Nanostrucutres and Nanomaterials for Lithium-Ion Batteries

  • Fei-Fei Cao
  • Huan Ye
  • Yu-Guo GuoEmail author


Lithium-ion batteries have shown great promise in portable electronics and electric vehicles due to their long lifespan and high safety. However, hurdles relating to the sluggish dynamics and poor cycling stability restrict the practical application. Nanostructured materials, due to their significantly decreased particles size, are thought to effectively address the above issues. In this section, we will concentrate on the recent progress in the development of advanced electrode materials including cathodes and anodes for lithium-ion batteries. Particularly, the utilization of nanostructured materials and techniques to decrease the particles size and elevate the diffusion coefficient of electrode materials, and thus shorten the diffusion distance for lithium ions and alleviate the large volume change of electrodes, ensuring enhanced rate capability and improved stability for lithium-ion batteries will be discussed in detail.



Lithium-ion battery




Lithium ion


Transition metal








Depth of discharge


Lithium-rich layered oxide


Carbon nanotube


Single-walled carbon nanotube


Multi-walled carbon nanotube




Hierarchical porous carbon fiber


Metal-organic framework


Solid electrolyte interphase












Chemical vapor deposition


Scanning electron microscope


Transmission electron microscope




Porous carbon nanofiber






Graphitic tube


Atomic layer deposition




Graphene oxide


Reduced graphene oxide






Carbon nanotube macrofilm


Poly(diallydimethylammonium chloride)




Carbon nanofiber


Scanning transmission electron microscopy




Hollow nanosphere


Nitrogen-doped carbon




Porous carbon polyhedra


Tin nanoparticles encapsulated elastic hollow carbon sphere


Zeolitic imidazolate framework




Initial Coulombic efficiency


  1. 1.
    Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359–367.CrossRefGoogle Scholar
  2. 2.
    Whittingham, M. S. (1976). Electrical energy storage and intercalation chemistry. Science, 192, 1126–1127.CrossRefGoogle Scholar
  3. 3.
    Rao, B. M. L., Francis, R. W., & Christopher, H. A. (1977). Lithium-aluminium electrodes. Journal of the Electrochemical Society, 124, 1490–1492.CrossRefGoogle Scholar
  4. 4.
    Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0<X<1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15, 783–789.CrossRefGoogle Scholar
  5. 5.
    Thackeray, M. M., David, W. I. F., Bruce, P. G., & Goodenough, J. B. (1983). Lithium insertion into manganese spinels. Materials Research Bulletin, 18, 461–472.CrossRefGoogle Scholar
  6. 6.
    Mohri, M., Yanagisawa, N., Tajima, Y., Tanaka, H., Mitate, T., Nakajima, S., et al. (1989). Rechargeable lithium battery based on pyrolytic carbon as a negative electrode. Journal of Power Sources, 26, 545–551.CrossRefGoogle Scholar
  7. 7.
    Whittingham, M. S. (2004). Lithium batteries and cathode materials. Chemical Reviews, 104, 4271–4302.CrossRefGoogle Scholar
  8. 8.
    Whittingham, M. S. (1976). The role of ternary phases in cathode reactions. Journal of the Electrochemical Society, 123, 315–320.CrossRefGoogle Scholar
  9. 9.
    Jacobson, A. J., Chianelli, R. R., Rich, S. M., & Whittingham, M. S. (1979). Amorphous molybdenum trisulfide: A new lithium battery cathode. Materials Research Bulletin, 14, 1437–1448.CrossRefGoogle Scholar
  10. 10.
    Sakuda, A., Taguchi, N., Takeuchi, T., Kobayashi, H., Sakaebe, H., Tatsumi, K., et al. (2013). Amorphous TiS4 positive electrode for lithium-sulfur secondary batteries. Electrochemistry Communications, 31, 71–75.CrossRefGoogle Scholar
  11. 11.
    Trumbore, F. A. (1989). Niobium triselenide: A unique rechargeable positive electrode material. Journal of Power Sources, 26, 65–75.CrossRefGoogle Scholar
  12. 12.
    Cao, A.-M., Hu, J.-S., Liang, H.-P., & Wan, L.-J. (2005). Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angewandte Chemie International Edition, 44, 4391–4395.CrossRefGoogle Scholar
  13. 13.
    Yue, Y., & Liang, H. (2017). Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries. Advanced Energy Materials, 7, 1602545.CrossRefGoogle Scholar
  14. 14.
    Huang, X., Rui, X. H., Hng, H. H., & Yan, Q. Y. (2015). Vanadium pentoxide-based cathode materials for lithium-ion batteries: Morphology control, carbon hybridization, and cation doping. Particle & Particle Systems Characterization, 32, 276–294.CrossRefGoogle Scholar
  15. 15.
    Tan, H. T., Rui, X., Sun, W., Yan, Q., & Lim, T. M. (2015). Vanadium-based nanostructure materials for secondary lithium battery applications. Nanoscale, 7, 14595–14607.CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Guan, D., Gao, G., Liang, X., Sun, W., Zhang, K., et al. (2017). Enhanced electrochemical performance of electrospun V2O5 nanotubes as cathodes for lithium ion batteries. Journal of Alloys and Compounds, 726, 922–929.CrossRefGoogle Scholar
  17. 17.
    Wu, N., Du, W., Liu, G., Zhou, Z., Fu, H.-R., Tang, Q., et al. (2017). Synthesis of hierarchical sisal-like V2O5 with exposed stable 001 facets as long life cathode materials for advanced lithium-ion batteries. ACS Applied Materials & Interfaces, 9, 43681–43687.CrossRefGoogle Scholar
  18. 18.
    Haris, M., Atiq, S., Abbas, S. M., Mahmood, A., Ramay, S. M., & Naseem, S. (2018). Acetylene black coated V2O5 nanocomposite with stable cyclability for lithium-ion batteries cathode. Journal of Alloys and Compounds, 732, 518–523.CrossRefGoogle Scholar
  19. 19.
    Chen, M., Liang, X., Yin, J., Chen, Q., & Xia, X. (2018). Graphene foam supported V2O5/N-C core/shell arrays as advanced cathode for lithium ion storage. Journal of Alloys and Compounds, 735, 2022–2029.CrossRefGoogle Scholar
  20. 20.
    Ding, Y.-L., Wen, Y., Wu, C., van Aken, P. A., Maier, J., & Yu, Y. (2015). 3D V6O13 nanotextiles assembled from interconnected nanogrooves as cathode materials for high-energy lithium ion batteries. Nano Letters, 15, 1388–1394.CrossRefGoogle Scholar
  21. 21.
    Zou, Z., Cheng, H., He, J., Long, F., Wu, Y., Yan, Z., et al. (2014). V6O13 nanosheets synthesized from ethanol-aqueous solutions as high energy cathode material for lithium-ion batteries. Electrochimica Acta, 135, 175–180.CrossRefGoogle Scholar
  22. 22.
    Ren, W., Zheng, Z., Luo, Y., Chen, W., Niu, C., Zhao, K., et al. (2015). An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries. Journal of Materials Chemistry A, 3, 19850–19856.CrossRefGoogle Scholar
  23. 23.
    Song, H., Liu, Y., Zhang, C., Liu, C., & Cao, G. (2015). Mo-doped LiV3O8 nanorod-assembled nanosheets as a high performance cathode material for lithium ion batteries. Journal of Materials Chemistry A, 3, 3547–3558.CrossRefGoogle Scholar
  24. 24.
    Tan, H., Xu, L., Geng, H., Rui, X., Li, C., & Huang, S. (2018). Nanostructured Li3V2(PO4)3 cathodes. Small (Weinheim an der Bergstrasse, Germany), 14, 1800567.CrossRefGoogle Scholar
  25. 25.
    Jian, Z. L., Hu, Y. S., Ji, X. L., & Chen, W. (2017). NASICON-structured materials for energy storage. Advanced Materials, 29, 1601925.CrossRefGoogle Scholar
  26. 26.
    Rui, X. H., Li, C., Liu, J., Cheng, T., & Chen, C. H. (2010). The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route. Electrochimica Acta, 55, 6761–6767.CrossRefGoogle Scholar
  27. 27.
    Liu, H., Gao, P., Fang, J., & Yang, G. (2011). Li3V2(PO4)3/graphene nanocomposites as cathode material for lithium ion batteries. Chemical Communications, 47, 9110–9112.CrossRefGoogle Scholar
  28. 28.
    Rui, X., Yan, Q., Skyllas-Kazacos, M., & Lim, T. M. (2014). Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. Journal of Power Sources, 258, 19–38.CrossRefGoogle Scholar
  29. 29.
    Kalluri, S., Yoon, M., Jo, M., Park, S., Myeong, S., Kim, J., et al. (2016). Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage li-ion cells. Advanced Energy Materials, 7, 1601507.CrossRefGoogle Scholar
  30. 30.
    Jang, Y.-I., Huang, B., Wang, H., Sadoway, D. R., Ceder, G., Chiang, Y.-M., et al. (1999). LiAlyCo1−yO2 (R3̄M) intercalation cathode for rechargeable lithium batteries. Journal of the Electrochemical Society, 146, 862–868.CrossRefGoogle Scholar
  31. 31.
    Tukamoto, H., & West, A. R. (1997). Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. Journal of the Electrochemical Society, 144, 3164–3168.CrossRefGoogle Scholar
  32. 32.
    Lee, J.-G., Kim, B., Cho, J., Kim, Y.-W., & Park, B. (2004). Effect of AlPO4-nanoparticle coating concentration on high-cutoff-voltage electrochemical performances in LiCoO2. Journal of the Electrochemical Society, 151, A801–A805.CrossRefGoogle Scholar
  33. 33.
    Cho, J., Kim, Y. J., & Park, B. (2001). LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. Journal of the Electrochemical Society, 148, A1110–A1115.CrossRefGoogle Scholar
  34. 34.
    Cho, J., Kim, Y. J., Kim, T.-J., & Park, B. (2001). Zero-strain intercalation cathode for rechargeable li-ion cell. Angewandte Chemie International Edition, 40, 3367–3369.CrossRefGoogle Scholar
  35. 35.
    Cho, J., Kim, C.-S., & Yoo, S. I. (2000). Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2. Electrochemical and Solid-State Letters, 3, 362–365.CrossRefGoogle Scholar
  36. 36.
    Chen, Z., & Dahn, J. R. (2002). Effect of a ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5 V. Electrochemical and Solid-State Letters, 5, A213–A216.CrossRefGoogle Scholar
  37. 37.
    Hao, Q., Ma, H., Ju, Z., Li, G., Li, X., Xu, L., et al. (2011). Nano-cuo coated LiCoO2: Synthesis, improved cycling stability and good performance at high rates. Electrochimica Acta, 56, 9027–9031.CrossRefGoogle Scholar
  38. 38.
    Orikasa, Y., Takamatsu, D., Yamamoto, K., Koyama, Y., Mori, S., Masese, T., et al. (2014). Origin of surface coating effect for MgO on LiCoO2 to improve the interfacial reaction between electrode and electrolyte. Advanced Materials Interfaces, 1, 1400195.CrossRefGoogle Scholar
  39. 39.
    Lee, H. J., & Park, Y. J. (2013). Interface characterization of MgF2-coated LiCoO2 thin films. Solid State Ionics, 230, 86–91.CrossRefGoogle Scholar
  40. 40.
    Sun, Y.-K., Yoon, C. S., Myung, S.-T., Belharouak, I., & Amine, K. (2009). Role of AlF3 coating on LiCoO2 particles during cycling to cutoff voltage above 4.5 V. Journal of the Electrochemical Society, 156, A1005–A1010.CrossRefGoogle Scholar
  41. 41.
    Park, J. S., Mane, A. U., Elam, J. W., & Croy, J. R. (2015). Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for li-ion batteries. Chemistry of Materials, 27, 1917–1920.CrossRefGoogle Scholar
  42. 42.
    Wang, Y., & Cao, G. (2008). Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Advanced Materials, 20, 2251–2269.CrossRefGoogle Scholar
  43. 43.
    Ceder, G., Chiang, Y. M., Sadoway, D. R., Aydinol, M. K., Jang, Y. I., & Huang, B. (1998). Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature, 392, 694–696.CrossRefGoogle Scholar
  44. 44.
    Lai, Y.-Q., Xu, M., Zhang, Z.-A., Gao, C.-H., Wang, P., & Yu, Z.-Y. (2016). Optimized structure stability and electrochemical performance of LiNi0.8Co0.15Al0.05O2 by sputtering nanoscale ZnO film. Journal of Power Sources, 309, 20–26.CrossRefGoogle Scholar
  45. 45.
    Fang, T., Duh, J.-G., & Sheen, S.-R. (2005). Improving the electrochemical performance of LiCoO2 cathode by nanocrystalline ZnO coating. Journal of the Electrochemical Society, 152, A1701–A1706.CrossRefGoogle Scholar
  46. 46.
    Chung, K. Y., Yoon, W.-S., McBreen, J., Yang, X.-Q., Si Hyoung, O., Shin, H. C., et al. (2006). Structural studies on the effects of ZrO2 coating on LiCoO2 during cycling using in situ X-ray diffraction technique. Journal of the Electrochemical Society, 153, A2152–A2157.CrossRefGoogle Scholar
  47. 47.
    Miyashiro, H., Yamanaka, A., Tabuchi, M., Seki, S., Nakayama, M., Ohno, Y., et al. (2006). Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2. Journal of the Electrochemical Society, 153, A348–A353.CrossRefGoogle Scholar
  48. 48.
    Miyashiro, M., Kobayashi, Y., Seki, S., Mita, Y., Usami, A., Nakayama, M., et al. (2005). Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2. Chemistry of Materials, 17, 5603–5605.CrossRefGoogle Scholar
  49. 49.
    Cho, J., Kim, Y. J., & Park, B. (2000). Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chemistry of Materials, 12, 3788–3791.CrossRefGoogle Scholar
  50. 50.
    Goodenough, J. B., Wickham, D. G., & Croft, W. J. (1958). Some magnetic and crystallographic properties of the system Lix+Ni1−2x++Nix+++O. Journal of Physics and Chemistry of Solids, 5, 107–116.CrossRefGoogle Scholar
  51. 51.
    Myung, S.-T., Maglia, F., Park, K.-J., Yoon, C. S., Lamp, P., Kim, S.-J., et al. (2017). Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Letters, 2, 196–223.CrossRefGoogle Scholar
  52. 52.
    Li, W., Song, B., & Manthiram, A. (2017). High-Voltage Positive Electrode Materials for Lithium-Ion Batteries. Chemical Society Reviews, 46, 3006–3059.CrossRefGoogle Scholar
  53. 53.
    Manthiram, A., Vadivel, M. A., Sarkar, A., & Muraliganth, T. (2008). Nanostructured electrode materials for electrochemical energy storage and conversion. Energy & Environmental Science, 1, 621–638.CrossRefGoogle Scholar
  54. 54.
    Dahn, J. R., von Sacken, U., Juzkow, M. W., & Al-Janaby, H. (1991). Rechargeable LiNiO2/carbon cells. Journal of the Electrochemical Society, 138, 2207–2211.CrossRefGoogle Scholar
  55. 55.
    Radin, M. D., Hy, S., Sina, M., Fang, C., Liu, H., Vinckeviciute, J., et al. (2017). Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Advanced Energy Materials, 7, 1602888.CrossRefGoogle Scholar
  56. 56.
    Ohzuku, T., Ueda, A., & Nagayama, M. (1993). Electrochemistry and structural chemistry of LiNiO2 (R3M) for 4 V secondary lithium cells. Journal of the Electrochemical Society, 140, 1862–1870.CrossRefGoogle Scholar
  57. 57.
    Arai, H., Okada, S., Skurai, Y., & Yamaki, J.-I. (1997). Electrochemical and thermal behavior of LiNi1−zMzO2. Journal of the Electrochemical Society, 144, 3117–3125.CrossRefGoogle Scholar
  58. 58.
    Delmas, C., Saadoune, I., & Rougier, A. (1993). The cycling properties of the LixNi1−yCoyO2 electrode. Journal of Power Sources, 44, 595–602.CrossRefGoogle Scholar
  59. 59.
    Cho, J., & Park, B. (2001). Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. Journal of Power Sources, 92, 35–39.CrossRefGoogle Scholar
  60. 60.
    Arai, H., Okada, S., Sakurai, Y., & Yamaki, J.-I. (1998). Thermal behavior of Li1−yNiO2 and the decomposition mechanism. Solid State Ionics, 109, 295–302.CrossRefGoogle Scholar
  61. 61.
    MacNeil, D. D., & Dahn, J. R. (2002). The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures. Journal of the Electrochemical Society, 149, A912–A919.CrossRefGoogle Scholar
  62. 62.
    Guilmard, M., Croguennec, L., & Delmas, C. (2003). Thermal stability of lithium nickel oxide derivatives. Part II:  LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (X = 0.50 and 0.30). Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2. Chemistry of Materials, 15, 4484–4493.CrossRefGoogle Scholar
  63. 63.
    Park, S. H., Park, K. S., Sun, Y. K., Nahm, K. S., Lee, Y. S., & Yoshio, M. (2001). Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol-gel method. Electrochimica Acta, 46, 1215–1222.CrossRefGoogle Scholar
  64. 64.
    Chappel, E., Chouteau, G., Prado, G., & Delmas, C. (2003). Magnetic properties of LiNi1−yFeyO2. Solid State Ionics, 159, 273–278.CrossRefGoogle Scholar
  65. 65.
    Kim, J., & Amine, K. (2001). The effect of tetravalent titanium substitution in LiNi1−xTixO2 (0.025≤X≤0.2) system. Electrochemistry Communications, 3, 52–55.CrossRefGoogle Scholar
  66. 66.
    Chang, C.-C., Kim, J. Y., & Kim, J. Y. (2000). Synthesis and electrochemical characterization of divalent cation-incorporated lithium nickel oxide. Journal of the Electrochemical Society, 147, 1722–1729.CrossRefGoogle Scholar
  67. 67.
    Huang, Z.-F., Meng, X., Wang, C.-Z., Sun, Y., & Chen, G. (2006). First-principles calculations on the Jahn-Teller distortion in layered LiMnO2. Journal of Power Sources, 158, 1394–1400.CrossRefGoogle Scholar
  68. 68.
    Kim, T.-J., Son, D., Cho, J., & Park, B. (2006). Enhancement of the electrochemical properties of O-LiMnO2 cathodes at elevated temperature by lithium and fluorine additions. Journal of Power Sources, 154, 268–272.CrossRefGoogle Scholar
  69. 69.
    Huang, Z.-F., Wang, C.-Z., Meng, X., Wang, D.-P., & Chen, G. (2006). Effects of Al-doping on the stabilization of monoclinic LiMnO2. Journal of Solid State Chemistry, 179, 1602–1609.CrossRefGoogle Scholar
  70. 70.
    Cho, J., Kim, Y. J., Kim, T.-J., & Park, B. (2001). Enhanced structural stability of O-LiMnO2 by sol-gel coating of Al2O3. Chemistry of Materials, 13, 18–20.CrossRefGoogle Scholar
  71. 71.
    Spahr, M. E., Novák, P., Schnyder, B., Haas, O., & Nesper, R. (1998). Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. Journal of the Electrochemical Society, 145, 1113–1121.CrossRefGoogle Scholar
  72. 72.
    Yoshio, M., Noguchi, H., Itoh, J.-I., Okada, M., & Mouri, T. (2000). Preparation and properties of LiCoyMnxNi1−x−yO2 as a cathode for lithium ion batteries. Journal of Power Sources, 90, 176–181.CrossRefGoogle Scholar
  73. 73.
    Armstrong, A. R., & Bruce, P. G. (1996). Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature, 381, 499–500.CrossRefGoogle Scholar
  74. 74.
    Xiao, X., Wang, L., Wang, D., He, X., Peng, Q., & Li, Y. (2010). Hydrothermal synthesis of orthorhombic LiMnO2 nano-particles and LiMnO2 nanorods and comparison of their electrochemical performances. Nano Research, 2, 923–930.CrossRefGoogle Scholar
  75. 75.
    Yi, X., Wang, X., Ju, B., Shu, H., Wen, W., Yu, R., et al. (2014). Effective enhancement of electrochemical performance for spherical spinel LiMn2O4 via Li ion conductive Li2ZrO3 coating. Electrochimica Acta, 134, 143–149.CrossRefGoogle Scholar
  76. 76.
    Gao, X., Sha, Y., Lin, Q., Cai, R., Tade, M. O., & Shao, Z. (2015). Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. Journal of Power Sources, 275, 38–44.CrossRefGoogle Scholar
  77. 77.
    Wang, Y., Shao, X., Xu, H., Xie, M., Deng, S., Wang, H., et al. (2013). Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries. Journal of Power Sources, 226, 140–148.CrossRefGoogle Scholar
  78. 78.
    Xu, G., Liu, Z., Zhang, C., Cui, G., & Chen, L. (2015). Strategies for improving the cyclability and thermo-stability of LiMn2O4-based batteries at elevated temperatures. Journal of Materials Chemistry A, 3, 4092–4123.CrossRefGoogle Scholar
  79. 79.
    Myung, S.-T., Komaba, S., & Kumagai, N. (2001). Enhanced structural stability and cyclability of Al-doped LiMn2O4 spinel synthesized by the emulsion drying method. Journal of the Electrochemical Society, 148, A482–A489.CrossRefGoogle Scholar
  80. 80.
    Sun, Y. K., Yoon, C. S., Kim, C. K., Youn, S. G., Lee, Y. S., Yoshio, M., et al. (2001). Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling. Journal of Materials Chemistry, 11, 2519–2522.CrossRefGoogle Scholar
  81. 81.
    Guo, S., Zhang, S., He, X., Pu, W., Jiang, C., & Wan, C. (2008). Synthesis and characterization of Sn-doped LiMn2O4 cathode materials for rechargeable Li-ion batteries. Journal of the Electrochemical Society, 155, A760–A763.CrossRefGoogle Scholar
  82. 82.
    Saitoh, M., Sano, M., Fujita, M., Sakata, M., Takata, M., & Nishibori, E. (2004). Studies of capacity losses in cycles and storages for a Li1.1Mn1.9O4 positive electrode. Journal of the Electrochemical Society, 151, A17–A22.CrossRefGoogle Scholar
  83. 83.
    Xia, Y., Wang, H., Zhang, Q., Nakamura, H., Noguchi, H., & Yoshio, M. (2007). Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteries. Journal of Power Sources, 166, 485–491.CrossRefGoogle Scholar
  84. 84.
    Takahashi, M., Yoshida, T., Ichikawa, A., Kitoh, K., Katsukawa, H., Zhang, Q., et al. (2006). Effect of oxygen deficiency reduction in Mg-doped Mn-spinel on its cell storage performance at high temperature. Electrochimica Acta, 51, 5508–5514.CrossRefGoogle Scholar
  85. 85.
    Wei, Q., Wang, X., Yang, X., Ju, B., Hu, B., Shu, H., et al. (2013). Spherical concentration-gradient LiMn1.87Ni0.13O4 spinel as a high performance cathode for lithium ion batteries. Journal of Materials Chemistry A, 1, 4010–4016.CrossRefGoogle Scholar
  86. 86.
    Prabu, M., Reddy, M. V., Selvasekarapandian, S., Subba Rao, G. V., & Chowdari, B. V. R. (2013). (Li, Al)-Co-doped spinel, Li(Li0.1Al0.1Mn1.8)O4 as high performance cathode for lithium ion batteries. Electrochimica Acta, 88, 745–755.Google Scholar
  87. 87.
    Tu, J., Zhao, X. B., Cao, G. S., Zhuang, D. G., Zhu, T. J., & Tu, J. P. (2006). Enhanced cycling stability of LiMn2O4 by surface modification with melting impregnation method. Electrochimica Acta, 51, 6456–6462.CrossRefGoogle Scholar
  88. 88.
    Wang, G. X., Lindsay, M. J., Ionescu, M., Bradhurst, D. H., Dou, S. X., & Liu, H. K. (2001). Physical and electrochemical characterization of LiNi0.8Co0.2O2 thin-film electrodes deposited by laser ablation. Journal of Power Sources, 97–98, 298–302.CrossRefGoogle Scholar
  89. 89.
    Pouillerie, C., Perton, F., Biensan, P., Pérès, J. P., Broussely, M., & Delmas, C. (2001). Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide. Journal of Power Sources, 96, 293–302.CrossRefGoogle Scholar
  90. 90.
    Pouillerie, C., Croguennec, L., & Delmas, C. (2000). The LixNi1−yMgyO2 (Y=0.05, 0.10) system: Structural modifications observed upon cycling. Solid State Ionics, 132, 15–29.CrossRefGoogle Scholar
  91. 91.
    Madhavi, S., Subba Rao, G. V., Chowdari, B. V. R., & Li, S. F. Y. (2001). Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2. Journal of Power Sources, 93, 156–162.Google Scholar
  92. 92.
    Qi, R., Shi, J.-L., Zhang, X.-D., Zeng, X.-X., Yin, Y.-X., Xu, J., et al. (2017). Improving the stability of LiNi0.80Co0.15Al0.05O2 by AlPO4 nanocoating for lithium-ion batteries. Science China Chemistry, 60, 1230–1235.CrossRefGoogle Scholar
  93. 93.
    Robert Armstrong, A., & Gitzendanner, R. (1998). The intercalation compound Li(Mn0.9Co0.1)O2 as a positive electrode for rechargeable lithium batteries. Chemical Communications, 1833–1834.Google Scholar
  94. 94.
    Robertson, A. D., Armstrong, A. R., & Bruce, P. G. (2001). Layered LixMn1-yCoyO2 intercalation electrodesinfluence of ion exchange on capacity and structure upon cycling. Chemistry of Materials, 13, 2380–2386.CrossRefGoogle Scholar
  95. 95.
    Franger, S., Bach, S., Pereira-Ramos, J. P., & Baffier, N. (2000). Chemistry and electrochemistry of low-temperature manganese oxides as lithium intercalation compounds. Journal of the Electrochemical Society, 147, 3226–3230.CrossRefGoogle Scholar
  96. 96.
    Liu, B., Xu, B., Wu, M. S., & Ouyang, C. Y. (2015). First-principles GGA+U study on structural and electronic properties in LiMn0.5Ni0.5O2, LiMn0.5Co0.5O2 and LiCo0.5Ni0.5O2. International Journal of Electrochemical Science, 11, 432–445.Google Scholar
  97. 97.
    Ohzuku, T., & Makimura, Y. (2001). Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chemistry Letters, 30, 744–745.CrossRefGoogle Scholar
  98. 98.
    Kang, K., Meng, Y. S., Bréger, J., Grey, C. P., & Ceder, G. (2006). Electrodes with high power and high capacity for rechargeable lithium batteries. Science, 311, 977–980.CrossRefGoogle Scholar
  99. 99.
    Zhang, T., Li, D., Tao, Z., & Chen, J. (2013). Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Progress in Natural Science: Materials International, 23, 256–272.CrossRefGoogle Scholar
  100. 100.
    Xu, B., Fell, C. R., Chi, M., & Meng, Y. S. (2011). Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy & Environmental Science, 4, 2223–2233.CrossRefGoogle Scholar
  101. 101.
    Sun, Y.-K., Myung, S.-T., Park, B.-C., Prakash, J., Belharouak, I., & Amine, K. (2009). High-energy cathode material for long-life and safe lithium batteries. Nature Materials, 8, 320–324.CrossRefGoogle Scholar
  102. 102.
    Wang, P.-F., You, Y., Yin, Y.-X., & Guo, Y.-G. (2018). Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance. Advanced Energy Materials, 8, 1701912.CrossRefGoogle Scholar
  103. 103.
    Delmas, C., Menetrier, M., Croguennec, L., Saadoune, I., Rougier, A., Pouillerie, C., et al. (1999). An overview of the Li(Ni, M)O-2 systems: Syntheses, structures and properties. Electrochimica Acta, 45, 243–253.CrossRefGoogle Scholar
  104. 104.
    Noh, H.-J., Youn, S., Yoon, C. S., & Sun, Y.-K. (2013). Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (X = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources, 233, 121–130.CrossRefGoogle Scholar
  105. 105.
    Liang, C., Kong, F., Longo, R. C., Kc, S., Kim, J.-S., Jeon, S., et al. (2016). Unraveling the origin of instability in Ni-Rich LiNi1–2xCoxMnxO2 (NCM) cathode materials. The Journal of Physical Chemistry C, 120, 6383–6393.CrossRefGoogle Scholar
  106. 106.
    Liu, W., Oh, P., Liu, X., Lee, M.-J., Cho, W., Chae, S., et al. (2015). Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angewandte Chemie International Edition, 54, 4440–4457.CrossRefGoogle Scholar
  107. 107.
    Myung, S. T., Lee, K. S., Yoon, C. S., Sun, Y. K., Amine, K., & Yashiro, H. (2010). Effect of AlF3 coating on rhermal behavior of chemically delithiated Li0.35Ni1/3Co1/3Mn1/3O2. The Journal of Physical Chemistry C, 114, 4710–4718.CrossRefGoogle Scholar
  108. 108.
    Bak, S. M., Hu, E., Zhou, Y., Yu, X., Senanayake, S. D., Cho, S. J., et al. (2014). Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. ACS Applied Materials & Interfaces, 6, 22594–22601.CrossRefGoogle Scholar
  109. 109.
    Oh, K.-Y., Siegel, J. B., Secondo, L., Kim, S. U., Samad, N. A., Qin, J., et al. (2014). Rate dependence of swelling in lithium-ion cells. Journal of Power Sources, 267, 197–202.CrossRefGoogle Scholar
  110. 110.
    Liu, S., Xiong, L., & He, C. (2014). Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. Journal of Power Sources, 261, 285–291.CrossRefGoogle Scholar
  111. 111.
    Venkatraman, S., Shin, Y., & Manthiram, A. (2003). Phase relationships and structural and chemical stabilities of charged Li1-xCoO2 delta and Li1-xNi0.85Co0.15O2 delta cathodes. Electrochemical and Solid-State Letters, 6, A9–A12.CrossRefGoogle Scholar
  112. 112.
    Lin, F., Markus, I. M., Nordlund, D., Weng, T. C., Asta, M. D., Xin, H. L., et al. (2014). Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nature Communications, 5, 3529.CrossRefGoogle Scholar
  113. 113.
    Myung, S.-T., Maglia, F., Park, K.-J., Yoon, C. S., Lamp, P., Kim, S.-J., et al. (2016). Nickel-rich layered cathode materials for automotive lithium-ion batteries: Achievements and perspectives. ACS Energy Letters, 2, 196–223.CrossRefGoogle Scholar
  114. 114.
    Hou, P., Yin, J., Ding, M., Huang, J., & Xu, X. (2017). Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: Advances and perspectives. Small (Weinheim an der Bergstrasse, Germany), 13, 1701802.CrossRefGoogle Scholar
  115. 115.
    Bak, S.-M., Nam, K.-W., Chang, W., Yu, X., Hu, E., Hwang, S., et al. (2013). Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chemistry of Materials, 25, 337–351.CrossRefGoogle Scholar
  116. 116.
    Watanabe, S., Kinoshita, M., Hosokawa, T., Morigaki, K., & Nakura, K. (2014). Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (Surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). Journal of Power Sources, 258, 210–217.CrossRefGoogle Scholar
  117. 117.
    Manthiram, A., Knight, J. C., Myung, S.-T., Oh, S.-M., & Sun, Y.-K. (2015). Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Advanced Energy Materials, 6, 1501010.CrossRefGoogle Scholar
  118. 118.
    Robert, R., Villevieille, C., & Novák, P. (2014). Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2, 8589–8598.CrossRefGoogle Scholar
  119. 119.
    Zheng, J., Myeong, S., Cho, W., Yan, P., Xiao, J., Wang, C., et al. (2016). Li- and Mn-rich cathode materials: Challenges to commercialization. Advanced Energy Materials, 7, 1601284.CrossRefGoogle Scholar
  120. 120.
    Mohanty, D., Kalnaus, S., Meisner, R. A., Rhodes, K. J., Li, J., Payzant, E. A., et al. (2013). Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. Journal of Power Sources, 229, 239–248.CrossRefGoogle Scholar
  121. 121.
    Liu, H., Harris, K. J., Jiang, M., Wu, Y., Goward, G. R., & Botton, G. A. (2018). Unraveling the rapid performance decay of layered high-energy cathodes: From nanoscale degradation to drastic bulk evolution. ACS Nano, 12, 2708–2718.CrossRefGoogle Scholar
  122. 122.
    Cheng, X. B., Hou, T. Z., Zhang, R., Peng, H. J., Zhao, C. Z., Huang, J. Q., et al. (2016). Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Advanced Materials, 28, 2888–2895.CrossRefGoogle Scholar
  123. 123.
    Yu, H., & Zhou, H. (2013). High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. Journal of Physical Chemistry Letters, 4, 1268–1280.CrossRefGoogle Scholar
  124. 124.
    He, Z., Wang, Z., Chen, H., Huang, Z., Li, X., Guo, H., et al. (2015). Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. Journal of Power Sources, 299, 334–341.CrossRefGoogle Scholar
  125. 125.
    Liu, S., Wang, Z., Huang, Y., Ni, Z., Bai, J., Kang, S., et al. (2018). Fluorine doping and Al2O3 coating co-modified Li[Li0.20Ni0.133Co0.133Mn0.534]O2 as high performance cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 731, 636–645.CrossRefGoogle Scholar
  126. 126.
    Zhang, X.-D., Shi, J.-L., Liang, J.-Y., Yin, Y.-X., Zhang, J.-N., Yu, X.-Q., et al. (2018). Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Advanced Materials, 30, 1801751.CrossRefGoogle Scholar
  127. 127.
    Jiang, K.-C., Wu, X.-L., Yin, Y.-X., Lee, J.-S., Kim, J., & Guo, Y.-G. (2012). Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Applied Materials & Interfaces, 4, 4858–4863.CrossRefGoogle Scholar
  128. 128.
    Wang, Y., Yang, Z., Qian, Y., Gu, L., & Zhou, H. (2015). New insights into improving rate performance of lithium-rich cathode material. Advanced Materials, 27, 3915–3920.CrossRefGoogle Scholar
  129. 129.
    Qing, R.-P., Shi, J.-L., Xiao, D.-D., Zhang, X.-D., Yin, Y.-X., Zhai, Y.-B., et al. (2016). Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Advanced Energy Materials, 6, 1501914.CrossRefGoogle Scholar
  130. 130.
    Ding, Z., Xu, M., Liu, J., Huang, Q., Chen, L., Wang, P., et al. (2017). Understanding the enhanced kinetics of gradient-chemical-doped lithium-rich cathode material. ACS Applied Materials & Interfaces, 9, 20519–20526.CrossRefGoogle Scholar
  131. 131.
    Shi, J.-L., Xiao, D.-D., Zhang, X.-D., Yin, Y.-X., Guo, Y.-G., Gu, L., et al. (2017). Improving the structural stability of Li-rich cathode materials via reservation of cations in the Li-slab for Li-ion batteries. Nano Research, 10, 4201–4209.CrossRefGoogle Scholar
  132. 132.
    Gu, M., Belharouak, I., Zheng, J., Wu, H., Xiao, J., Genc, A., et al. (2013). Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano, 7, 760–767.CrossRefGoogle Scholar
  133. 133.
    Idemoto, Y., Inoue, M., & Kitamura, N. (2014). Composition dependence of average and local structure of xLi(Li1/3Mn2/3)O2–(1−x)Li(Mn1/3Ni1/3Co1/3)O2 active cathode material for Li ion batteries. Journal of Power Sources, 259, 195–202.CrossRefGoogle Scholar
  134. 134.
    Padhi, A. K., Nanjundaswamy, K. S., & Goodenough, J. B. (1997). Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 144, 1188–1194.CrossRefGoogle Scholar
  135. 135.
    Wu, X.-L., Jiang, L.-Y., Cao, F.-F., Guo, Y.-G., & Wan, L.-J. (2009). Lifepo4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Advanced Materials, 21, 2710–2714.CrossRefGoogle Scholar
  136. 136.
    Su, J., Wu, X.-L., Yang, C.-P., Lee, J.-S., Kim, J., & Guo, Y.-G. (2012). Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source. The Journal of Physical Chemistry C, 116, 5019–5024.CrossRefGoogle Scholar
  137. 137.
    Damen, L., De Giorgio, F., Monaco, S., Veronesi, F., & Mastragostino, M. (2012). Synthesis and characterization of carbon-coated Limnpo4 and LiMnPO4 and LiMn1−xFexPO4 (X = 0.2, 0.3) materials for lithium-ion batteries. Journal of Power Sources, 218, 250–253.CrossRefGoogle Scholar
  138. 138.
    Liu, L., Zhang, H., Chen, X., Fang, L., Bai, Y., Liu, R., et al. (2015). Unique synthesis of sandwiched graphene@(Li0.893Fe0.036)Co(PO4) nanoparticles as high-performance cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 3, 12320–12327.CrossRefGoogle Scholar
  139. 139.
    Feng, Y., Zhang, H., Fang, L., Ouyang, Y., & Wang, Y. (2015). Designed synthesis of a unique single-crystal Fe-doped LiNiPO4 nanomesh as an enhanced cathode for lithium ion batteries. Journal of Materials Chemistry A, 3, 15969–15976.CrossRefGoogle Scholar
  140. 140.
    Örnek, A., & Kazancioglu, M. Z. (2016). A novel and effective strategy for producing core-shell LiNiPO4/C cathode material for excellent electrochemical stability using a long-time and low-level microwave approach. Scripta Materialia, 122, 45–49.CrossRefGoogle Scholar
  141. 141.
    Hu, J., Jiang, Y., Cui, S., Duan, Y., Liu, T., Guo, H., et al. (2016). 3D-printed cathodes of LiMn1−xFexPO4 nanocrystals achieve both ultrahigh rate and high capacity for advanced lithium-ion battery. Advanced Energy Materials, 6, 1600856.CrossRefGoogle Scholar
  142. 142.
    Chi, Z.-X., Zhang, W., Wang, X.-S., Cheng, F.-Q., Chen, J.-T., Cao, A.-M., et al. (2014). Accurate surface control of core-shell structured LiMn0.5Fe0.5PO4@C for improved battery performance. Journal of Materials Chemistry A, 2, 17359–17365.CrossRefGoogle Scholar
  143. 143.
    Wang, H., Yang, Y., Liang, Y., Cui, L.-F., Sanchez Casalongue, H., Li, Y., Hong, G., Cui, Y., & Dai, H. (2011). LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angewandte Chemie International Edition, 50, 7364–7368.Google Scholar
  144. 144.
    Mi, Y., Gao, P., Liu, W., Zhang, W., & Zhou, H. (2014). Carbon nanotube-loaded mesoporous LiFe0.6Mn0.4PO4/C microspheres as high performance cathodes for lithium-ion batteries. Journal of Power Sources, 267, 459–468.CrossRefGoogle Scholar
  145. 145.
    Karami, H., & Taala, F. (2011). Synthesis, characterization and application of Li3Fe2(PO4)3 nanoparticles as cathode of lithium-ion rechargeable batteries. Journal of Power Sources, 196, 6400–6411.CrossRefGoogle Scholar
  146. 146.
    Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P., & Capiglia, C. (2014). Review on recent progress of nanostructured anode materials for Li-Ion batteries. Journal of Power Sources, 257, 421–443.CrossRefGoogle Scholar
  147. 147.
    Qie, L., Chen, W.-M., Wang, Z.-H., Shao, Q.-G., Li, X., Yuan, L.-X., et al. (2012). Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Advanced Materials, 24, 2047–2050.CrossRefGoogle Scholar
  148. 148.
    Roy, P., & Srivastava, S. K. (2015). Nanostructured anode materials for lithium ion batteries. Journal of Materials Chemistry A, 3, 2454–2484.CrossRefGoogle Scholar
  149. 149.
    de las Casas, C., & Li, W. (2012). A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 208, 74–85.Google Scholar
  150. 150.
    Lee, S. W., Yabuuchi, N., Gallant, B. M., Chen, S., Kim, B.-S., Hammond, P. T., et al. (2010). High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotechnology, 5, 531–537.CrossRefGoogle Scholar
  151. 151.
    Wu, X.-L., Chen, L.-L., Xin, S., Yin, Y.-X., Guo, Y.-G., Kong, Q.-S., et al. (2010). Preparation and Li storage properties of hierarchical porous carbon fibers derived from alginic acid. ChemSusChem, 3, 703–707.CrossRefGoogle Scholar
  152. 152.
    Wu, X.-L., Liu, Q., Guo, Y.-G., & Song, W.-G. (2009). Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochemistry Communications, 11, 1468–1471.CrossRefGoogle Scholar
  153. 153.
    Ye, G., Zhu, X., Chen, S., Li, D., Yin, Y., Lu, Y., et al. (2017). Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. Journal of Materials Chemistry A, 5, 8247–8254.CrossRefGoogle Scholar
  154. 154.
    Kong, J., Yee, W. A., Wei, Y., Yang, L., Ang, J. M., Phua, S. L., et al. (2013). Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale, 5, 2967–2973.CrossRefGoogle Scholar
  155. 155.
    Wang, G., Shen, X., Yao, J., & Park, J. (2009). Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 47, 2049–2053.CrossRefGoogle Scholar
  156. 156.
    Pan, D. Y., Wang, S., Zhao, B., Wu, M. H., Zhang, H. J., Wang, Y., et al. (2009). Li storage properties of disordered graphene nanosheets. Chemistry of Materials, 21, 3136–3142.CrossRefGoogle Scholar
  157. 157.
    Sun, H., Mei, L., Liang, J., Zhao, Z., Lee, C., Fei, H., et al. (2017). Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 356, 599–604.CrossRefGoogle Scholar
  158. 158.
    Zhou, X., Bao, J., Dai, Z., & Guo, Y.-G. (2013). Tin nanoparticles impregnated in nitrogen-doped graphene for lithium-ion battery anodes. The Journal of Physical Chemistry C, 117, 25367–25373.CrossRefGoogle Scholar
  159. 159.
    Zhang, L.-S., Jiang, L.-Y., Yan, H.-J., Wang, W. D., Wang, W., Song, W.-G., et al. (2010). Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-Ion batteries. Journal of Materials Chemistry, 20, 5462–5467.CrossRefGoogle Scholar
  160. 160.
    Zhou, X., Yin, Y. X., Wan, L. J., & Guo, Y. G. (2012). Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chemical Communications, 48, 2198–2200.CrossRefGoogle Scholar
  161. 161.
    Wang, K., Wang, N., He, J., Yang, Z., Shen, X., & Huang, C. (2017). Graphdiyne nanowalls as anode for lithium—ion batteries and capacitors exhibit superior cyclic stability. Electrochimica Acta, 253, 506–516.CrossRefGoogle Scholar
  162. 162.
    Huang, C., Zhang, S., Liu, H., Li, Y., Cui, G., & Li, Y. (2015). Graphdiyne for high capacity and long-life lithium storage. Nano Energy, 11, 481–489.CrossRefGoogle Scholar
  163. 163.
    Zhang, S., Du, H., He, J., Huang, C., Liu, H., Cui, G., et al. (2016). Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS Applied Materials & Interfaces, 8, 8467–8473.CrossRefGoogle Scholar
  164. 164.
    He, J., Wang, N., Cui, Z., Du, H., Fu, L., Huang, C., et al. (2017). Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nature Communications, 8, 1172.CrossRefGoogle Scholar
  165. 165.
    Zhou, X., Wan, L. J., & Guo, Y. G. (2013). Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries. Small (Weinheim an der Bergstrasse, Germany), 9, 2684–2688.CrossRefGoogle Scholar
  166. 166.
    Yang, S. J., Nam, S., Kim, T., Im, J. H., Jung, H., Kang, J. H., et al. (2013). Preparation and exceptional lithium anodic performance of porous carbon-coated Zno quantum dots derived from a metal-organic framework. Journal of the American Chemical Society, 135, 7394–7397.CrossRefGoogle Scholar
  167. 167.
    Yan, Y., Yin, Y. X., Xin, S., Guo, Y. G., & Wan, L. J. (2012). Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chemical Communications, 48, 10663–10665.CrossRefGoogle Scholar
  168. 168.
    Zheng, F., Yang, Y., & Chen, Q. (2014). High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nature Communications, 5, 5261.CrossRefGoogle Scholar
  169. 169.
    Wu, H., Yu, G., Pan, L., Liu, N., McDowell, M. T., Bao, Z., et al. (2013). Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nature Communications, 4, 1943.CrossRefGoogle Scholar
  170. 170.
    Fujimoto, H., Tokumitsu, K., Mabuchi, A., Chinnasamy, N., & Kasuh, T. (2010). The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors. Journal of Power Sources, 195, 7452–7456.CrossRefGoogle Scholar
  171. 171.
    Guo, B., Shu, J., Wang, Z., Yang, H., Shi, L., Liu, Y., et al. (2008). Electrochemical reduction of nano-SiO2 in hard carbon as anode material for lithium ion batteries. Electrochemistry Communications, 10, 1876–1878.CrossRefGoogle Scholar
  172. 172.
    Hou, G., Cheng, B., Cao, Y., Yao, M., Li, B., Zhang, C., et al. (2016). Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries. Nano Energy, 24, 111–120.CrossRefGoogle Scholar
  173. 173.
    Yang, J., Wang, Y.-X., Chou, S.-L., Zhang, R., Xu, Y., Fan, J., et al. (2015). Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy, 18, 133–142.CrossRefGoogle Scholar
  174. 174.
    Kim, H., Seo, M., Park, M. H., & Cho, J. (2010). A critical size of silicon nano-anodes for lithium rechargeable batteries. Angewandte Chemie International Edition, 49, 2146–2149.CrossRefGoogle Scholar
  175. 175.
    Zhou, Y., Guo, H., Yan, G., Wang, Z., Li, X., Yang, Z., et al. (2018). Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chemical Communications (Cambridge, England), 54, 3755–3758.CrossRefGoogle Scholar
  176. 176.
    Jiang, B., He, Y., Li, B., Zhao, S., Wang, S., He, Y. B., et al. (2017). Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: Anodes for cyclable lithium-ion batteries. Angewandte Chemie International Edition, 56, 1869–1872.CrossRefGoogle Scholar
  177. 177.
    Xu, Q., Li, J. Y., Yin, Y. X., Kong, Y. M., Guo, Y. G., & Wan, L. J. (2016). Nano/micro-structured Si/C anodes with high initial coulombic efficiency in Li-ion batteries. Chemistry An Asian Journal, 11, 1205–1209.CrossRefGoogle Scholar
  178. 178.
    Yang, J., Wang, Y., Li, W., Wang, L., Fan, Y., Jiang, W., et al. (2017). Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Advanced Materials, 29, 1700523.CrossRefGoogle Scholar
  179. 179.
    Li, W., Sun, X., & Yu, Y. (2017). Si-, Ge-, Sn-based anode materials for lithium-ion batteries: From structure design to electrochemical performance. Small Methods, 1, 1600037.CrossRefGoogle Scholar
  180. 180.
    Liu, X. H., Huang, S., Picraux, S. T., Li, J., Zhu, T., & Huang, J. Y. (2011). Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study. Nano Letters, 11, 3991–3997.CrossRefGoogle Scholar
  181. 181.
    Kennedy, T., Mullane, E., Geaney, H., Osiak, M., O’Dwyer, C., & Ryan, K. M. (2014). High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Letters, 14, 716–723.CrossRefGoogle Scholar
  182. 182.
    Zhou, X., Dai, Z., Liu, S., Bao, J., & Guo, Y. G. (2014). Ultra-uniform SnOx/carbon nanohybrids toward advanced lithium-ion battery anodes. Advanced Materials, 26, 3943–3949.CrossRefGoogle Scholar
  183. 183.
    Yin, Y.-X., Xin, S., Wan, L.-J., Li, C.-J., & Guo, Y.-G. (2012). Synthesis of nanostructured SnO2/C microfibers with improved performances as anode material for Li-ion batteries. Journal of Nanoscience and Nanotechnology, 12, 2581–2585.CrossRefGoogle Scholar
  184. 184.
    Wang, B., Li, X., Zhang, X., Luo, B., Zhang, Y., & Zhi, L. (2013). Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Advanced Materials, 25, 3560–3565.CrossRefGoogle Scholar
  185. 185.
    Cao, F. F., Deng, J. W., Xin, S., Ji, H. X., Schmidt, O. G., Wan, L. J., et al. (2011). Cu-Si nanocable arrays as high-rate anode materials for lithium-ion batteries. Advanced Materials, 23, 4415–4420.CrossRefGoogle Scholar
  186. 186.
    Lin, H., Weng, W., Ren, J., Qiu, L., Zhang, Z., Chen, P., et al. (2014). Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Advanced Materials, 26, 1217–1222.CrossRefGoogle Scholar
  187. 187.
    Guan, C., Wang, X., Zhang, Q., Fan, Z., Zhang, H., & Fan, H. J. (2014). Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Letters, 14, 4852–4858.CrossRefGoogle Scholar
  188. 188.
    Lu, Y., Yu, L., & Lou, X. W. (2018). Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem, 4, 972–996.CrossRefGoogle Scholar
  189. 189.
    Chen, S., Chen, Z., Xu, X., Cao, C., Xia, M., & Luo, Y. (2018). Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode. Small (Weinheim an der Bergstrasse, Germany), 14, e1703361.CrossRefGoogle Scholar
  190. 190.
    Lin, L., Ma, Y., Xie, Q., Wang, L., Zhang, Q., & Peng, D. L. (2017). Copper-nanoparticle-induced porous Si/Cu composite films as an anode for lithium ion batteries. ACS Nano, 11, 6893–6903.CrossRefGoogle Scholar
  191. 191.
    Suresh, S., Wu, Z. P., Bartolucci, S. F., Basu, S., Mukherjee, R., Gupta, T., et al. (2017). Protecting silicon film anodes in lithium-ion batteries using an atomically thin graphene drape. ACS Nano, 11, 5051–5061.CrossRefGoogle Scholar
  192. 192.
    Zhou, X., Wan, L. J., & Guo, Y. G. (2013). Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Advanced Materials, 25, 2152–2157.CrossRefGoogle Scholar
  193. 193.
    Zhou, X., & Guo, Y.-G. (2013). A PEO-assisted electrospun silicon-graphene composite as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 1, 9019–9023.CrossRefGoogle Scholar
  194. 194.
    Zhou, X., Yin, Y.-X., Wan, L.-J., & Guo, Y.-G. (2012). Self-assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium-ion batteries. Advanced Energy Materials, 2, 1086–1090.CrossRefGoogle Scholar
  195. 195.
    Zhou, X., Cao, A.-M., Wan, L.-J., & Guo, Y.-G. (2012). Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Research, 5, 845–853.CrossRefGoogle Scholar
  196. 196.
    Chang, J., Huang, X., Zhou, G., Cui, S., Hallac, P. B., Jiang, J., et al. (2014). Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Advanced Materials, 26, 758–764.CrossRefGoogle Scholar
  197. 197.
    Wang, D., Yang, J., Li, X., Geng, D., Li, R., Cai, M., et al. (2013). Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy & Environmental Science, 6, 2900–2906.CrossRefGoogle Scholar
  198. 198.
    Wang, X., Cao, X., Bourgeois, L., Guan, H., Chen, S., Zhong, Y., et al. (2012). N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Advanced Functional Materials, 22, 2682–2690.CrossRefGoogle Scholar
  199. 199.
    Ahmed, B., Anjum, D. H., Gogotsi, Y., & Alshareef, H. N. (2017). Atomic layer deposition of SnO2 on mxene for Li-ion battery anodes. Nano Energy, 34, 249–256.CrossRefGoogle Scholar
  200. 200.
    Lian, Q., Zhou, G., Zeng, X., Wu, C., Wei, Y., Cui, C., et al. (2016). Carbon coated SnS/SnO2 heterostructures wrapping on Cnfs as an improved-performance anode for Li-ion batteries: Lithiation-induced structural optimization upon cycling. ACS Applied Materials & Interfaces, 8, 30256–30263.CrossRefGoogle Scholar
  201. 201.
    Li, X., Gu, M., Hu, S., Kennard, R., Yan, P., Chen, X., et al. (2014). Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Communications, 5, 4105.CrossRefGoogle Scholar
  202. 202.
    Ge, M., Lu, Y., Ercius, P., Rong, J., Fang, X., Mecklenburg, M., et al. (2014). Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Letters, 14, 261–268.CrossRefGoogle Scholar
  203. 203.
    Yi, R., Dai, F., Gordin, M. L., Chen, S., & Wang, D. (2013). Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Advanced Energy Materials, 3, 295–300.CrossRefGoogle Scholar
  204. 204.
    Huang, B., Li, X., Pei, Y., Li, S., Cao, X., Masse, R. C., et al. (2016). Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small (Weinheim an der Bergstrasse, Germany), 12, 1945–1955.CrossRefGoogle Scholar
  205. 205.
    Wang, X. L., Han, W. Q., Chen, H., Bai, J., Tyson, T. A., Yu, X. Q., et al. (2011). Amorphous hierarchical porous Geo(X) as high-capacity anodes for Li ion batteries with very long cycling life. Journal of the American Chemical Society, 133, 20692–20695.CrossRefGoogle Scholar
  206. 206.
    Zhu, Z., Wang, S., Du, J., Jin, Q., Zhang, T., Cheng, F., et al. (2014). Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Letters, 14, 153–157.CrossRefGoogle Scholar
  207. 207.
    Xu, Y., Liu, Q., Zhu, Y., Liu, Y., Langrock, A., Zachariah, M. R., et al. (2013). Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Letters, 13, 470–474.CrossRefGoogle Scholar
  208. 208.
    Lee, S. J., Kim, H. J., Hwang, T. H., Choi, S., Park, S. H., Deniz, E., et al. (2017). Delicate structural control of Si-SiOx-C composite via high-speed spray pyrolysis for Li-ion battery anodes. Nano Letters, 17, 1870–1876.CrossRefGoogle Scholar
  209. 209.
    Zhang, R., Du, Y., Li, D., Shen, D., Yang, J., Guo, Z., et al. (2014). Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework. Advanced Materials, 26, 6749–6755.CrossRefGoogle Scholar
  210. 210.
    Xu, Q., Sun, J.-K., Li, J.-Y., Yin, Y.-X., & Guo, Y.-G. (2018). Scalable synthesis of spherical Si/C granules with 3D conducting networks as ultrahigh loading anodes in lithium-ion batteries. Energy Storage Materials, 12, 54–60.CrossRefGoogle Scholar
  211. 211.
    Xu, Q., Li, J.-Y., Sun, J.-K., Yin, Y.-X., Wan, L.-J., & Guo, Y.-G. (2017). Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Advanced Energy Materials, 7, 1601481.CrossRefGoogle Scholar
  212. 212.
    Zhang, Y.-C., You, Y., Xin, S., Yin, Y.-X., Zhang, J., Wang, P., et al. (2016). Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy, 25, 120–127.CrossRefGoogle Scholar
  213. 213.
    Zhou, X., Yin, Y. X., Cao, A. M., Wan, L. J., & Guo, Y. G. (2012). Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. ACS Applied Materials & Interfaces, 4, 2824–2828.CrossRefGoogle Scholar
  214. 214.
    Ko, M., Chae, S., Ma, J., Kim, N., Lee, H.-W., Cui, Y., et al. (2016). Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy, 1, 16113.CrossRefGoogle Scholar
  215. 215.
    Zhang, W.-M., Hu, J.-S., Guo, Y.-G., Zheng, S.-F., Zhong, L.-S., Song, W.-G., et al. (2008). Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Advanced Materials, 20, 1160–1165.CrossRefGoogle Scholar
  216. 216.
    Zhang, L., Wu, H. B., Liu, B., & Lou, X. W. (2014). Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy & Environmental Science, 7, 1013–1017.CrossRefGoogle Scholar
  217. 217.
    Zhou, X., Yin, Y.-X., Wan, L.-J., & Guo, Y.-G. (2012). A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. Journal of Materials Chemistry, 22, 17456–17459.CrossRefGoogle Scholar
  218. 218.
    Zhou, X., Yu, L., & Lou, X. W. D. (2016). Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties. Advanced Energy Materials, 6, 1600451.CrossRefGoogle Scholar
  219. 219.
    Zhang, L., Zhang, G., Wu, H. B., Yu, L., & Lou, X. W. (2013). Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Advanced Materials, 25, 2589–2593.CrossRefGoogle Scholar
  220. 220.
    Liang, J., Yu, X. Y., Zhou, H., Wu, H. B., Ding, S., & Lou, X. W. (2014). Bowl-like SnO2@Carbon hollow particles as an advanced anode material for lithium-ion batteries. Angewandte Chemie International Edition, 53, 12803–12807.CrossRefGoogle Scholar
  221. 221.
    Zhao, B., Ran, R., Liu, M., & Shao, Z. (2015). A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Materials Science and Engineering: R: Reports, 98, 1–71.CrossRefGoogle Scholar
  222. 222.
    Li, N., Zhou, G., Li, F., Wen, L., & Cheng, H.-M. (2013). A self-standing and flexible electrode of Li4Ti5O12 nanosheets with a N-doped carbon coating for high rate lithium ion batteries. Advanced Functional Materials, 23, 5429–5435.CrossRefGoogle Scholar
  223. 223.
    Wang, Y. Q., Gu, L., Guo, Y. G., Li, H., He, X. Q., Tsukimoto, S., et al. (2012). Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. Journal of the American Chemical Society, 134, 7874–7879.CrossRefGoogle Scholar
  224. 224.
    Wang, P., Zhang, G., Cheng, J., You, Y., Li, Y. K., Ding, C., et al. (2017). Facile synthesis of carbon-coated spinel Li4Ti5O12/rutile-TiO2 composites as an improved anode material in full lithium-ion batteries with LiFePO4@N-doped carbon cathode. ACS Applied Materials & Interfacess, 9, 6138–6143.CrossRefGoogle Scholar
  225. 225.
    Wang, C., Wang, S., Tang, L., He, Y.-B., Gan, L., Li, J., et al. (2016). A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy, 21, 133–144.CrossRefGoogle Scholar
  226. 226.
    Zheng, S.-F., Hu, J.-S., Zhong, L.-S., Song, W.-G., Wan, L.-J., & Guo, Y.-G. (2008). Introducing dual functional Cnt networks into Cuo nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chemistry of Materials, 20, 3617–3622.CrossRefGoogle Scholar
  227. 227.
    Cao, F.-F., Wu, X.-L., Xin, S., Guo, Y.-G., & Wan, L.-J. (2010). Facile synthesis of mesoporous TiO2-C nanosphere as an improved anode material for superior high rate 1.5 V rechargeable Li ion batteries containing LiFePO4-C cathode. The Journal of Physical Chemistry C, 114, 10308–10313.CrossRefGoogle Scholar
  228. 228.
    Cao, F.-F., Guo, Y.-G., Zheng, S.-F., Wu, X.-L., Jiang, L.-Y., Bi, R.-R., et al. (2010). Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chemistry of Materials, 22, 1908–1914.CrossRefGoogle Scholar
  229. 229.
    Qu, J., Yin, Y. X., Wang, Y. Q., Yan, Y., Guo, Y. G., & Song, W. G. (2013). Layer structured alpha-Fe2O3 nanodisk/reduced graphene oxide composites as high-performance anode materials for lithium-ion batteries. ACS Applied Materials & Interfacess, 5, 3932–3936.CrossRefGoogle Scholar
  230. 230.
    Zhang, W. M., Wu, X. L., Hu, J. S., Guo, Y. G., & Wan, L. J. (2008). Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Advanced Functional Materials, 18, 3941–3946.CrossRefGoogle Scholar
  231. 231.
    Cui, Z.-M., Hang, L.-Y., Song, W.-G., & Guo, Y.-G. (2009). High-yield gas-liquid interfacial synthesis of highly dispersed Fe3O4 nanocrystals and their application in lithium-ion batteries. Chemistry of Materials, 21, 1162–1166.CrossRefGoogle Scholar
  232. 232.
    Wu, X.-L., Guo, Y.-G., Wan, L.-J., & Hu, C.-W. (2008). Alpha-Fe2O3 nanostructures: Inorganic salt-controlled synthesis and their electrochemical performance toward lithium storage. The Journal of Physical Chemistry C, 112, 16824–16829.CrossRefGoogle Scholar
  233. 233.
    Wang, X., Wu, X.-L., Guo, Y.-G., Zhong, Y., Cao, X., Ma, Y., et al. (2010). Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Advanced Functional Materials, 20, 1680–1686.CrossRefGoogle Scholar
  234. 234.
    Gu, D., Li, W., Wang, F., Bongard, H., Spliethoff, B., Schmidt, W., et al. (2015). Controllable synthesis of mesoporous peapod-like Co3O4@Carbon nanotube arrays for high-performance lithium-ion batteries. Angewandte Chemie International Edition, 54, 7060–7064.CrossRefGoogle Scholar
  235. 235.
    Wang, B., Wu, X.-L., Shu, C.-Y., Guo, Y.-G., & Wang, C.-R. (2010). Synthesis of Cuo/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 20, 10661–10664.CrossRefGoogle Scholar
  236. 236.
    Jiang, L.-Y., Xin, S., Wu, X.-L., Li, H., Guo, Y.-G., & Wan, L.-J. (2010). Non-sacrificial template synthesis of Cr2O3-C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. Journal of Materials Chemistry, 20, 7565–7569.CrossRefGoogle Scholar
  237. 237.
    Zhao, G., Wen, T., Zhang, J., Li, J., Dong, H., Wang, X., et al. (2014). Two-dimensional Cr2O3 and interconnected graphene-Cr2O3 nanosheets: Synthesis and their application in lithium storage. Journal of Materials Chemistry A, 2, 944–948.CrossRefGoogle Scholar
  238. 238.
    Xu, L., Hu, Y., Zhang, H., Jiang, H., & Li, C. (2016). Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries. ACS Sustainable Chemistry Engineering, 4, 4251–4255.CrossRefGoogle Scholar
  239. 239.
    Wen, X., Wei, X., Yang, L., & Shen, P. K. (2015). Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. Journal of Materials Chemistry A, 3, 2090–2096.CrossRefGoogle Scholar
  240. 240.
    Wu, R., Wang, D. P., Rui, X., Liu, B., Zhou, K., Law, A. W., et al. (2015). In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Advanced Materials, 27, 3038–3044.CrossRefGoogle Scholar
  241. 241.
    Zhou, X., Wan, L. J., & Guo, Y. G. (2013). Synthesis of MoS2 nanosheet-graphene nanosheet hybrid materials for stable lithium storage. Chemical Communications, 49, 1838–1840.CrossRefGoogle Scholar
  242. 242.
    Fang, W., Zhao, H., Xie, Y., Fang, J., Xu, J., & Chen, Z. (2015). Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Applied Materials & Interfaces, 7, 13044–13052.CrossRefGoogle Scholar
  243. 243.
    Huang, J., Wang, X., Li, J., Cao, L., Xu, Z., & Wei, H. (2016). WS2-super P nanocomposites anode material with enhanced cycling stability for lithium ion batteries. Journal of Alloys and Compounds, 673, 60–66.CrossRefGoogle Scholar
  244. 244.
    Park, G., Sim, S., Lee, J., & Lee, S.-M. (2015). Effect of silicon doping on the electrochemical properties of MoP2 nano-cluster anode for lithium ion batteries. Journal of Alloys and Compounds, 639, 296–300.CrossRefGoogle Scholar
  245. 245.
    Lu, Y., Tu, J. P., Xiang, J. Y., Wang, X. L., Zhang, J., Mai, Y. J., et al. (2011). Improved electrochemical performance of self-assembled hierarchical nanostructured nickel phosphide as a negative electrode for lithium ion batteries. The Journal of Physical Chemistry C, 115, 23760–23767.CrossRefGoogle Scholar
  246. 246.
    Yang, D., Zhu, J., Rui, X., Tan, H., Cai, R., Hoster, H. E., et al. (2013). Synthesis of cobalt phosphides and their application as anodes for lithium ion batteries. ACS Applied Materials & Interfacess, 5, 1093–1099.CrossRefGoogle Scholar
  247. 247.
    De Trizio, L., Figuerola, A., Manna, L., Genovese, A., George, C., Brescia, R., et al. (2012). Size-tunable, hexagonal plate-like Cu3P and janus-like Cu-Cu3P nanocrystals. ACS Nano, 6, 32–41.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Huazhong Agricultural UniversityWuhanPeople’s Republic of China
  2. 2.Institute of Chemistry, Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations