoogle Scholar
  39. 39.
    Rong, X., Liu, J., Hu, E., et al. (2018). Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule, 2(1), 125–140.CrossRefGoogle Scholar
  40. 40.
    Du, K., Zhu, J., Hu, G., et al. (2016). Exploring reversible oxidation of oxygen in a manganese oxide. Energy & Environmental Science, 9(8), 2575–2577.CrossRefGoogle Scholar
  41. 41.
    Kang, W., Zhang, Z., Lee, P.-K., et al. (2015). Copper substituted P2-type Na0.67CuxMn1-xO2: A stable high-power sodium-ion battery cathode. Journal of Materials Chemistry A, 3(45), 22846–22852.Google Scholar
  42. 42.
    Wang, P.-F., You, Y., Yin, Y.-X., et al. (2016). Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries. Angewandte Chemie International Edition, 55(26), 7445–7449.Google Scholar
  43. 43.
    Wu, X., Guo, J., Wang, D., et al. (2015). P2-type Na0.66Ni0.33-xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries. Journal of Power Sources, 281, 18–26.CrossRefGoogle Scholar
  44. 44.
    Xu, S.-Y., Wu, X.-Y., Li, Y.-M., et al. (2014). Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chinese Physics B, 23(11), 118202.CrossRefGoogle Scholar
  45. 45.
    Li, Y., Yang, Z., Xu, S., et al. (2015). Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Advanced Science, 2(6), 1500031.CrossRefGoogle Scholar
  46. 46.
    Yao, H.-R., Wang, P.-F., Gong, Y., et al. (2017). Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. Journal of the American Chemical Society, 139(25), 8440–8443.CrossRefGoogle Scholar
  47. 47.
    Singh, G., Tapia-Ruiz, N., Lopez del Amo, J. M., et al. (2016). High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x = 0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability. Chemistry of Materials, 28(14), 5087–5094.Google Scholar
  48. 48.
    Wu, X., Xu, G. L., Zhong, G., et al. (2016). Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries. ACS Applied Materials & Interfaces, 8(34), 22227–22237.CrossRefGoogle Scholar
  49. 49.
    Yabuuchi, N., Hara, R., Kubota, K., et al. (2014). A new electrode material for rechargeable sodium batteries: P2-type Na2/3[Mg0.28Mn0.72]O2 with anomalously high reversible capacity. Journal of Materials Chemistry A, 2(40), 16851–16855.Google Scholar
  50. 50.
    Maitra, U., House, R. A., Somerville, J. W., et al. (2018). Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nature Chemistry, 10(3), 288–295.Google Scholar
  51. 51.
    Zhang, X. H., Pang, W. L., Wan, F., et al. (2016). P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries: Enhanced properties and mechanism via graphene connection. ACS Applied Materials & Interfaces, 8(32), 20650–20659.CrossRefGoogle Scholar
  52. 52.
    Pang, W.-L., Zhang, X.-H., Guo, J.-Z., et al. (2017). P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. Journal of Power Sources, 356, 80–88.CrossRefGoogle Scholar
  53. 53.
    Yoshida, H., Yabuuchi, N., Kubota, K., et al. (2014). P2-type Na2/3Ni1/3Mn2/3-xTixO2 as a new positive electrode for higher energy Na-ion batteries. Chemical Communications, 50(28), 3677–3680.CrossRefGoogle Scholar
  54. 54.
    Wang, P.-F., Yao, H.-R., Liu, X.-Y., et al. (2018). Na+/vacancy disordering promises high-rate Na-ion batteries. Science Advances, 4(3), eaar6018.CrossRefGoogle Scholar
  55. 55.
    Wang, P.-F., Yao, H.-R., Liu, X.-Y., et al. (2017). Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries. Advanced Materials, 29(19), 1700210.Google Scholar
  56. 56.
    Zheng, L., & Obrovac, M. N. (2017). Investigation of O3-type Na0.9Ni0.45MnxTi0.55-xO2 (0 ≤ x  ≤ 0.55) as positive electrode materials for sodium-ion batteries. Electrochimica Acta, 233, 284–291.Google Scholar
  57. 57.
    Evstigneeva, M. A., Nalbandyan, V. B., Petrenko, A. A., et al. (2011). A new family of fast sodium ion conductors: Na2M2TeO6 (M = Ni Co, Zn, Mg). Chemistry of Materials, 23(5), 1174–1181.CrossRefGoogle Scholar
  58. 58.
    Seibel, E. M., Roudebush, J. H., Wu, H., et al. (2013). Structure and magnetic properties of the α-NaFeO2-type honeycomb compound Na3Ni2BiO6. Inorganic Chemistry, 52(23), 13605–13611.CrossRefGoogle Scholar
  59. 59.
    Schmidt, W., Berthelot, R., Sleight, A. W., et al. (2013). Solid solution studies of layered honeycomb-ordered phases O3-Na3M2SbO6 (M = Cu, Mg, Ni, Zn). Journal of Solid State Chemistry, 201, 178–185.CrossRefGoogle Scholar
  60. 60.
    Yuan, D., Liang, X., Wu, L., et al. (2014). A honeycomb-layered Na3Ni2SbO6: A high-rate and cycle-stable cathode for sodium-ion batteries. Advanced Materials, 26(36), 6301–6306.CrossRefGoogle Scholar
  61. 61.
    Li, Y., Deng, Z., Peng, J., et al. (2018). New P2-type honeycomb-layered sodium-ion conductor: Na2Mg2TeO6. ACS Applied Materials & Interfaces, 10(18), 15760–15766.CrossRefGoogle Scholar
  62. 62.
    Wang, P. F., Xin, H., Zuo, T. T., et al. (2018). An abnormal 3.7 volt O3-type sodium-ion battery cathode. Angewandte Chemie International Edition, 57(27), 8178–8183.CrossRefGoogle Scholar
  63. 63.
    Sathiya, M., Jacquet, Q., Doublet, M.-L., et al. (2018). A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Advanced Energy Materials, 8(11), 1702599.CrossRefGoogle Scholar
  64. 64.
    Kubota, K., Kumakura, S., Yoda, Y., et al. (2018). Electrochemistry and solid-state chemistry of NaMeO2 (Me = 3d transition metals). Advanced Energy Materials, 8(17), 1703415.CrossRefGoogle Scholar
  65. 65.
    Chagas, L. G., Buchholz, D., Vaalma, C., et al. (2014). P-type Na xNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance. Journal of Materials Chemistry A, 2(47), 20263–20270.Google Scholar
  66. 66.
    Buchholz, D., Chagas, L. G., Vaalma, C., et al. (2014). Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. Journal of Materials Chemistry A, 2(33), 13415–13421.Google Scholar
  67. 67.
    Chen, X., Zhou, X., Hu, M., et al. (2015). Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 3(41), 20708–20714.Google Scholar
  68. 68.
    Hou, P., Yin, J., Lu, X., et al. (2018). A stable layered P3/P2 and spinel intergrowth nanocomposite as a long-life and high-rate cathode for sodium-ion batteries. Nanoscale, 10(14), 6671–6677.CrossRefGoogle Scholar
  69. 69.
    Lee, E., Lu, J., Ren, Y., et al. (2014). Layered P2/O3 intergrowth cathode: Toward high power Na-ion batteries. Advanced Energy Materials, 4(17), 1400458.CrossRefGoogle Scholar
  70. 70.
    Guo, S., Liu, P., Yu, H., et al. (2015). A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angewandte Chemie International Edition, 54(20), 5894–5899.CrossRefGoogle Scholar
  71. 71.
    Doeff, M. M., Ma, Y., Visco, S. J., et al. (1993). Electrochemical insertion of sodium into carbon. Journal of the Electrochemical Society, 140(12), L169–L170.CrossRefGoogle Scholar
  72. 72.
    Qi, X., Liu, L., Song, N., et al. (2017). Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries. ACS Applied Materials Interfaces, 9(46), 40215–40223.CrossRefGoogle Scholar
  73. 73.
    Huang, Q., Liu, J. T., Zhang, L., et al. (2018). Tailoring alternating heteroepitaxial nanostructures in Na-ion layered oxide cathodes via an in-situ composition modulation route. Nano Energy, 44, 336–344.CrossRefGoogle Scholar
  74. 74.
    Keller, M., Buchholz, D., & Passerini, S. (2016). Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases. Advanced Energy Materials, 6(3), 1501555.CrossRefGoogle Scholar
  75. 75.
    Hwang, J. Y., Oh, S. M., Myung, S. T., et al. (2015). Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nature Communications, 6, 6865.CrossRefGoogle Scholar
  76. 76.
    Hwang, J.-Y., Myung, S.-T., Yoon, C. S., et al. (2016). Novel cathode materials for Na-ion batteries composed of spoke-like nanorods of Na[Ni0.61Co0.12Mn0.27]O2 assembled in spherical secondary particles. Advanced Functional Materials, 26(44), 8083–8093.Google Scholar
  77. 77.
    Wu, Z. G., Li, J. T., Zhong, Y. J., et al. (2017). Mn-based cathode with synergetic layered-tunnel hybrid structures and their enhanced electrochemical performance in sodium ion batteries. ACS Applied Materials & Interfaces, 9(25), 21267–21275.CrossRefGoogle Scholar
  78. 78.
    Xiao, Y., Wang, P.-F., Yin, Y.-X., et al. (2018). A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode. Advanced Energy Materials, 8(22), 1800492.CrossRefGoogle Scholar
  79. 79.
    Chen, T.-R., Sheng, T., Wu, Z.-G., et al. (2018). Cu2+ dual-doped layer-tunnel hybrid Na0.6Mn1-xCuxO2 as a cathode of sodium-ion battery with enhanced structure stability, electrochemical property, and air stability. ACS Applied Materials & Interfaces, 10(12), 10147–10156.Google Scholar
  80. 80.
    Cui, J., Yao, S., & Kim, J.-K. (2017). Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Materials, 7, 64–114.CrossRefGoogle Scholar
  81. 81.
    James, S. L., Adams, C. J., Bolm, C., et al. (2012). Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews, 41(1), 413–447.CrossRefGoogle Scholar
  82. 82.
    Zhang, W., Mao, J., Pang, W. K., et al. (2017). Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode. Electrochimica Acta, 235, 107–113.CrossRefGoogle Scholar
  83. 83.
    Yang, Z., Sun, J., Ni, Y., et al. (2017). Facile synthesis and in situ transmission electron microscopy investigation of a highly stable Sb2Te3/C nanocomposite for sodium-ion batteries. Energy Storage Materials, 9, 214–220.CrossRefGoogle Scholar
  84. 84.
    Ramireddy, T., Xing, T., Rahman, M. M., et al. (2015). Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 3(10), 5572–5584.CrossRefGoogle Scholar
  85. 85.
    Feinle, A., Elsaesser, M. S., & Husing, N. (2016). Sol-gel synthesis of monolithic materials with hierarchical porosity. Chemical Society Reviews, 45, 3377–3399.CrossRefGoogle Scholar
  86. 86.
    Jung, J.-W., Lee, C.-L., Yu, S., et al. (2016). Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. Journal of Materials Chemistry A, 4(3), 703–750.CrossRefGoogle Scholar
  87. 87.
    Li, D., & Xia, Y. (2004). Electrospinning of nanofibers: Reinventing the wheel? Advanced Materials, 16(14), 1151–1170.CrossRefGoogle Scholar
  88. 88.
    Niu, C., Meng, J., Wang, X., et al. (2015). General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nature Communications, 6, 7402.CrossRefGoogle Scholar
  89. 89.
    Liang, L., Xu, Y., Wang, C., et al. (2015). Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy & Environmental Science, 8(10), 2954–2962.CrossRefGoogle Scholar
  90. 90.
    Nam, D.-H., Hong, K.-S., Lim, S.-J., et al. (2014). Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries. Journal of Power Sources, 247, 423–427.CrossRefGoogle Scholar
  91. 91.
    Xu, Y., Zhou, M., Zhang, C., et al. (2017). Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy, 38, 304–312.CrossRefGoogle Scholar
  92. 92.
    Zhu, Y., Choi, S. H., Fan, X., et al. (2017). Recent progress on spray pyrolysis for high performance electrode materials in lithium and sodium rechargeable batteries. Advanced Energy Materials, 7(7), 1601578.CrossRefGoogle Scholar
  93. 93.
    Gim, J., Mathew, V., Lim, J., et al. (2012). Pyro-synthesis of functional nanocrystals. Scientific Reports, 2, 1–6.CrossRefGoogle Scholar
  94. 94.
    Niu, Y., Xu, M., Guo, C., et al. (2016). Pyro-synthesis of a nanostructured NaTi2(PO4)3/C with a novel lower voltage plateau for rechargeable sodium-ion batteries. Journal of Colloid and Interface Science, 474, 88–92.CrossRefGoogle Scholar
  95. 95.
    Ghosh, S., Mani, A. D., Kishore, B., et al. (2017). Autocombustion synthesis of nanostructured Na2Ti6O13 negative insertion material for Na-ion batteries: Electrochemical and diffusion mechanism. Journal of the Electrochemical Society, 164(9), A1881–A1886.CrossRefGoogle Scholar
  96. 96.
    Nobuhara, K., Nakayama, H., Nose, M., et al. (2013). First-principles study of alkali metal-graphite intercalation compounds. Journal of Power Sources, 243, 585–587.CrossRefGoogle Scholar
  97. 97.
    Wen, Y., He, K., Zhu, Y., et al. (2014). Expanded graphite as superior anode for sodium-ion batteries. Nature Communications, 5, 4033.CrossRefGoogle Scholar
  98. 98.
    Wan, J., Shen, F., Luo, W., et al. (2016). In situ transmission electron microscopy observation of sodiation-desodiation in a long cycle, high-capacity reduced graphene oxide sodium-ion battery anode. Chemistry of Materials, 28(18), 6528–6535.CrossRefGoogle Scholar
  99. 99.
    Kim, H., Yoon, G., Lim, K., et al. (2016). A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries. Chemical Communications, 52(85), 12618–12621.CrossRefGoogle Scholar
  100. 100.
    Zhang, J., Wang, D.-W., Lv, W., et al. (2017). Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy & Environmental Science, 10(1), 370–376.CrossRefGoogle Scholar
  101. 101.
    Cao, B., Liu, H., Xu, B., et al. (2016). Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance. Journal of Materials Chemistry A, 4(17), 6472–6478.CrossRefGoogle Scholar
  102. 102.
    Xiao, L., Cao, Y., Henderson, W. A., et al. (2016). Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano Energy, 19, 279–288.CrossRefGoogle Scholar
  103. 103.
    Li, Y., Xu, S., Wu, X., et al. (2015). Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 3(1), 71–77.CrossRefGoogle Scholar
  104. 104.
    Li, Y., Hu, Y.-S., Titirici, M.-M., et al. (2016). Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Advanced Energy Materials, 6(18), 1600659.CrossRefGoogle Scholar
  105. 105.
    Cao, Y., Xiao, L., Sushko, M. L., et al. (2012). Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Letters, 12(7), 3783–3787.CrossRefGoogle Scholar
  106. 106.
    Ding, J., Wang, H., Li, Z., et al. (2013). Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano, 7(12), 11004–11015.CrossRefGoogle Scholar
  107. 107.
    Lotfabad, E. M., Ding, J., Cui, K., et al. (2014). High-density sodium and lithium ion battery anodes from banana peels. ACS Nano, 8(7), 7115–7129.CrossRefGoogle Scholar
  108. 108.
    Fei, S., Wei, L., Jiaqi, D., et al. (2016). Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Advanced Energy Materials, 6(14), 1600377.CrossRefGoogle Scholar
  109. 109.
    Bi, Z., Paranthaman, M. P., Menchhofer, P. A., et al. (2013). Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of Power Sources, 222, 461–466.CrossRefGoogle Scholar
  110. 110.
    Yang, X., Wang, C., Yang, Y., et al. (2015). Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes. Journal of Materials Chemistry A, 3(16), 8800–8807.CrossRefGoogle Scholar
  111. 111.
    Chen, J., Ding, Z., Wang, C., et al. (2016). Black anatase titania with ultrafast sodium-storage performances stimulated by oxygen vacancies. ACS Applied Materials & Interfaces, 8(14), 9142–9151.CrossRefGoogle Scholar
  112. 112.
    Hong, Z., Zhou, K., Zhang, J., et al. (2015). Facile synthesis of rutile TiO2 mesocrystals with enhanced sodium storage properties. Journal of Materials Chemistry A, 3(33), 17412–17416.CrossRefGoogle Scholar
  113. 113.
    Wang, H., Jia, G., Guo, Y., et al. (2016). Atomic layer deposition of amorphous TiO2 on carbon nanotube networks and their superior Li and Na ion storage properties. Advanced Materials Interfaces, 3(21), 1600375.CrossRefGoogle Scholar
  114. 114.
    Zhang, Y., Foster, C. W., Banks, C. E., et al. (2016). Graphene-rich wrapped petal-like rutile TiO2 tuned by carbon dots for high-performance sodium storage. Advanced Materials, 28(42), 9391–9399.CrossRefGoogle Scholar
  115. 115.
    Yang, Y., Liao, S., Shi, W., et al. (2017). Nitrogen-doped TiO2(B) nanorods as high-performance anode materials for rechargeable sodium-ion batteries. RSC Advances, 7(18), 10885–10890.CrossRefGoogle Scholar
  116. 116.
    Li, H., Fei, H., Liu, X., et al. (2015). In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. Chemical Communications, 51(45), 9298–9300.CrossRefGoogle Scholar
  117. 117.
    Ni, J., Fu, S., Wu, C., et al. (2016). Superior sodium storage in Na2Ti3O7 Nanotube arrays through surface engineering. Advanced Energy Materials, 6(11), 1502568.CrossRefGoogle Scholar
  118. 118.
    Li, Z., Shen, W., Wang, C., et al. (2016). Ultra-long Na2Ti3O7 nanowires@carbon cloth as a binder-free flexible electrode with a large capacity and long lifetime for sodium-ion batteries. Journal of Materials Chemistry A, 4(43), 17111–17120.CrossRefGoogle Scholar
  119. 119.
    Ko, J. S., Doan-Nguyen, V. V. T., Kim, H.-S., et al. (2017). Na2Ti3O7 nanoplatelets and nanosheets derived from a modified exfoliation process for use as a high-capacity sodium-ion negative electrode. ACS Applied Materials & Interfaces, 9(2), 1416–1425.CrossRefGoogle Scholar
  120. 120.
    Anwer, S., Huang, Y., Liu, J., et al. (2017). Nature-inspired Na2Ti3O7 nanosheets-formed three-dimensional microflowers architecture as a high-performance anode material for rechargeable sodium-ion batteries. ACS Applied Materials & Interfaces, 9(13), 11669–11677.CrossRefGoogle Scholar
  121. 121.
    Zhou, X., Zhong, D., Luo, H., et al. (2018). Na2Ti6O13@TiO2 core-shell nanorods with controllable mesoporous shells and their enhanced photocatalytic performance. Applied Surface Science, 427, 1183–1192.CrossRefGoogle Scholar
  122. 122.
    Zou, W., Li, J., Deng, Q., et al. (2014). Microspherical Na2Ti3O7 prepared by spray-drying method as anode material for sodium-ion battery. Solid State Ionics, 262, 192–196.CrossRefGoogle Scholar
  123. 123.
    Dong, S., Shen, L., Li, H., et al. (2015). Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. Journal of Materials Chemistry A, 3(42), 21277–21283.CrossRefGoogle Scholar
  124. 124.
    Chen, S., Pang, Y., Liang, J., et al. (2018). Red blood cell-like hollow carbon sphere anchored ultrathin Na2Ti3O7 nanosheets as long cycling and high rate-performance anodes for sodium-ion batteries. Journal of Materials Chemistry A, 6, 13164–13170.CrossRefGoogle Scholar
  125. 125.
    Xie, F., Zhang, L., Su, D., et al. (2017). Na2Ti3O7@N-doped carbon hollow spheres for sodium-ion batteries with excellent rate performance. Advanced Materials, 29(24), 1700989.CrossRefGoogle Scholar
  126. 126.
    Tian, Y., Wu, Z. L., Xu, G. B., et al. (2017). Hetero-assembly of a Li4Ti5O12 nanosheet and multi-walled carbon nanotube nanocomposite for high-performance lithium and sodium ion batteries. RSC Advances, 7(6), 3293–3301.CrossRefGoogle Scholar
  127. 127.
    Yun, B.-N., Du, H. L., Hwang, J.-Y., et al. (2017). Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries. Journal of Materials Chemistry A, 5(6), 2802–2810.CrossRefGoogle Scholar
  128. 128.
    Wu, C., Kopold, P., Ding, Y.-L., et al. (2015). Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano, 9(6), 6610–6618.CrossRefGoogle Scholar
  129. 129.
    Yang, J., Wang, H., Hu, P., et al. (2015). A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2. Small, 11(31), 3744–3749.CrossRefGoogle Scholar
  130. 130.
    Pang, G., Nie, P., Yuan, C., et al. (2014). Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries. Journal of Materials Chemistry A, 2(48), 20659–20666.CrossRefGoogle Scholar
  131. 131.
    Yang, G., Song, H., Wu, M., et al. (2015). Porous NaTi2(PO4)3 nanocubes: A high-rate nonaqueous sodium anode material with more than 10 000 cycle life. Journal of Materials Chemistry A, 3(36), 18718–18726.CrossRefGoogle Scholar
  132. 132.
    Zhu, Y., Wen, Y., Fan, X., et al. (2015). Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. ACS Nano, 9(3), 3254–3264.CrossRefGoogle Scholar
  133. 133.
    Yu, Z., Song, J., Wang, D., et al. (2017). Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures. Nano Energy, 40, 550–558.CrossRefGoogle Scholar
  134. 134.
    Liu, Y., Zhang, A., Shen, C., et al. (2017). Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 11(6), 5530–5537.CrossRefGoogle Scholar
  135. 135.
    Liu, Y., Zhang, N., Liu, X., et al. (2017). Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. Energy Storage Materials, 9, 170–178.CrossRefGoogle Scholar
  136. 136.
    Zhou, J., Liu, X., Cai, W., et al. (2017). Wet-chemical synthesis of hollow red-phosphorus nanospheres with porous shells as anodes for high-performance lithium-ion and sodium-ion batteries. Advanced Materials, 29(29), 1700214.CrossRefGoogle Scholar
  137. 137.
    Zhang, L., Hu, X., Chen, C., et al. (2017). In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage. Advanced Materials, 29(5), 1604708.CrossRefGoogle Scholar
  138. 138.
    Liu, Y., Xu, Y., Zhu, Y., et al. (2013). Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano, 7(4), 3627–3634.CrossRefGoogle Scholar
  139. 139.
    Liu, J., Yu, L., Wu, C., et al. (2017). New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-Ion batteries. Nano Letters, 17(3), 2034–2042.CrossRefGoogle Scholar
  140. 140.
    Huang, S., Meng, C., Xiao, M., et al. (2017). Multi-shell tin phosphide nanospheres as high performance anode material for a sodium ion battery. Sustainable Energy & Fuels, 1(9), 1944–1949.CrossRefGoogle Scholar
  141. 141.
    Liang, L., Xu, Y., Wen, L., et al. (2017). Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Research, 10(9), 3189–3201.CrossRefGoogle Scholar
  142. 142.
    Wang, Y.-X., Lim, Y.-G., Park, M.-S., et al. (2014). Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. Journal of Materials Chemistry A, 2(2), 529–534.CrossRefGoogle Scholar
  143. 143.
    Pei, L., Jin, Q., Zhu, Z., et al. (2015). Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Research, 8(1), 184–192.CrossRefGoogle Scholar
  144. 144.
    Patra, J., Chen, H.-C., Yang, C.-H., et al. (2016). High dispersion of 1-nm SnO2 particles between graphene nanosheets constructed using supercritical CO2 fluid for sodium-ion battery anodes. Nano Energy, 28, 124–134.CrossRefGoogle Scholar
  145. 145.
    Ma, D., Li, Y., Mi, H., et al. (2018). Robust SnO2-x nanoparticle-impregnated carbon nanofibers with outstanding electrochemical performance for advanced sodium-ion batteries. Angewandte Chemie International Edition, 57(29), 8901–8905.CrossRefGoogle Scholar
  146. 146.
    Li, H. Z., Yang, L. Y., Liu, J., et al. (2016). Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. Journal of Power Sources, 324, 780–787.CrossRefGoogle Scholar
  147. 147.
    Liu, Y., Fang, X., Ge, M., et al. (2015). SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy, 16, 399–407.CrossRefGoogle Scholar
  148. 148.
    Zhao, X., Zhang, Z., Yang, F., et al. (2015). Core-shell structured SnO2 hollow spheres-polyaniline composite as an anode for sodium-ion batteries. RSC Advances, 5(40), 31465–31471.CrossRefGoogle Scholar
  149. 149.
    Zhang, B., Huang, J., & Kim, J.-K. (2015). Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li-ion and Na-ion batteries. Advanced Functional Materials, 25(32), 5222–5228.CrossRefGoogle Scholar
  150. 150.
    Zhao, Y., & Manthiram, A. (2015). Bi0.94Sb1.06S3 Nanorod cluster anodes for sodium-ion batteries: Enhanced reversibility by the synergistic effect of the Bi2S3-Sb2S3 solid solution. Chemistry of Materials, 27(17), 6139–6145.Google Scholar
  151. 151.
    Choi, S. H., & Kang, Y. C. (2015). Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Research, 8(5), 1595–1603.CrossRefGoogle Scholar
  152. 152.
    Chao, D., Zhu, C., Yang, P., et al. (2016). Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 7, 12122.CrossRefGoogle Scholar
  153. 153.
    Elizabeth, C. M., Javier, C. G., & Michel, A. (2014). Polymeric schiff bases as low-voltage redox centers for sodium-ion batteries. Angewandte Chemie International Edition, 53(21), 5341–5345.CrossRefGoogle Scholar
  154. 154.
    Wu, X., Ma, J., Ma, Q., et al. (2015). A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries. Journal of Materials Chemistry A, 3(25), 13193–13197.CrossRefGoogle Scholar
  155. 155.
    Zhao, L., Zhao, J., Hu, Y.-S., et al. (2012). Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Advanced Energy Materials, 2(8), 962–965.CrossRefGoogle Scholar
  156. 156.
    Luo, C., Zhu, Y., Xu, Y., et al. (2014). Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes. Journal of Power Sources, 250, 372–378.CrossRefGoogle Scholar
  157. 157.
    Deng, W., Qian, J., Cao, Y., et al. (2016). Graphene-wrapped Na2C12H6O4 nanoflowers as high performance anodes for sodium-ion batteries. Small, 12(5), 583–587.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Maryland at College ParkCollege Park, MarylandUSA
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations